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Abstract

Let FN be a free group of finite rank N � 2, and let T be an R-tree with a very small,
minimal action of FN with dense orbits. For any basis A of FN there exists a heart KA ⊂ T
(= the metric completion of T ) which is a compact subtree that has the property that the
dynamical system of partial isometries ai : KA � ai KA → a−1

i KA � KA, for each ai ∈ A,
defines a tree T(KA,A) which contains an isometric copy of T as minimal subtree.

1. Introduction

A point on Thurston’s boundary of Teichmüller space T(�) for a surface � can be under-
stood alternatively as a measured geodesic lamination (L, μ) on �, up to rescaling of the
transverse measure, or as a small action of π1� on some R-tree T , up to π1�-equivariant
homothety. The correspondence between these two objects, which are naturally dual to each
other, is given by the fact that points of T are in 1-1 correspondence (or “one-to-finite” cor-
respondence, for the branchpoints of T ) with the leaves of L̃, i.e. the lift of L to the universal
covering �̃. The metric on T is determined by μ, and vice versa.

Culler–Vogtmann’s Outer space CVN is the analogue of T(�), with Out(FN ) replacing
the mapping class group. A point of the boundary ∂CVN is given by a homothety class [T ]
of very small isometric actions of the free group FN on an R-tree T . In general, T will not
be dual to a measured lamination on a surface. However, in [CHL-I, CHL-II] an “abstract”
dual lamination L(T ) has been defined for any such T , which is very much the analogue
of L in the surface case. The dual lamination L(T ) is an algebraic lamination: it lives in
the double Gromov boundary of FN , and the choice of a basis A transforms L(T ) into a
symbolic dynamical system which is a classical subshift in A � A−1. The dual lamination
L(T ), and variations of it, have already been proved to be a useful invariant of the tree T ,
compare [BFH00, CHL05, HM06, KL07].

In the case of measured laminations on a surface, the standard tool which allows a trans-
ition from geometry to combinatorial dynamics, is given by interval exchange transforma-
tions. The combinatorics which occur here are classically given through coding geodesics on
a surface by sequences of symbols, where the symbols correspond to subintervals, and the
sequences are given by the first return map. Conversely, the surface and the lamination (or
rather “foliation”, in this case), can be recovered from the interval exchange transformation
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by suspension, i.e. by realizing the map which exchanges the subintervals by a (foliated)
mapping torus.

Taking the basic concept of this classical method one step further and considering directly
the dual tree T rather than the lamination given by the combinatorial data, one considers for
any [T ] ∈ ∂CVN a finite metric subtree K ⊂ T , and for some basis A of FN the induced
finite system of partial isometries between subtrees of K : each basis element ai ∈ A defines
a partial isomerty ai : K � ai K → a−1

i K � K , and these partial isometries play the role of
the interval exchange transformation. Any such pair K = (K ,A) gives canonically rise to
a tree TK together with an FN -equivariant map j : TK → T . The tree TK is the “unfolding
space” of the system K. The class of R-trees T , with the property that for some such finite
K the map j is an isometry, have been investigated intensely, and they play an important
role in the study of ∂CVN , see [GL95].

Indeed, if K is an interval and if it is simultaneously equal to the union of domains and
the union of ranges of the isometries (and if these unions are disjoint unions except at the
boundary points), then K defines actually an interval exchange transformation. If one only
assumes that K is finite, this will in general not be true: one only obtains a system of in-
terval translations (see for instance [BH04]). On the level of R-trees one obtains in the first
case surface tree actions, and in the second case actions that are alternatively termed Levitt,
thin or exotic. The union of these two classes are precisely the actions called geometric in
[GL95].

However, both of these types of actions seem to be more the exception than the rule:
Given any point [T ] ∈ ∂CVN , there is in general no reason why T should be determined
by a system of partial isometries based on a finite tree K ⊂ T . A possible way to deal with
such T is to consider increasing sequences of finite subtrees and thus to approximate T by
the sequence of ensuing geometric trees TK, in the spirit of the “Rips machine”, which is
an important tool to analyze arbitrary group actions on R-trees. The goal of this paper is to
propose a more direct alternative to this approximation technology:

We replace the condition on the subtree K ⊂ T to be finite by the weaker condition
that K be compact. It turns out that almost all of the classical machinery developed for the
approximation trees TK for finite K carries over directly to the case of compact K . However,
the applications of such TK concern a much larger class of trees: In particular, every minimal
very small T with dense orbits can be described directly, i.e. circumventing completely the
above approximation, as minimal subtree T min

K of the tree TK, for a properly chosen compact
subtree K of the metric completion T of T .

THEOREM 1·1. Let T be an R-tree provided with a very small, minimal, isometric action
of the free group FN with dense orbits. Let A be a basis of FN . Then there exists a unique
compact subtree KA ⊂ T (called the “heart” of T w.r.t. A), such that for any compact
subtree K of T one has:

T = T min
K ⇐⇒ KA ⊆ K .

This is a slightly simplified version of Theorem 5·4 proved in this paper. The main tool
for this proof (and indeed for the definition of the heart KA) is the dual lamination L(T ).
We define (see Section 3) a second admissible lamination Ladm(K) associated to the system
of partial isometries K = (K ,A). One key ingredient in the equivalence of Theorem 1·1 is
to prove that the two statements given there are equivalent to the equation L(T ) = Ladm(K).
The other key ingredient, developed in Section 4, is a new understanding of the crucial
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map Q: ∂ FN → T � ∂T from [LL03], based on the dynamical system K = (K ,A). The
proof of Theorem 5·4 uses the full strength of the duality between trees and laminations,
and in particular a transition between the two, given by the main result of our earlier paper
[CHL05].

We would like to emphasize that the main object of this paper, the heart KA of T with
respect to any basis A of FN , is a compact subtree of T that is determined by algebraic
data associated to T , namely by the dual algebraic lamination L(T ) of T . This system
KA = (KA,A) of partial isometries is entirely determined by the choice of the basis A and
it depends on A, but important properties of it turn out to be independent of that choice. For
example, in Section 6, from the above theorem, we derive the following direct characteriza-
tion of geometric trees, and we also give a sharpening of Gaboriau–Levitt’s approximation
result for trees T from ∂CVN :

COROLLARY 6·1. A very small minimal R-tree T , with isometric FN -action that has
dense orbits, is geometric if and only if, for any basis A of FN , the heart KA is a finite
subtree of T .

COROLLARY 6·3. For every very small minimal R-tree T , with isometric FN -action that
has dense orbits, there exists a sequence of finite subtrees K (n) of uniformely bounded
diameter, such that:

T = lim
n→∞ TK(n).

In contrast to the case of geometric R-trees, there are trees in ∂CVN for which the com-
pact heart is far from being finite. Indeed it is proven in [Cou08] that the compact heart
of the repulsive tree T�−1 of an iwip outer automorphism � of FN has Hausdorff dimen-
sion equal to max(1, ln λ�/ln λ�−1), where λ� and λ�−1 are the expansion factors of � and
�−1 respectively. As these expansion factors are in general not equal, we can assume that
λ� > λ�−1 to get a compact heart with Hausdorff dimension strictly bigger than 1.

2. FN -actions on R-trees and their heart

In this section we first recall some well-known facts about R-trees T with isometric action
of a free group FN . We also recall algebraic laminations, and in particular the dual lamination
L(T ). We then concentrate on the specific case of very small trees with dense orbits, and
for such trees we define the limit set and the heart of T with respect to a fixed basis A of
FN .

In this paper we need some of the machinary developed in our previous articles [CHL-I,
CHL-II, CHL05]. We present these tools in this section, but refer to those articles for proofs
and for a more complete discussion.

