Licence de mathématiques, 3e année Topologie

☐ Luminy
☐ Saint-Jérôme
□ Château-Gombert

Deux heures, ni calculatrices, ni documents

Enseignants: T. Coulbois, L. Paoluzzi

Exercice I. Cours.

- 1. Qu'est-ce qu'un fermé dans un espace métrique?
- Démontrer qu'un fermé dans un compact est compact.
- 3. Démontrer que l'image continue d'un compact est compacte.

Exercice II. 1. Donner un exemple d'une union de fermés qui n'est pas fermée.

 $[0;1] = \bigcup_{n \in \mathbb{N}^*} [\frac{1}{n};1]$ est une union (infinie) de fermés de \mathbb{R} qui n'est pas fermée.

2. Donner un exemple d'une application continue f et d'un fermé F dont l'image f(F)n'est pas fermée.

Partiel 2 Mardi 17 novembre 2015

 $\arctan: \mathbb{R} \to \mathbb{R}$ est continue, \mathbb{R} est fermé et l'image de la fonction arctan est $\left| -\frac{\pi}{2}; \frac{\pi}{2} \right|$ qui n'est pas un fermé de \mathbb{R} .

3. Donner un exemple d'une application continue f et d'un compact K dont l'image réciproque f(K) n'est pas compacte.

L'application $x\mapsto \frac{1}{x}$ est continue de \mathbb{R}^* dans \mathbb{R} . L'image réciproque du compact [0;1]est $[1; +\infty[$ qui n'est pas compact.

4. Donner un exemple d'une application continue f et d'une partie A telles que

$$\bar{f}^{1}(\bar{A}) \neq \overline{f^{1}(A)}.$$

Soit $A =]0; +\infty]$ et $f : \mathbb{R} \to \mathbb{R}$, $x \mapsto f(x) = x^2(x-1)$. Bien sûr, f est continue. De plus

Exercice III. (E,d) et (E',d') deux espaces métriques, soit $f:E\to E'$ une application continue et soit A une partie de E. Montrer que

$$f(\bar{A}) \subseteq \overline{f(A)}$$
.

Soit $y \in f(\bar{A})$, alors il existe $x \in \bar{A}$ tel que y = f(x). Par définition de l'adhérence, il existe une suite $(x_n)_{n\in\mathbb{N}}$ de points de A qui converge vers x. Comme f est continue sur E, donc au point x, la suite des images $(f(x_n))_{n\in\mathbb{N}}$ converge dans E' vers y=f(x). Pour chaque $n \in \mathbb{N}$, $f(x_n) \in f(A)$ donc la limite, y, appartient à l'adhérence f(A). Nous avons ainsi démontré que $f(A) \subseteq f(A)$.

Exercice IV. Soit (E,d) un espace métrique. Un point isolé x d'une partie A de E est un point $x \in A$ tel qu'il existe r > 0 avec $B(x,r) \cap A = \{x\}$. On désigne par A'l'ensemble des points de A qui ne sont pas isolés.

1. a. Démontrer que O n'a pas de points isolés.

En effet, soit $x \in \mathbb{Q}$ et r > 0. Alors la boule B(x,r) =]x-r; x+r[est un intervalle ouvert non-trivial de \mathbb{R} qui contient une infinité de nombres rationnels : $B(x,r) \cap \mathbb{Q} \neq \{x\}$. Par exemple le nombre $\epsilon = 1/(\lfloor 1/r \rfloor + 1)$ est rationnel, strictement positif et strictement plus petit que r donc $x + \epsilon \in B(x,r) \cap \mathbb{Q}$.

b. Pour $A = \{0\} \cup \{\frac{1}{n} \mid n \in \mathbb{N}^*\}$, démontrer que $A' = \{0\}$.

