Espaces complets

Exercice 1. Soit $(x_n)_n$ une suite de Cauchy dans un espace métrique quelconque. Montrer que cette suite converge si et seulement si elle admet une sous-suite convergente.

Exercice 2. Une métrique complète sur \mathbb{N} .

Soit a > 0 quelconque. On définit d par $d(m, n) = a + \frac{1}{m+1} + \frac{1}{n+1}$, pour $m \neq n$ et d(n, n) = 0. Montrer que d est une distance sur \mathbb{N} , et que (\mathbb{N}, d) est complet.

Exercice 3. Une métrique non complète sur \mathbb{R} .

Montrer que $d(x,y) = |\operatorname{Arctg} x - \operatorname{Arctg} y|$ définit une distance sur $\mathbb R$ et que l'espace $(\mathbb R,d)$ n'est pas complet (on pourra considérer la suite $u_n = n$ et se rappeller que $\operatorname{Arctg} x + \operatorname{Arctg} \frac{1}{x} = \frac{\pi}{2}$ si x > 0).

Exercice 4. Soit $f: \mathbb{R} \to \mathbb{R}^2$ une application injective. Pour tout $x, y \in \mathbb{R}$ on définit d(x, y) = ||f(x) - f(y)||. Montrer que (\mathbb{R}, d) est complet si et seulement si $f(\mathbb{R})$ est fermé dans \mathbb{R}^2 .

Exercice 5. $(C([0,1],\mathbb{R}),\|\cdot\|_1)$ n'est pas complet

Trouver une suite de fonctions $(f_n)_{n\in\mathbb{N}}$ qui soit de Cauchy dans $E:=(C([0,1],\mathbb{R}),\|\cdot\|_1)$ et qui ne converge pas dans E. (On pourra, pour chaque n, couper [0,1] en trois intervalles tels que f_n soit nulle sur le premier, affine sur le second et égale à 1 sur le troisième).

Exercice 6. Non équivalence des normes $\|\cdot\|_{\infty}$ et $\|\cdot\|_1$ sur c_{00} On considère l'espace des suites de nombres réels :

$$c_{00} := \{X = (x_i)_{i \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}; x_i = 0 \text{ à partir d'un certain rang}\}.$$

Soit $(X_n)_{n\in\mathbb{N}}$ la suite de points de c_{00} , telle que pour chaque $n\in\mathbb{N},$ $X_n=(x_{n,i})_{i\in\mathbb{N}}$ la suite de nombres réels définie par

$$\begin{cases} x_{n,i} = (1+i)^{-1} \text{ pour } i < n, \\ x_{n,i} = 0 \text{ pour } i \ge n. \end{cases}$$

Soient $E_{\infty} = (c_{00}, \|\cdot\|_{\infty})$ et $E_1 = (c_{00}, \|\cdot\|_1)$. Montrer que (X_n) est une suite de Cauchy dans E_{∞} et pas dans E_1 . En déduire que les normes $\|\cdot\|_{\infty}$ et $\|\cdot\|_1$ ne sont pas équivalentes sur l'espace c_{00} .

Exercice 7. Soient K un espace métrique compact et F un espace métrique complet. On note $C^0(K, F)$ l'ensemble des fonctions continues de K vers F que l'on munit de la distance suivante :

$$d(f,g) := \sup_{x \in K} d_F(f(x), g(x).$$

Montrer que $(C^0(K, F), d)$ est un espace métrique complet.

Exercice 8. $E_{\infty} = (c_{00}, \|\cdot\|_{\infty})$ et $E_1 = (c_{00}, \|\cdot\|_1)$ ne sont pas complets Soit $(X_n)_{n\in\mathbb{N}}$, $X_n = (x_{n,i})_{i\in\mathbb{N}}$, la suite de points de l'espace c_{00} définie par

$$\begin{cases} x_{n,i} = 2^{-i} \text{ pour } i \le n, \\ x_{n,i} = 0 \text{ pour } i > n. \end{cases}$$

- 1. Montrer que $(X_n)_{n\in\mathbb{N}}$ est une suite de Cauchy dans E_1 et en déduire qu'elle l'est aussi dans E_{∞} .
- 2. Montrer que E_{∞} n'est pas complet et en déduire que E_1 ne l'est pas non plus.

Exercice 9. $E = (c_0, \|\cdot\|_{\infty})$ est complet

On pose

$$c_0 := \{ X = (x_i)_{i \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \ l \ \lim_{i \to \infty} x_i = 0 \}$$

- 1. Montrer que c_0 est une partie fermée de l^{∞} . En déduire que E est complet.
- 2. Montrer que c_{00} est dense dans E. En déduire une nouvelle démonstration de l'exercice précédent.
- **3.** Montrer que tout élément $X = (x_n)_{n \in \mathbb{N}}$ de c_0 est somme de la série de terme général $x_n e_n$ où $(e_n)_{n \in \mathbb{N}}$ est la base canonique de c_0 .

Exercice 10. l^p est complet

- 1. Montrer que l'espace $(l^p, \|\cdot\|_p)$, où p est un réel ≥ 1 , est complet.
- **2.** Montrer que tout élément $X = (x_n)_{n \in \mathbb{N}}$ de l^p est somme de la série de terme général $(x_n e_n)_{n \in \mathbb{N}}$ où $(e_n)_{n \in \mathbb{N}}$ est la base canonique de l^p .

Exercice 11. $E = (c, \|\cdot\|_{\infty})$ est complet

On désigne par c le sous-espace de l^{∞} formé des suites convergentes. Montrer que c est une partie fermée de l^{∞} muni de la norme infinie (par exemple, raisonner en $\varepsilon/3$) et donc que E est complet.

Exercice 12. Extension du théorème du point fixe

Soient E un espace métrique complet et $f: E \to E$ tels que pour un entier p > 0 la fonction f^p soit une contraction.

- 1. Montrer que f possède un point fixe.
- **2.** Montrer que ce point fixe est unique. On le note a.
- 3. Montrer que a est la limite de la suite définie par $x_{k+1} = f(x_k)$ où x_0 est un point arbitraire de E.

Exercice 13. Une application du théorème du point fixe. Soient $y_0 \in \mathbb{R}^n$ et ε un réel tel que $0 < \varepsilon \le 1$. On pose $I = [0, \varepsilon]$ et $B = \{y \in \mathbb{R}^n; ||y - y_0|| \le 1\}$. L'espace E = C(I, B) est muni de la distance induite par la norme uniforme sur $C(I, \mathbb{R}^n)$.

- 1. Montrer que (E,d) est un espace métrique complet.
- **2.** A tout $f \in E$ on associe G(f) défini par

$$G(f)(t) = y_0 + \int_0^t e^s f(s) ds, \quad 0 \le t \le \varepsilon.$$

Si ε est assez petit montrer que $G(E) \subset E$ et que l'application G est contractante. Déterminer alors le point fixe de G.