2·1. Background on R-trees

An R-tree T is a metric space which is 0-hyperbolic and geodesic. Alternatively, a metric
space T is an R-tree if and only if any two points x, y ∈ T are joined by a unique topological
arc [x, y] ⊂ T , and this arc (called a segment) is geodesic. For any R-tree T , we denote by
T the metric completion and by ∂T the Gromov boundary of T . We also write T̂ = T � ∂T .

Most R-trees T considered in this paper are provided with an action by isometries (from
the left) of a non-abelian free group FN of finite rank N � 2. Such an action is called
minimal if T agrees with its minimal FN -invariant subtree. We say that the action has dense



348 THIERRY COULBOIS, ARNAUD HILION AND MARTIN LUSTIG

orbits if for some (and hence every) point x ∈ T the orbit FN · x is dense in T . In the case
of dense orbits, the following three conditions are equivalent:

(i) T has trivial arc stabilizers (i.e. for any distinct x, y ∈ T and w ∈ FN the equality
w[x, y] = [x, y] implies w = 1);

(ii) the FN -action on T is small (see [CM87, CHL-II]);
(iii) the FN -action on T is very small (see [CL95, CHL-II]).

As usual, for any w ∈ FN we denote by ‖w‖T (or simply by ‖w‖) the translation length
of the action of w on T , i.e. the infimum of d(x, wx) over all x ∈ T .

There are two types of isometries of T : An element w ∈ FN acts as an elliptic isometry
on T if it fixes a point, which is equivalent to ‖w‖ = 0. If ‖w‖ > 0, then the action of w

on T is called hyperbolic: There is a well defined axis in T , which is isometric to R and is
w-invariant: the element w translates every point on the axis by ‖w‖.

A continuous map T → T ′ between R-trees is called a morphism if every segment is
mapped locally injectively except at finitely many points.

2·2. The observers’ topology on T

There are various independent approaches in the literature to define R-trees as topological
spaces without reference to the metric. The following version has been studied in [CHL05].

Definition 2·1. Let T be an R-tree. A direction in T̂ is a connected component of the
complement of a point of T̂ . A subbasis of open sets for the observers’ topology on T̂ is
given by the set of all such directions in T̂ .

The observers’ topology on T̂ (or T ) is weaker than the metric topology: For example,
any sequence of points that “turns around” a branch point converges to this branch point. We
denote by T̂ obs the set T̂ equipped with the observers’ topology. The space T̂ obs is Hausdorff
and compact.

For any sequence of points Pn in T̂ , and for some base point Q ∈ T̂ , there is a well
defined inferior limit from Q, which we denote by:

P = lim inf
n→∞ Q Pn.

It is given by

[Q, P] =
∞⋃

m=0

⋂
n�m

[Q, Pn].

The inferior limit P is always contained in the closure of the convex hull of the Pn , but its
precise location does in fact depend on the choice of the base point Q. However, in [CHL05]
the following has been shown:

LEMMA 2·2. If a sequence of points Pn converges in T̂ obs to some limit point P ∈ T̂ obs,
then for any Q ∈ T̂ one has:

P = lim inf
n→∞ Q Pn.

The observers’ topology is very useful, but it is also easy to be deceived by it. For example,
it is not true that any continuous map between R-trees T1 → T2 induces canonically a
continuous map T̂ obs

1 → T̂ obs
2 , as is illustrated in the following remark.
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Remark 2·3. Let T1 be the ∞-pod, given by a center Q and edges [Q, Pk] of length 1, for
every k ∈ N. Let T2 be obtained from T1 by gluing the initial segment of length (k − 1/k) of
each [Q, Pk], for k � 2, to [Q, P1]. Then the canonical map f : T1 → T2 is continuous, and
even a length decreasing morphism, but lim Pk = Q, while lim f (Pk) = f (P1)� f (Q).

We refer the reader to [CHL05] for more details about the observers’ topology.

2·3. Algebraic laminations

For the free group FN of finite rank N � 2, we denote by ∂ FN the Gromov boundary of
FN . We also consider

∂2 FN = ∂ FN × ∂ FN � �,

where � denotes the diagonal. The space ∂2 FN inherits from ∂ FN a left-action of FN , defined
by w(X, Y ) = (wX, wY ) and a topology. It also admits the flip map (X, Y ) �→ (Y, X). An
algebraic lamination L2 ⊂ ∂2 FN is a non-empty closed subset which is invariant under the
FN -action and the flip map.

If one choses a basis A of FN , then every element w ∈ FN can be uniquely written as a
finite reduced word in A±1, so that FN is canonically identified with the set F(A) of such
words. Similarly, a point of the boundary ∂ FN can be written as an infinite reduced word
X = z1z2 · · · , so that ∂ FN is canonically identified with the set ∂ F(A) of such infinite
words.

We also consider reduced biinfinite indexed words

Z = · · · z−1z0z1 · · ·
with all zi ∈ A±1. We say that Z has positive half Z+ = z1z2 · · · and negative half Z− =
z−1

0 z−1
−1 . . . , which are two infinite words

Z+, Z− ∈ ∂ F(A)

with distinct initial letters Z+
1 � Z−

1 . We write the reduced product Z = (Z−)−1 · Z+ to
mark the letter Z+

1 with index 1.
For any fixed choice of a basis A, an algebraic lamination L2 determines a symbolic

lamination
LA = {(Z−)−1 · Z+ | (wZ−, wZ+) ∈ L2}

as well as a laminary language

LA = {w ∈ F(A) | w is a subword of some Z ∈ LA}.
Both, symbolic laminations and laminary languages can be characterized independently,
and the natural transition from one to the other and back to an algebraic lamination has
been established with care in [CHL-I]. In case we do not want to specify which of the
three equivalent terminologies is meant, we simply speak of a lamination and denote it
by L .

One of the crucial points of the encounter between symbolic dynamics and geometric
group theory, in the subject treated in this paper, occurs precisely at the transition between
algebraic and symbolic laminations. Since the main thrust of this paper (as presented in
Section 3) can be reinterpreted as translating the symbolic dynamics viewpoint into the
world of R-trees, it seems useful to highlight this transition in the symbolic language, before
embroiling it with the topology of R-trees:
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Remark 2·4. As before, we fix a basis A of FN , and denote an element X of the boundary
∂ FN = ∂ F(A) by the corresponding infinite reduced word in A±1. We denote by Xn its
prefix of length n.

We consider the unit cylinder C2
A in ∂2 FN :

C2
A = {(X, Y ) ∈ ∂2 FN | X1 � Y1}.

Contrary to ∂2 FN , the unit cylinder C2
A is a compact set (in fact, a Cantor set). The unit

cylinder C2
A has the property that the canonical map ρA :(X, Y ) �→ X−1 · Y (see [CHL-I,

remark 4·3]) restricts to an injection on C2
A with inverse map Z �→ (Z−, Z+).

In symbolic dynamics, the natural operator on biinfinite sequences is the shift map, which
in our notation is given by

σ(X−1 · Y ) = X−1Y1 · (Y −1
1 Y ),

i.e. the same symbol sequence as in X−1 · Y , but with Y1 as letter of index 0.
On the other hand, there is a system of “partial bijections” on C2

A, given for each ai ∈ A
by:

ai : C2
A � ai

−1C2
A −→ ai C

2
A � C2

A.

A particular feature of this system is that it “commutes” via the map ρA with the shift map
σ on the set of biinfinite reduced words: More precisely, for all (X, Y ) ∈ C2

A one has:

ρA(Y −1
1 (X, Y )) = σ(ρA(X, Y )).

This transition from group action to the shift (or more precisely, the converse direction), will
be explored in Section 3 in detail, with the additional feature that the topology of compact
trees is added on, in the analogous way as interval exchange transformations are a classical
tool to interpret certain symbolic dynamical systems topologically.