Remarquons d'abord que pour $n \in \mathbb{N}^*$,

$$\frac{1}{n} - \frac{1}{n+1} = \frac{1}{n(n+1)} > \frac{1}{(n+1)^2} \text{ et } \frac{1}{n-1} - \frac{1}{n} = \frac{1}{n(n-1)} > \frac{1}{n^2} > \frac{1}{(n+1)^2}.$$

Nous en concluons que $B(\frac{1}{n}, \frac{1}{(n+1)^2}) \cap A = \{\frac{1}{n}\}$ et donc que $\frac{1}{n}$ est un point isolé de A. Mais pour tout $\epsilon > 0$, il existe $n \in \mathbb{N}^*$ tel que $0 < \frac{1}{n} < \epsilon$ (par exemple $n = \lfloor \frac{1}{\epsilon} \rfloor + 1$ convient) et donc $\frac{1}{n} \in B(0, \epsilon) \cap A$. Ce qui démontre que 0 n'est pas un point isolé de A.

Nous avons ainsi démontré que $A' = \{0\}$.

2. Si A est fermé, démontrer que A' est fermé.

Soit $(x_n)_{n\in\mathbb{N}}$ une suite de points de A' qui converge vers un point x de E. Comme $A'\subseteq A$, d'après la caractérisation séquentielle du fermé A, le point x appartient à A. Par l'absurde supposons que x n'est pas un point de A' et donc que c'est un point isolé de A. Alors il existe r>0 tel que $B(x,r)\cap A=\{x\}$.

Par définition de la limite il existe N tel que $\forall n \geq N$, $d(x_n, x) < r$. En particulier pour n = N, $d(x_N, x) < r$, autrement dit $x_N \in B(x, r)$. Comme x est isolé, et $x_N \in A' \subseteq A$, nous en déduisons que $x_N = x$ et que $x \in A'$ ce qui est une contradiction.

En utilisant la caractérisation séquentielle des fermés nous avons démontré que A' est fermé.

3. Soit K un compact dont tous les points sont isolés. Montrer que K est fini.

Comme tous les points de K sont isolés, pour chaque $x \in K$, il existe $r_x > 0$ tel que $B(x, r_x) \cap K = \{x\}$. Nous avons alors le recouvrement ouvert $K \subseteq \bigcup_{x \in K} B(x, r_x)$. Comme K est compact, d'après la propriété de BOREL-LEBESGUE, nous pouvons extraire un sous-recouvrement fini : il existe une partie finie \mathcal{F} de K telle que $K \subseteq \bigcup_{x \in \mathcal{F}} B(x, r_x)$. En intersectant ave K nous obtenons :

$$K = \left(\bigcup_{x \in \mathcal{F}} B(x, r_x)\right) \cap K = \bigcup_{x \in \mathcal{F}} (B(x, r_x) \cap K) = \bigcup_{x \in \mathcal{F}} \{x\} = \mathcal{F}.$$

Ce qui démontre que K est fini.

4. On considère la fonction $f:[0;1] \to [0;1]$ telle que $f(x) = 3x - \lfloor 3x \rfloor$. Pour un entier $n \in \mathbb{N}^*$, on note f^n l'itérée n fois de f et on considère

$$C_n = \{x \in [0;1] \mid f^n(x) \in [0;\frac{1}{3}] \cup [\frac{2}{3};1]\}.$$

Enfin, on considère $C = \bigcap_{n \in \mathbb{N}} C_n$, avec $C_0 = [0; \frac{1}{3}] \cup [\frac{2}{3}; 1]$.

- a. Tracer la courbe représentative de f.
- **b.** Dessiner, C_0 , C_1 et $C_0 \cap C_1$.

Nous lisons sur la courbe représentative de f que

$$C_1 = [0; \frac{1}{9}] \cup [\frac{2}{9}; \frac{4}{9}] \cup [\frac{5}{9}; \frac{7}{9}] \cup [\frac{8}{9}; 1]$$

et

$$C_0 \cap C_1 = [0; \frac{1}{9}] \cup [\frac{2}{9}; \frac{1}{3}] \cup [\frac{2}{3}; \frac{7}{9}] \cup [\frac{8}{9}; 1].$$

c. Démontrer que pour tout $n \in \mathbb{N}^*$, C_n est fermé, puis que C est compact.

