Université d'Aix-Marseille	Action sur les arbres	Master 2	Thierry Coulbois	15 octobre 2020
----------------------------	-----------------------	----------	------------------	-------------------

Exercice I. Hanna Neumann inequality

1. Let Γ with a connected graph with all vertices of valence 2 or 3. $Br(\Gamma)$ denotes the set of branch points of Γ : the set of vertices of valence 3 (in general of valence strictly greater than 2). Prove that $\operatorname{rank}(\pi_1(\Gamma)) = \#Br(\Gamma)/2 + 1$.

2. Let H and H' two finitely generated subgroups of a free group F. Let R be a connected graph with all vertices of valence 3 and base point v_0 such that $\pi_1(R, v_0) = F$. Let Γ and Γ' be two connected finite graphs that encode H and $H' : \Gamma$ and Γ' are given with base points v_0 and v'_0 and immersions f and f' to R inducing injective group morphisms $f^*: \pi_1(\Gamma, v_1) \hookrightarrow \pi_1(R, v_0)$ and $f'^*: \pi_1(\Gamma', v'_1) \hookrightarrow \pi_1(R, v_0)$ with images H and H'. Note that we assume $f(v_1) = f'(v'_1) = v_0$. Let Γ'' be the graph with vertex set and edge set :

$$V(\Gamma'') = \{(v,v') \in V(\Gamma) \times V(\Gamma') \mid f(v) = f'(v')\}, \quad E(\Gamma'') = \{(e,e') \in E(\Gamma) \times E(\Gamma') \mid f(e) = f'(e')\}.$$

The edge (e, e') going from (i(e), i(e')) towards (t(e), t(e')). We define the graph morphism $f'': \Gamma'' \to R$ by f''(v, v') =f(v) = f'(v') and f''(e, e') = f(e) = f'(e').

Let Γ_0'' be the connected component of (v_1, v_1')

a. Prove that f'' is an immersion. **b.** Prove that $f''^*(\pi_1(\Gamma'', (v_1, v_1'))) = H \cap H'$.

Using these graphs and morphisms, prove that the rank of $H \cap H'$ is bounded above by $2(\operatorname{rank}(H) - 1)(\operatorname{rank}(H') - 1) + 1$ c.

Exercice II. Compute the inverse automorphism of $\varphi: a \mapsto a^{-1}b, b \mapsto c, c \mapsto ca$ and $\psi: a \mapsto abc, b \mapsto bcabc, c \mapsto cbcabc$.

GROMOV product Exercice III.

We define the GROMOV product of three points in a metric space as $(y \cdot z)_x = \frac{1}{2}(d(x,y) + d(x,z) - d(y,z))$. 1. Check that the definition of GROMOV's four points condition given in my course, namely :

$$\forall x, y, z, t, \quad d(x, y) + d(z, t) \le \max\{d(x, z) + d(y, t), d(x, t) + d(y, z)\}$$

is equivalent to

$$(y \cdot z)_x \ge \min\{(z \cdot t)_x, (y \cdot t)_x\}.$$