2·4. The dual lamination L(T )

In [CHL-II] a dual lamination L(T ) for any isometric action of a free group FN on an
R-tree T has been introduced and investigated. If T is very small and has dense orbits,
three different definitions of L(T ) have been given in [CHL-II] and shown there to be
equivalent. However, as in this paper we can not always assume that T has dense orbits,
it is most convenient to fix a basis A of FN and to give the general definition of L(T ) via
its dual laminary language LA(T ) (see of [CHL-I, definition 4.1 and remark 4.2]), which
determines L(T ) and vice versa:

LA(T ) = {v ∈ F(A) | ∀ ε > 0 ∃ u, w ∈ F(A) : ‖u · v · w‖T < ε,

u · v · w reduced and cyclically reduced}.
Remark 2·5. It follows directly from this definition that L(T ) = L(T min), where T min

denotes the minimal FN -invariant subtree of T .

2·5. The map Q
THEOREM 2·6 ([LL03, LL08]). Let T be an R-tree with a very small action of FN by

isometries that has dense orbits. Then there exists a surjective FN -equivariant map Q :
∂ FN → T̂ which has the following property:

For any sequence of elements un of FN which converges to X ∈ ∂ FN and for any point
P ∈ T , if the sequence of points un P ∈ T converges (metrically) in T̂ to a point Q, then
Q(X) = Q.
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Using the properties of a metric topology, we get the following lemma.

LEMMA 2·7. Let T be an R-tree with a very small action of FN by isometries that has
dense orbits. Let K be a compact (with respect to the metric topology) subtree of T . Let Q
be a point in K and wn a sequence of elements in FN which converge in FN � ∂ FN to some
X ∈ ∂ FN . If for all n one has w−1

n Q ∈ K , then Q(X) = Q.

Proof. As K is compact, up to passing to a subsequence, we can assume that w−1
n Q con-

verges to a point P in K , that is to say limn→∞ d(w−1
n Q, P) = 0. As the action is isometric,

we get that limn→∞ d(Q, wn P) = 0, i.e. the wn P converge to Q. Hence Theorem 2·6 gives
the desired conclusion Q(X) = Q. �

It is crucial for the arguments presented in this paper to remember that the map Q is not
continuous with respect to the metric topology on T̂ , i.e. the topology given by the metric
on T . In fact, this has been the reason why in [CHL05] the weaker observers’ topology on
T̂ has been investigated.

THEOREM 2·8 ([CHL05, Remark 2.2 and Proposition 2·3]). Let T be an R-tree with
isometric very small action of FN that has dense orbits. Then the following holds:

(1) the map Q defined in Theorem 2·6 is continuous with respect to the observers’ topo-
logy, i.e. it defines a continuous equivariant surjection

Q : ∂ FN −→ T̂ obs,

(2) for any point P ∈ T the map Q defines the continuous extension to FN � ∂ FN of the
map

QP : FN −→ T̂ obs, w �−→ wP.

Though obvious it is worth noting that the last property determines the map Q uniquely.

2·6. The map Q2

If the tree T is very small and has dense orbits, the dual lamination L(T ) described in
Section 2·4 admits an alternative second definition via the above defined map Q as algebraic
lamination L2(T ) (compare Section 2·3):

L2(T ) = {(X, Y ) ∈ ∂2 FN | Q(X) = Q(Y )}.
It has been proved in [LL03, LL08] that the map Q is one-to-one on the preimage of the
Gromov boundary ∂T of T . Hence the map Q induces a map Q2 from L2(T ) to T , given by:

Q2((X, Y )) = Q(X) = Q(Y ).

In light of the above discussion the following result seems remarkable. It is also crucial for
the definition of the heart of T in the next subsection.

PROPOSITION 2·9. ([CHL-II, Proposition 8·3]) The FN -equivariant map

Q2 : L2(T ) −→ T

is continuous, with respect to the metric topology on T .

As in [CHL05], Section 2, we consider the equivalence relation on ∂ FN whose classes
are fibers of Q, and we denote by ∂ FN/L2(T ) the quotient set. The quotient topology on
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∂ FN/L2(T ) is the finest topology such that the natural projection π : ∂ FN → ∂ FN/L2(T )

is continuous. The map Q splits over π , thus inducing a map ϕ : ∂ FN/L2(T ) → T̂ obs with
Q = ϕ ◦ π .

THEOREM 2·10 ([CHL05, Corollary 2·6]). The map

ϕ : ∂ FN/L2(T ) → T̂ obs

is a homeomorphism.

2·7. The limit set and the heart of T

We consider again the unit cylinder C2
A = {(X, Y ) ∈ ∂2 FN | X1 � Y1} in ∂2 FN as defined

in Remark 2·4. The following definition is the crucial innovative tool of this paper:

Definition 2·11. The limit set of T with respect to the basis A is the set

�A = Q2(C2
A � L2(T )) ⊂ T .

The heart KA of T with respect to the basis A is the convex hull in T of the limit set �A.

It is not hard to see that in any R-tree the convex hull of a compact set is again compact.
Thus we obtain, from Proposition 2·9 and Definition 2·11:

COROLLARY 2·12. The limit set �A is a compact subset of T . The heart KA ⊂ T is a
compact R-tree.

Note that, while L2(T ) does not depend on the choice of the basis A, the unit cylinder C2
A

and thus the limit set and the heart of T do crucially depend on the choice of A.

3. Systems of isometries on compact R-trees

In this section we review the basic construction that associates an R-tree to a system of
isometries. This goes back to the seminal papers of D. Gaboriau, G. Levitt and F. Paulin
[GLP94] and M. Bestvina and M. Feighn [BF95], and before them to the study of surface
trees and the work of J. Morgan and P. Shalen [MS91], R. Skora [Sko96] and, of course to
the fundamental work of E. Rips.

3·1. Definitions

Definition 3·1. (a) Let K be a compact R-tree. A partial isometry of K is an isometry
between two closed subtrees of K . It is said to be non-empty if its domain is non-empty.
(b) A system of isometries K = (K ,A) consists of a compact R-tree K and a finite set A of
non-empty partial isometries of K . This defines a pseudo-group of partial isometries of K
by admitting inverses and composition.

We note that in the literature mentioned above it is usually required that K is a finite tree,
i.e. K is a metric realisation of a finite simplicial tree, or, equivalently, K is the convex hull
of finitely many points. The novelty here is that we only require K to be compact. Recall
that a compact R-tree K may well have infinitely many branch points, possibly with infinite
valence, and that K may well contain finite trees of unbounded volume (but of course K has
finite diameter). In the context of this paper, however, all trees have a countable number of
branch points, which makes compact trees slightly more tractable.

Any element of the free group FN over the basis A, given as reduced word w = z1 · · · zn ∈
F(A), defines a (possibly empty) partial isometry, also denoted by w, which is defined as
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the composition of partial isometries z1 ◦ z2 ◦ · · · ◦ zn . We write this pseudo-action of F(A)

on K on the right, i.e.

x(u ◦ v) = (xu)v

for all x ∈ K and u, v ∈ F(A). For any points x, y ∈ K and any w ∈ F(A) we obtain

xw = y

if and only if x is in the domain dom(w) of w and is sent by w to y.
A reduced word w ∈ F(A) is called admissible if it is non-empty as a partial isometry

of K .

3·2. The R-tree associated to a system of isometries

A system of isometries K = (K ,A) defines an R-tree TK, provided with an action of the
free group FN = F(A) by isometries. The construction is the same as in the case where K
is a finite tree and will be recalled now.

As in [GL95] the tree TK can be described using a foliated band-complex, but for non-
finite K one would not get a CW-complex. We use the following equivalent construction in
combinatorial terms.