Nous montrerions par récurrence sur n que $\forall n \in \mathbb{N}^*$ et $\forall x \in [0; 1], f^n(x) = 3^n x - \lfloor 3^n x \rfloor$. Nous en déduisons que l'image réciproque de $C_0 = [0; \frac{1}{3}] \cup [\frac{2}{3}; 1]$ par f^n est

$$C_n = [0; \frac{1}{3^{n+1}}] \cup [\frac{2}{3^{n+1}}; \frac{4}{3^{n+1}}] \cup [\frac{5}{3^{n+1}}; \frac{7}{3^{n+1}}] \cup \dots \cup [\frac{3^{n+1}-4}{3^{n+1}}; \frac{3^{n+1}-2}{3^{n+1}}] \cup [\frac{3^{n+1}-1}{3^{n+1}}; 1].$$

 C_n est donc une union finie de segments de \mathbb{R} donc C_n est fermé (et même compact). Une intersection de fermés est fermée donc C est fermé. C est fermé et inclus dans le compact [0;1], C est donc compact.

d. Démontrer que C est d'intérieur vide.

Vu le calcul de la question précédente, nous remarquons que pour tout $n \in \mathbb{N}^*$, si une boule B(x,r) =]x - r; x + r[est incluse dans C_n , alors $r \leq \frac{2}{3^{n+1}}$, car $\frac{2}{3^{n+1}}$ est le maximum des diamètres des segments qui apparaissent dans l'union de segments.

Nous en déduisons que si B(x,r) =]x - r; x + r[est une boule incluse dans tous les C_n , alors r = 0. Autrement dit l'intersection C ne contient pas de boules ouvertes non-vides et C est d'intérieur vide.

<u>Autre méthode</u>: Remarquons que pour $n \in \mathbb{N}^*$ et $k \in \mathbb{N}$, $0 \le k \le \frac{3^n - 1}{2}$, le nombre réel $x_{n,k} = \frac{2k+1}{2\cdot 3^n}$ n'appartient pas à C_n , en effet $f^n(x_{n,k}) = \frac{1}{2}$.

Remarquons que $x_{n,k+1} - x_{n,k} = \frac{1}{3^n}$

Ainsi pour tout $x \in [0;1]$ et pour tout $n \in \mathbb{N}^*$, il existe k, $0 \le k \le \frac{3^n-1}{2}$ tel que $|x-x_{n,k}| < \frac{1}{3^n}$. Nous en concluons que pour tout r > 0, pour n assez grand la boule B(x,r) contient un point qui n'est pas dans C_n , cette boule n'est donc pas incluse dans C_n et a fortiori n'est pas incluse dans C.

e. Démontrer que C n'a pas de points isolés.

Cette question est difficile. Considérons les fermés emboités $D_n = C_0 \cap C_1 \cap \cdots \cap C_n$ (pour $n \in \mathbb{N}$). Remarquons que D_{n+1} est obtenu à partir de D_n en enlevant le tiers du milieu de chacun des segments qui composent D_n . En particulier les extrêmités des segments qui composent D_n sont aussi des extrêmités de segments qui composent D_{n+1} (mais bien sûr les segments sont différents). Par récurrence nous obtenons que les extrêmités des segments qui composent D_n sont toutes des éléments de C.

Ces extrêmités viennent par paire (à gauche et à droite d'un segment) et elles sont distantes de $\frac{1}{3^{n+1}}$, autrement dit pour tout point x de D_n , il existe au moins deux points distincts de C situés à une distance inférieure ou égale à $\frac{1}{3^{n+1}}$ de x. Nous en déduisons que toute boule de la forme B(x,r) avec $x \in C$ et r > 0 contient au moins deux points de C, ce qui montre que C n'a pas de points isolés.