Exercice I. Soit ABCDA'B'C'D' un cube.

- 1. Soit M un point de [BC] et $N \in [CC']$. Dessiner l'intersection du plan (A'MN) avec le cube.
- 2. I, J et K les milieux respectifs de [AB], [BC] et [CC']. Dessiner l'intersection du plan IJK avec le cube.

Exercice II. Déterminer une équation cartésienne :

- 1. du plan \mathcal{P}_1 passant par A(1,1,0), B(0,2,2) et C(3,0,3);
- **2.** du plan \mathcal{P}_2 passant par A et parallèle au plan d'équation 3x 5y + 7z + 3 = 0;
- **3.** de la droite \mathcal{D}_1 passant par B parallèle aux plans \mathcal{P}_1 et \mathcal{P}_2 .
- 4. Déterminer un vecteur directeur de la droite \mathcal{D}_2 intersection des plans \mathcal{P}_1 et \mathcal{P}_2 .

Exercice III. Déterminer les coordonnées du projeté orthogonal de du point A(1,2,3) sur :

- 1. le plan \mathcal{P} d'équation 3x 3y + 2z + 19 = 0;
- **2.** la droite \mathcal{D} passant par B(-8,10,3) et de vecteur directeur u(-1,3,1).

Exercice IV. 1. Déterminez un système d'équation de la droite Δ passant par A=(1,-1,2) et coupant les droites :

$$\mathcal{D}_1 \left\{ \begin{array}{lcl} 2x - y + 3z - 1 & = & 0 \\ x + 2y + z + 2 & = & 0 \end{array} \right. \text{ et } \mathcal{D}_2 \left\{ \begin{array}{lcl} x - y + z + 3 & = & 0 \\ x + 2y + 5z + 1 & = & 0 \end{array} \right. .$$

2. Déterminer la distance entre les droites \mathcal{D}_1 et \mathcal{D}_2 .

Exercice V. On considère dans l'espace affine euclidien de dimension 3 les points

$$A = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} \quad B = \begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix} \quad C = \begin{pmatrix} 0 \\ 6 \\ 0 \end{pmatrix} \quad D = \begin{pmatrix} -2 \\ 2 \\ 7 \end{pmatrix}.$$

Caculer le volume du tétraèdre ABCD.

Exercice VI. Dessiner les cinq polyèdres réguliers en perspective cavalière.

Exercice VII. 1. Déterminer le projeté orthogonal du point $M_0(x_0, y_0, z_0)$ sur le plan d'équation 2x + 2y - z = 1.

2. Même question avec la droite d'équation
$$\begin{cases} x+y+z=1\\ 2x-z=2 \end{cases}$$

Exercice VIII. On considère les droites D_1 passant par $A_1(1,2,-1)$ et de vecteur directeur $u_1=(1,1,1)$ et D_2 d'équation $\begin{cases} x+y+z=1\\ 2x-z=2 \end{cases}$.

- 1. Montrer que D_1 et D_2 ne sont pas coplanaires.
- **2.** Déterminer la perpendiculaire commune à D_1 et D_2 .
- 3. Déterminer l'ensemble des points équidistants de D_1 et D_2 .

Exercice IX. Dans l'espace euclidien \mathbb{R}^3 et pour tout $t \in \mathbb{R}$, on considère la droite

$$\mathcal{D}_t : \begin{cases} x - z = t \\ tx - 2y + tz + 1 = 0 \end{cases}$$

- 1. Donner un vecteur directeur de \mathcal{D}_t .
- **2.** Montrer que pour tous $t \neq t'$, les droites \mathcal{D}_t et $\mathcal{D}_{t'}$ ne sont pas coplanaires.
- **3.** Montrer que pour tout $t \in \mathbb{R}$, pour tout point M de \mathcal{D}_t de coordonnées (x, y, z) on a $x^2 z^2 = 2y 1$.
- 4. Réciproquement, montrer que pour tout point M(x, y, z) qui vérifie $x^2 z^2 = 2y 1$, il existe t (que l'on calculera) tel que M appartient à \mathcal{D}_t .