The tree TK is obtained by gluing countably many copies of K along the partial isometries,
one for each element of FN . On the topological space FN × K these identifications are made
formal by defining

TK = FN × K/ ∼
where the equivalence relation ∼ is defined by:

(u, x) ∼ (v, y) ⇐⇒ x(u−1v) = y.

The free group FN acts on TK, from the left: this action is simply given by left-
multiplication on the first coordinate of each pair (u, x) ∈ FN × K :

w(u, x) = (wu, x)

for all u, w ∈ FN , x ∈ K .
Since FN is free over A, each copy {u} × K of K embeds canonically into TK. Thus we

can identify K with the image of {1}× K in TK, so that every {u}× K maps bijectively onto
uK . Using these bijections, the metric on K defines canonically a pseudo-metric on TK.
Again, by the freeness of FN over A, this pseudo-metric is a metric. The arguments given in
the proof of [GL95, theorem 1·1] extend directly from the case of finite K to compact K , to
show:

THEOREM 3·2. Given a system of isometries K = (K ,A) on a compact R-tree K , there
exists a unique R-tree TK, provided with a left-action of F(A) by isometries, which satisfies:

(1) TK contains K (as an isometrically embedded subtree);
(2) if x ∈ K is in the domain of a ∈ A, then a−1x = xa;
(3) every orbit of the F(A)-action on TK meets K . Indeed, every segment of TK is con-

tained in a finite union of translates wi K , for suitable wi ∈ F(A);
(4) if T is another R-tree with an action of F(A) by isometries satisfying (1) and (2), then

there exists a unique F(A)-equivariant morphism j : TK → T such that j (x) = x
for all x ∈ K .



354 THIERRY COULBOIS, ARNAUD HILION AND MARTIN LUSTIG

3·3. Systems of isometries induced by an FN -action on an R-tree

Frequent and important examples of systems of isometries occur in the following context:
Let T be any R-tree with an F(A)-action by isometries. Then any compact subtree K ⊂

T , which is sufficiently large so that it intersects for any ai ∈ A the translate ai K , defines
canonically a system of isometries given by:

ai : ai K � K −→ K � a−1
i K

x �−→ xai = a−1
i x .

Since K embeds into T , Theorem 3·2 gives a map

j : TK −→ T .

The map j fails in general to be injective. A classical technique for the study of an action
on an R-tree T is to view TK as an approximation of T , and to consider a sequence of
increasing K . As K increases to exhaust T , the convergence of the sequence of TK to T is
well understood. Moreover, if K is a finite subtree of T , then TK is called geometric and the
full strength of the Rips machine can be used to study it.

In this article, we propose a new approach to study T , namely we prove that there exists
a compact subtree K of T such that j is an isometry. This gives the possibility to extend the
results proved for geometric trees (i.e. when K is finite) to the case where K is only assumed
to be compact.

3·4. Basic lemmas

We now present some basic lemmas about the action on TK, for admissible and non-
admissible words in the given system of isometries. We first observe:

Remark 3·3. (a) Let K and K ′ be two closed disjoint subtrees of T . Then there exists a
unique segment [x, x ′] which joins K to K ′, i.e. one has K �[x, x ′] = {x} and K ′ � [x, x ′] =
{x ′}. For any further points y ∈ K , y′ ∈ K ′ the segment [y, y′] contains both segments [x, y′]
and [x ′, y], and both contain [x, x ′].
(b) As a shorthand, we use in the situation given above the following notation:

[K , K ′] := [x, x ′], [y, K ′] := [y, x ′], [K , y′] := [x, y′].
(c) If y ∈ K , then we set [y, K ] = [K , y] = {y}, i.e. the segment of length 0 with y as
initial and terminal point.

The following is a specification of statement (3) of Theorem 3·2:

LEMMA 3·4. For any non-admissible word w ∈ F(A) one has

[K , wK ] ⊂
|w|⋃
i=0

wi K ,

where wi is the prefix of w with length |wi | = i .

Proof. It suffices to show that for the reduced word w = z1 · · · zn the union �n
i = 0wi K

is connected. This follows directly from the fact that for all i = 1, . . . , n the union
wi−1 K � wi K = wi−1(K � w−1

i−1wi K ) is connected, since w−1
i−1wi = zi ∈ A±1, and all

partial isometries from A are assumed to be non-empty. �

LEMMA 3·5. Let K = (K ,A), TK and F(A) be as above.
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(1) For all w ∈ F(A) one has

dom(w) = K � wK .

(2) A word w ∈ F(A) is admissible if and only if K � wK ��.
(3) If x ∈ dom(w), then

w−1x = xw.

Proof. Let w ∈ F(A) and x ∈ TK. If x ∈ dom(w) ⊂ K , then the definition of TK gives
(1, x) ∼ (w, xw), or equivalently (compare Theorem 3·2)

w−1x = xw.

Therefore x is contained in both K and wK . This shows:

dom(w) ⊂ K � wK .

Conversely, let x be in K � wK . Then (1, x) ∼ (w, y) for some point y ∈ K , and by
definition of ∼ the point x lies in the domain of w, with xw = y. Thus w is admissible, and

K � wK ⊂ dom(w) . �

LEMMA 3·6. For all w ∈ F(A) the following holds, where wk denotes the prefix of w of
length k:

(1) dom(w) ⊂ dom(wk) for all k � |w|;
(2) dom(w) = �|w|

k = 0wk K

Proof. Assertion (1) follows directly from the definition of dom(w). Assertion (2) follows
from assertion (1) and Lemma 3·5 (1). �

Remark 3·7. We would like to emphasize that it is important to keep the F(A)-action on
TK apart from the F(A)-pseudo-action on K . This is the reason why we define the action on
TK from the left, whereas we define the pseudo-action by partial isometries on K from the
right.

This setting is also convenient to keep track of the two actions: a point x ∈ K lies in the
domain of the partial isometry associated to w ∈ F(A) if and only if x is contained in wK
(Lemma 3·5 (1)). More to the point, the sequence of partial isometries given by the word
w = z1 · · · zn defines points xz1 · · · zi which lie all inside of K if and only if the sequence
of isometries of T given by the prefixes of w moves K within T in such a way that x is
contained in each of the translates z1 · · · zi K (see Lemma 3·6 (2)).

LEMMA 3·8. (a) For any non-admissible word w ∈ F(A) and any disjoint closed sub-
trees K and wK , the arc [K , wK ] intersects all wi K , where wi is a prefix of w.
(b) For any point Q ∈ K and any (possibly admissible) word w ∈ F(A), the arc [Q, wK ]
intersects all wi K .

Proof. (a) We prove part (a) by induction on the length of w.
Let u be the longest admissible prefix of w. Thus u � 1, as all partial isometries in A±1

are non-empty. Hence we can assume by induction that u−1w is either admissible or satisfies
the property stated in part (a).

Let a be the next letter of w after the prefix u. We write w as reduced product w = u ·a ·v.
According to Lemma 3·5 (2) one has:
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(i) uK � K = dom(u)��;
(ii) uK � uaK = u dom(a)��; and

(iii) K � ua K = �
By (iii) there is a non-trivial segment β = [K , uaK ] ⊂ TK that intersects K and uaK only
in its endpoints. By (i) and (ii) the segment β is contained in the subtree uK : there are points
x, y ∈ K such that β = [ux, uy]. Since ux belongs to K � uK = dom(u), it follows from
Lemma 3·6 (2) that ux also belongs to every u′K , for any prefix u′ of u.

Moreover, for any prefix v′ of v one has, by Lemma 3·5 (1) and Lemma 3·6 (1):

uav′K � uK = u dom(av′) ⊂ u dom(a) = uaK � uK .

From this we deduce that

uav′K � [ux, uy] ⊂ uav′K � [ux, uy] � uK
⊂ [ux, uy] � uaK � uK
⊂ [ux, uy] � uaK = {uy} .

Since the segment α = [K , wK ] is by Lemma 3·4 contained in the union

|w|⋃
i=0

wi K

it follows from the above derived inclusion uav′K � [ux, uy] ⊂ {uy} that α is the union of
β = [ux, uy] and of the segment γ = [uy, wK ], with β � γ = {uy}.

If av is admissible, then the endpoint of γ is contained in the intersection of all uav′K ,
by Lemma 3·6 (2). If av is non-admisible, we apply the induction hypothesis to u−1w = av

and obtain that every av′K meets the arc γ ′ = [K , avK ]. But uγ ′ is a subarc of γ , so that
the arc [ux, uy] � γ meets infact all wi K , as claimed.
(b) In case that w is non-admissible, there is a largest index i such that K � wi K ��. We
can now apply statement (a) to w−1

i K and w−1
i w to get the desired conclusion.

If w is admissible, then dom(w) = K �wK (by Lemma 3·5 (1)). Hence the arc [Q, wK ]
is contained in K , and by Lemma 3·6 (2) its endpoint is contained in any wi K . �

LEMMA 3·9. Let w, w′ ∈ F(A) with maximal common prefix u ∈ F(A). Then for any
triplet of points Q ∈ K , R ∈ wK and R′ ∈ w′K the arcs [Q, R] and [Q, R′] intersect in
an arc [Q, P] with endpoint P ∈ uK .

Proof. Let [Q, Q1] the arc which joins K to uK . It follows directly from Lemma 3·8 (b)
that Q1 lies on both [Q, R] and [Q, R′]. Similarly, let [R, R1] and [R′, R′

1] be the arcs that
join R to uK and R′ to uK respectively. After applying w−1 or w′−1 we obtain in the same
way that R1 lies on both [Q, R] and [R, R′], and that R′

1 lies on both [Q, R′] and [R, R′].
Hence the geodesic triangle in TK with endpoints Q, R, R′ contains the geodesic triangle
with endpoints Q1, R1 and R′

1, and the center of the latter is equal to the center P of the
former. But Q1, R1 and R′

1 are all three contained in uK , so that P is contained in uK . �

In the following statement and its proof we use the standard terminology for group ele-
ments acting on trees, as recalled in Section 2·1 above.

PROPOSITION 3·10. Let w ∈ F(A) is any cyclically reduced word. If the action of w on
TK is hyperbolic, then the axis of w intersects K . If the action of w on TK is elliptic, then w

has a fixed point in K .
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Proof. If w is not admissible, let [x, wy] be the segment that joins K to wK : these two
translates are disjoint by Lemma 3·5 (2). As w acts as an isometry, [wx, w2 y] is the segment
that joins wK to w2 K . Moreover, since w is assumed to be cyclically reduced, the segment
that joins K to w2 K intersects wK , by Lemma 3·8.

Any two consecutive segments among [x, wy], [wy, wx], [wx, w2 y] and [w2 y, w2x] have
precisely one point in common, by Remark 3·3, and hence their union is a segment. This
proves that wx belongs to [x, w2x], and that x is contained in the axis of w.

If w is admissible, then either there exists n � 0 such that wn is not admissible, in which
case we can fall back on the above treated case, as w and wn have the same axis. Otherwise,
for arbitrary large n there exists a point x ∈ K such that wn x ∈ K , by Lemma 3·5 (2).
But K is compact and hence has finite diameter. This implies that the action of w on T is
not hyperbolic, and hence it is elliptic: w fixes a point of T . Some such fixed point lies on
[x, wx] (namely its center), and hence in the subtree K . �

3·5. Admissible laminations

In this subsection we use the concepts of algebraic lamination, symbolic lamination and
laminary language as defined in [CHL-I], and the equivalence between these three points of
view shown there. The definitions and the notation have been reviewed in Section 2·3 above.

For any system of isometries K = (K ,A) denote by Adm(K) ⊂ F(A) the set of ad-
missible words. The set Adm(K) is stable with respect to passage to subwords, but it is not
laminary (see [CHL-I, definition 5.2]): not every admissible word w is necessarily equal,
for all k ∈ N, to the word v†k obtained from some larger v ∈ Adm(K) by “chopping off” the
two boundary subwords of length k. As does any infinite subset of F(A), the set Adm(K)

generates a laminary language, denoted Ladm(K), which is the largest laminary language
made of admissible words:

Ladm(K) = {w ∈ F(A) | ∀k ∈ N ∃v ∈ Adm(K) : w = v†k}.
Clearly one has Ladm(K) ⊂ Adm(K), but the converse is in general false.

As explained in Section 2·3, any laminary language determines an algebraic lamination
(i.e. a closed FN -invariant and flip-invarinat subset of ∂2 FN ), and conversely. The algeb-
raic lamination determined by Ladm(K) is called admissible lamination, and denoted by
Ladm(K).

An infinite word X ∈ ∂ F(A) is admissible if all of its prefixes Xn are admissible. The set
of admissible infinite words is denoted by L1

adm(K). It is a closed subset of ∂ F(A) but it is
not invariant under the action of F(A).

For any infinite admissible X the domain dom(X) of X is defined to be the intersection
of all domains dom(Xn). Since K is compact, one has

dom(X)��

for all X ∈ L1
adm(K).

A biinfinite indexed reduced word Z = · · · z−1z0z1 · · · , with zi ∈ A±, is called ad-
missible, if its two halves Z+ = z1z2 · · · and Z− = z−1

0 z−1
−1 · · · are admissible, and if the

intersection of the domains of Z+ and Z− is non-empty. The domain of Z is defined to be
this intersection:

dom(Z) = dom(Z+) � dom(Z−)

We observe that Z is admissible if and only if all its subwords are admissible.
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The set of biinfinite admissible words is called the admissible symbolic lamination of the
system of isometries K = (K ,A).

We use now the notion of the dual lamination of an R-tree with isometric FN -action as
introduced in [CHL-II] and reviewed above in Section 2·4.

PROPOSITION 3·11. For any system of isometries K one has

L(TK) ⊆ Ladm(K).

Proof. Let u ∈ F(A) be a non-admissible word, and let ε = d(K , uK ). By Lemma 3·5
(2) one has ε > 0. Let w be a cyclically reduced word that contains u as a subword: we write
w = u1 · u · u2 as a reduced product. By Proposition 3·10, the axis of w passes through K .
But if x is any point in K , the segment [x, wx] contains the segment that joins the disjoint
subtrees u1 K and u1uK , by Lemma 3·8, and hence the translation length of w, which is
realized on its axis, is bigger than ε. This proves that u is not in L(TK) (see Section 2·4) .

As the laminary language of Ladm(K) is the largest laminary language made of admissible
words, this concludes the proof. �

4. The map QK for a system of isometries

In this section we define the map QK and we prove that it is the equivalent of the map
Q from Section 2·5, for systems of isometries K. For this definition we distinguish two
cases: If X ∈ ∂ F(A) is not eventually admissible we define QK(X) in Section 4·1. If X is
eventually admissible, the definition of QK(X) is given in Section 4·3, and in this case we
need the hypothesis that the system of isometries has independent generators. Both cases are
collected together in Section 4·4 to obtain a continuous equivariant map QK.

4·1. The map QK for non-eventually admissible words

As in Section 3, let K = (K ,A) be a system of isometries on a compact R-tree K , and let
TK be the associated R-tree, provided with an action of the free group F(A) by isometries.
Let X ∈ ∂ F(A) be an infinite reduced word and denote as before by Xi the prefix of X of
length i � 0.

Definition 4·1. An infinite word X ∈ ∂ F(A) is eventually admissible if there exists an
index i such that the suffix Xi

−1 X of X is admissible.

Note that an infinite word X ∈ ∂ F(A) is not eventually admissible if for every index
i � 0 there is an index j > i such that the subword X [i+1, j] = X−1

i X j of X between the
indices i + 1 and j is not admissible.

Let X ∈ ∂ F(A) be not eventually admissible, and let i0 > 0 be such that the prefix Xi0

of X of length i0 is not admissible. Then for any i � i0, the prefix Xi is not admissible, and
thus, by Lemma 3·5, K and Xi K are disjoint. By Lemmas 3·8 and 3·9, for any j � i � i0

the segment [K , Xi K ] and [K , X j K ] are nested and have the same initial point Q ∈ K . Let
Qi be the terminal point of [K , Xi K ]:

[Q, Qi ] = [K , Xi K ].
The sequence of Qi converges in T̂K with respect to both the metric and the observers’
topology. Moreover, the two limits are the same.
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Definition 4·2. For any X ∈ ∂ F(A) which is not eventually admissible, we define:

QK(X) = lim
i→∞

Qi .

PROPOSITION 4·3. Let K = (K ,A) be a system of isometries on a compact R-tree K .
Let X ∈ ∂ F(A) be not eventually admissible.

Let wn ∈ F(A) be a sequence of words which converge in F(A) � ∂ F(A) to X, and let
Pn ∈ wn K . Then the sequence of points Pn converges in T̂ obs

K to QK(X), and QK(X) belongs
to T̂ obs

K � TK.

Proof. We use the above notations. For every index i � 0, let [Qi , Ri ] be the intersec-
tion of [Q,QK(X)] with Xi K . Hence for i � i0 the point Qi is, as before, the terminal
point of the segment [K , Xi K ]. The segments [Q, Qi ] are increasingly nested, the seg-
ments [Ri ,QK(X)] are decreasingly nested, Qi is a point of [Q, Ri ] and Ri is a point of
[Qi ,QK(X)].

As X is not eventually admissible, for every index i � 0 there is an index j > i such that
the subword X [i+1, j] of X between the indices i + 1 and j is not admissible. By Lemma 3·5
the segments [Qi , Ri ] and [Q j , R j ] are disjoint.

For any n, let i(n) be the length of the maximal common prefix of wn and X . By
Lemma 3·9, the maximal common segment [Q, P ′

n] of [Q, Pn] and [Q,QK(X)] has its
terminal point P ′

n in [Qi(n), Ri(n)]. As X is not eventually admissible, for m big enough
the subword X [i(n)+1,i(m)] of X between the indices i(n) + 1 and i(m) is not admissible
and the segments [Qi(n), Ri(n)] and [Qi(m), Ri(m)] are disjoint. Therefore the maximal com-
mon segment of [Q, Pn] and [Q, Pm] is also the maximal common segment of [Q, Pn] and
[Q,QK(X)], and hence it is equal to [Q, P ′

n].
The points P ′

n converge to QK(X), as any sequence of points in [Qi(n), Ri(n)] does, and
this proves that

lim inf Q Pn = QK(X).

By Lemma 2·2 any subsequence of Pn , which converges in T̂ obs
K , necessarily converges to

QK(X). Hence by compactness of T̂ obs
K , the sequence of all of the points Pn converges to

QK(X) with respect to the observers’ topology.
If P is a point in uK for some u in FN , then the maximal common segment [Q, P ′] of

[Q, P] and [Q,QK(X)] has its endpoint P ′ in [Qi , Ri ], where Xi is the maximal common
prefix of u and X . Thus P ′ �QK(X), and hence QK(X) is not contained in TK. �

4·2. Independent generators

The following concept is due to Gaboriau [Gab97], in the case of finite K , and we extend
it here to the compact case.

Definition 4·4. Let K = (K ,A) be a system of isometries on a compact R-tree K . Then
K is said to have independent generators if, for any infinite admissible word X ∈ ∂ F(A),
the non-empty domain of X consists of exactly one point.

The same arguments as in [Gab97] show the following equivalences. However, they will
not be used in the sequel.

Remark 4·5. Let K = (K ,A) be a system of isometries on a compact R-tree K . The
following are equivalent:
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(1) K has independent generators;
(2) every non-trivial admissible word fixes at most one point of K ;
(3) the action of F(A) on the associated tree TK has trivial arc stabilizers.

Note that Gaboriau [Gab97] used originally property (2) as definition, but in our context
this seems less natural.

4·3. The map QK for eventually admissible words

Let K = (K ,A) be a system of isometries on a compact R-tree K . Consider the set
L1

adm(K) ⊂ ∂ F(A) of infinite admissible words as defined in Section 3·5.

Definition 4·6. Let K be a system of isometries which has independent generators. Then
for any infinite admissible word X ∈ L1

adm(K) there exists exactly one element of K in the
domain of X , which will be called QK(X).

LEMMA 4·7. Identify K with the image of {1} × K in T̂K as in Section 3, and let X ∈
L1

adm(K).
(1) Denoting as before by Xi the prefix of X of length i � 1, we obtain:

{QK(X)} =
⋂
i � 1

Xi K .

(2) For every i � 1 we have:

QK(X−1
i X) = X−1

i QK(X).

Proof. (1) follows directly from Lemma 3·6 (2) and the above definition of the map QK.
(2) follows directly from (1). �

Recall from Definition 4·1 that an infinite words X ∈ ∂ F(A) is eventually admissible if it
has a prefix Xi such that the infinite remainder X ′

i = X−1
i X is admissible. We observe that

for all integers j � i the word X−1
i X j is admissible, so that Lemma 4·7 (2) gives:

XiQK(X ′
i) = XiQK(X−1

i X j X ′
j ) = Xi (X−1

i X j )QK(X ′
j ) = X jQK(X ′

j ).

Hence the following definition does not depend on the choice of the index i .

Definition 4·8. For any eventually admissible word X ∈ ∂ F(A) we define

QK(X) = XiQK(X ′
i ).

We note that for any element u ∈ F(A) and any eventually admissible word X ∈ ∂ F(A)

one has:

QK(u X) = uQK(X).

PROPOSITION 4·9. Let K = (K ,A) be a system of isometries on a compact R-tree K
with indenpendent generators. Let X ∈ ∂ F(A) be an eventually admissible word.

For any element P in TK, and any sequence wn of elements of FN that converge to X, the
sequence of points wn P converges to QK(X), with respect to the observers’ topology on TK.

Proof. Up to multiplying by the inverse of a prefix we can assume that X is admissible
and QK(X) ∈ K . By compactness of T̂ obs

K we can assume that wn P converges to some point
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Q∞. By contradiction assume that Q∞ �QK(X), and let M be a point in the open interval
(Q∞,QK(X)). From Lemma 2·2 we deduce

Q∞ = lim infQK(X)wn P.

Thus, for n and m big enough, the maximal common segment [QK(X), Pm,n] of the segments
[QK(X), wn P] and [QK(X), wm P] contains M . As wn converges to X , for n fixed and for
m sufficiently large, the maximal common prefix of wn and wm is a prefix Xi of X . By
Lemma 3·9, Pm,n is contained in Xi K . By Lemma 4·7, QK(X) is also contained Xi K , and
hence, so is M . As m and n grow larger, the index i goes to infinity (since wn → X ),
which proves that M is contained in the intersection of all the Xi K . Since we assumed
M �QK(X), this contradicts the independent generators’ hypothesis. �

4·4. Continuity of the map QK

As any element of ∂ F(A) is either eventually admissible or not, from Definitions 4·2 and
4·8 we collect a map QK.

COROLLARY 4·10. Let K = (K ,A) be a system of isometries on a compact R-tree K
with independent generators. The map QK : ∂ FN → T̂ obs

K is equivariant and continuous.
For any point P in TK, the map QK defines the continuous extension to FN � ∂ FN of the

map

Q P : FN −→ T̂ obs
K

w �−→ wP

Proof. Equivariance and continuity of QK follow from the second part of the statement,
which is proved in Propositions 4·3 and 4·9. �

5. Proof of the Main Theorem

Throughout this section let T be an R-tree provided with a minimal, very small action of
FN by isometries which has dense orbits. Hence we obtain from Theorem 2·6 an equivariant
and continuous map Q, which we denote here by QT : ∂ FN → T̂ obs.

Let A be a basis of FN , and let K be a compact subtree of T . Let K = (K ,A) be the
induced system of isometries ai : K � ai K → a−1

i K � K , x �→ xai = a−1
i x , as discussed

in Section 3·3. We assume that K is chosen large enough so that for each ai ∈ A the
intersection K �ai K and hence the partial isometry ai ∈ A is non-empty. As a consequence
(see Section 3), there exists an R-tree TK with isometric action by FN , and by Theorem 3·2
there exists a unique continuous FN -equivariant map

j : TK → T

which induces the identity map TK ⊃ K
j→ K ⊂ T .

LEMMA 5·1. The system of isometries K = (K ,A) has independent generators.

Proof. Let Q be a point in the domain of an infinite admissible word X , compare Sec-
tion 3·5. Then for any prefix Xn of X , the point Q Xn = Xn

−1 Q is also contained in K
(recall that we write the action of F(A) on TK on the left, and the pseudo-action of partial
isometries of K on the right).

By Theorem 3·2, j restricts to an isometry between K ⊂ TK and K ⊂ T . Therefore, for
any n � 0, Xn

−1 j (Q) lies in K ⊂ T . By Lemma 2·7, we get QT (X) = j (Q).
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This proves that the domain of X consists of at most the point j−1(QT (X)). Hence K has
independent generators. �

As a consequence of Lemma 5·1, we can apply Corollary 4·10 to obtain an equivariant
and continuous map QK : ∂ FN → T̂ obs

K .

LEMMA 5·2. For any X ∈ ∂ FN such that QK(X) is contained in TK, one has

j (QK(X)) = QT (X).

Proof. By Proposition 4·3, X is eventually admissible and by equivariance of QK, QT and
j , we can assume that X is admissible and that QK(X) is in K . By Definition 4·6, for any
i � 0, QK(X) · Xi = Xi

−1QK(X) lies in K .
By Theorem 3·2, j restricts to an isometry between K ⊂ TK and K ⊂ T . Therefore for

any i � 0, the point Xi
−1 j (QK(X)) lies in K ⊂ T . Thus we can apply Lemma 2·7 to get

QT (X) = j (QK(X)). �

LEMMA 5·3. The admissible lamination of K is contained in the dual lamination of T :

Ladm(K) ⊂ L(T ).

Proof. The admissible lamination Ladm(K) (see Section 3·5) is defined by all biinfin-
ite words Z in A± such the two half-words Z+ and Z− have non-empty domain, and the
two domains intersect non-trivially. Thus QK(Z+) = QK(Z−) is a point in K . Thus by
Lemma 5·2 one has QT (Z+) = QT (Z−). The latter implies (and is equivalent to) that Z
belongs to L(T ). �

We sumarize the above discussion in the following commutative diagram:

∂ FN

QK

����
��

��
�� QT

�� ����������

T̂ obs
K T̂ obs

TK
��

��

j �� T
��

��

All the maps in the diagram are equivariant and continuous, where the topology considered
on the bottom line is the metric topology.

We can now prove the main result of this paper. Recall from Section 2·7 that for any basis
A of FN and T as above the set �A ⊂ T denotes the limit set of T with respect to A.

THEOREM 5·4. Let T be an R-tree with very small minimal FN -action by isometries,
and with dense orbits. Let A be a basis of FN , and let K ⊂ T be a compact subtree which
satisfies K � ai K �� for all ai ∈ A. Then the following are equivalent:

(1) The restriction of the canonical map j : TK → T to the minimal FN -invariant subtree
T min
K of TK defines an isometry jmin: T min

K → T ;
(2) L(T ) ⊂ Ladm(K) ( ⇔ L(T ) = Ladm(K) , by Lemma 5·3);
(3) �A ⊂ K .
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Proof. (1) ⇒ (2) By the assumption on j the minimal subtree T min
K ⊂ TK is isometric

to T . Hence the dual laminations satisfy L(T ) = L(T min
K ), and by Remark 2·5 one has

L(T min
K ) = L(TK). We now apply Proposition 3·11 to get L(TK) ⊂ Ladm(K).

(2) ⇒ (3) By Definition 2·11, a point Q ∈ T belongs to the limit set �A if and only if
there is a pair of infinite words (X, Y ) ∈ L2(T ) ⊂ ∂2 F(A), with initial letters X1 � Y1,
which satisfy QT (X) = QT (Y ) = Q. By assumption, L(T ) is a subset of Ladm(K), so
that the reduced words X , Y and X−1 · Y are admissible for the system of isometries K. By
Definition 4·6, {QK(X)} is the domain of X and Y , and thus is contained in K . We deduce
from Lemma 5·2 that j (QK(X)) = QT (X) = Q, and Q lies in K .
(3) ⇒ (2) Let Z be a biinfinite indexed reduced word in the symbolic lamination LA(T )

defined by the dual lamination L(T ) of T (see Section 2·3). That is to say, Z = (Z−)−1 · Z+,
written as a reduced product, and QT (Z−) = QT (Z+) is a point Q ∈ �A. For any n ∈ Z,
we consider the shift σ n(Z) of Z as in Remark 2·4. If u is the prefix of Z+ of length n (or, if
n < 0, the prefix of Z− of length −n), then σ n(Z) = (Z−)−1u · u−1 Z+ and QT (u−1 Z+) =
QT (u−1 Z−) = u−1 Q, and this is again a point of �A and thus contained in K , by hypothesis.
Therefore, both Z+ and Z− are admissible, and dom(Z+) = dom(Z−) = {Q}. Thus Z
is an admissible biinfinite word of the system of isometries K = (K ,A), which shows
L(T ) ⊂ Ladm(K).
(2) ⇒ (1) Since the dual lamination L(T ) is a subset of the admissible lamination Ladm(K),
for any pair of distinct infinite words X, Y ∈ ∂ F(A) the equality QT (X) = QT (Y ) implies
that X−1Y is admissible, and from Definition 4·6 we deduce QK(X) = QK(Y ). Thus the map
QK : ∂ FN → T̂ obs

K factors over the quotient map π : ∂ FN → ∂ FN/L2(T ) (see Section 2·6)
to define an equivariant map s : ∂ FN/L2(T ) → T̂ obs

K .
As the topology on ∂ FN/L2(T ) is the quotient topology (see Section 2·6) and as QK is

continuous (see Corollary 4·10), the map s is continuous. Since ϕ : ∂ FN/L2(T ) → T̂ obs

is a homeomorphism (see Theorem 2.10), we deduce that the image of s is an FN -invariant
connected subtree of T̂ obs

K . Therefore the image of s contains the minimal subtree T min
K of

TK.
As a consequence, for any point P in T min

K there exists an element X ∈ ∂ FN such that
s(π(X)) = QK(X) = P . From Lemma 5·2 we obtain jmin(P) = j (QK(X)) = QT (X). By
definition of the homeomorphism ϕ, one has ϕ−1( jmin(P)) = π(X) and s(ϕ−1( jmin(P))) =
P . This proves that jmin is injective.

∂ FN

QK

����
��

��
��

��
��

��
��

�

QT

�� ���
��

��
��

��
��

��
��

��

π
����

∂ FN/L2(T )

s

		����������
ϕ

�


����������

T̂ obs
K T̂ obs

TK
��

��

j �� T
��

��

T min
K
��

��

jmin
�� T
��

��
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Since j is continuous with respect to the metric topology, since j maps K isometrically,
and since TK = FN K , this implies that jmin is an isometry. �

Recall from Section 2·7 that the heart KA ⊂ T denotes the convex hull of the limit set
�A of T with respect to the basis A. We denote by KA = (KA,A) the associated system of
partial isometries.

We remark that, in the above theorem, the map QK may fail to be surjective onto TK if K
is too large. And hence, j may fail to be injective even if the limit set �A is contained in
K . This is the reason why we considered the minimal subtree T min

K of TK. However if K is
exactly equal to the heart KA we get the following corollary.

COROLLARY 5·5. Let T be an R-tree with very small minimal FN -action by isometries,
and with dense orbits. Let A be a basis of FN , with heart KA. The map j : TKA → T is
isometric and its image contains T .

Proof. By definition, for K = KA the three equivalent conditions of Theorem 5·4 are
satisfied.

In the proof of implication (2) ⇒ (3) of Theorem 5·4, we proved that �A is in the image
of QK. In the proof of implication (2) ⇒ (1), we proved that the image of QK is connected
and that j is injective on the image of QK.

Therefore KA is in the image of QK, and the map j : TKA → T is injective. From the
last paragraph of the proof of Theorem 5·4 we deduce that j is isometric. Finally, from the
minimality of T we deduce that the image of j contains T . �

6. Applications to geometric trees and limits

In this section we will present some first applications of the main result of this paper,
Theorem 5·4, to questions which in part date back to the work of Gaboriau–Levitt [GL95].
It should also be noted that Theorem 5·4 is the basis for the forthcoming papers [Cou08]
and [CH08].

Recall that Outer space CVN is the space of projectivized minimal free simplicial actions
of FN on R-trees. It comes with a natural action by Out(FN ), and it is in many ways the
analogue of Teichmüller space, equipped with its action of the mapping class group. In
particular, CVN has a natural “Thurston boundary” ∂CVN , which defines a compactification
CVN = CVN � ∂CVN of CVN . Its preimage cvN , obtained through unprojectivization,
consists precisely of all R-trees T with non-trivial minimal very small action of FN by
isometries.

6·1. Geometric trees

There is a special class of group actions on R-trees which play an important role in what
is often called the “Rips machine”: a minimal R-tree T is called geometric if there exists a
finite subtree K ⊂ T and a basis A of FN such that the map j : TK → T is an isometry. It is
proved in [GL95] that in this case for any basis A one can find such a finite subtree K . For
more information about geometric trees regarding the context of this paper see [GL95].

Recall from Section 2·7 that the heart KA ⊂ T denotes the convex hull of the limit set
�A of T with respect to the basis A. We denote by KA = (KA,A) the associated system of
partial isometries.
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COROLLARY 6·1. A very small minimal R-tree T , with isometric FN -action that has
dense orbits, is geometric if and only if, for any basis A of FN , the heart KA is a finite
subtree of T .

Proof. If T is geometric, then by definition there is a finite tree K ⊂ T such that the
map j : TK → T is an isometry. Thus condition (1) of Theorem 5·4 is satisfied, and hence
condition (3) implies that KA is a subtree of K , and thus it is finite.

Conversely, if KA lies in T , the image of the map j defined on TKA is contained in T ⊂ T ,
giving a map j : TKA → T which by Corollary 5·5 is isometric. By minimality of T , the
map j is onto. �

6·2. Increasing systems of isometries

Let T be a minimal R-tree with a very small action of FN by isometries, which has dense
orbits. As in Section 5, let A be a basis of FN , and for any n ∈ N let K (n) be a compact
subtree of the metric completion T of T , with non-empty intersections K (n) � ai K (n) for
all ai of A. One obtains systems of partial isometries K(n) = (K (n),A) as in the previous
sections.

We will consider sequences K (n) which are increasing, i.e. for all n � m we assume

K (n) ⊂ K (m) .

We can apply Theorem 3·2 to the case K = K (n) and the tree TK(m), to obtain canonical
FN -equivariant maps

jm,n : TK(n) −→ TK(m)

which satisfy jk,m ◦ jm,n = jk,n , for any natural numbers n � m � k.
The maps jm,n are length decreasing morphisms, so that the trees TK(n) converge in the

equivariant Gromov–Hausdorff topology (see [Pau88]) to an R-tree T∞, equipped with an
action of FN by isometries. Alternatively, one can pass to the direct limit space defined
by the system of maps jm,n , which inherits from the TK(n) a canonical pseudo-metric as
well as an action of FN by (pseudo-)isometries. One then defines T∞ as the canonically
associated metric quotient space. Both, arc-connectedness and 0-hyperbolicity carry over in
those transitions, so that T∞ is indeed an R-tree with isometric FN -action.

The minimal FN -invariant subtrees T min
K(n) ⊂ TK(n) and T min

∞ ⊂ T∞ define points in the
closure cvN of unprojectivized Outer space cvN (compare [CHL-II] and the references given
there). The sequence of trees T min

K(n) converges in cvN to the tree T min
∞ .

The maps jm,n also converge to FN -equivariant maps j∞,n : TK(n) → T∞ that satisfy
j∞,m ◦ jm,n = j∞,n .

We consider the increasing union of the K (n), and we define K (∞) to be its closure in
T ,

K (∞) =
⋃
n∈N

K (n) ,

provided with the induced system K(∞) = (K (∞),A) of partial isometries. We always
assume that K (∞) is compact.

Using that K (n) ⊂ K (∞), we can apply again Theorem 3·2 to get FN -equivariant, length
decreasing morphisms:

j0,n : TK(n) −→ TK(∞).
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These maps converge to an FN -equivariant length decreasing map j0,∞ : T∞ → TK(∞). This
map continuously extends to the metric completions j 0,∞ : T ∞ → T K(∞).

For each n ∈ N, the map j0,n restricts to an isometry on K (n), and thus j0,∞ restricts to an
isometry on the union of the K (n), which extends to an isometry from K (∞) ⊂ T ∞ onto
its image in TK(∞). Applying Theorem 3·2 again, to the inverse of this isometry, we get an
FN -equivariant length decreasing morphism j∞,0 : TK(∞) → T ∞.

By construction, the restrictions of the maps j0,∞ and j∞,0 to each of the K (n) are iso-
metries which are inverses of one another. Thus the map j 0,∞ ◦ j∞,0 is length decreasing and
restricts to the identity on �n∈NK (n) and thus on K (∞). Using Theorem 3·2, we see that it
is an isometry on all of TK(∞). This shows

lim
n→+∞ TK(n) = T∞ ⊂ TK(∞)

and thus

lim
n→+∞ T min

K(n) = T min
K(∞) .

As a direct consequence of Theorem 5·4 one now derives:

COROLLARY 6·2. Let T be a minimal R-tree with a very small action of FN by iso-
metries, which has dense orbits. Let A be a basis of FN . For any n ∈ N, let K (n) be a
compact subtree of T with non-empty intersections K (n) � ai K (n), for all ai of A. Let
K(n) = (K (n),A) be the induced systems of isometries. Let K (∞) be the closure of the
increasing union of the K (n), and assume that K (∞) is compact.

Then the minimal trees T min
K(n) converge in cvN to T if and only if K (∞) contains �A. �

An application of this corollary is the following sharpening of a classical result of
Gaboriau–Levitt [GL95], who showed that every T ∈ cvN can be approximated by a se-
quence of geometric TK(n), i.e. each K (n) is a finite subtree of T .

COROLLARY 6·3. For every very small minimal R-tree T , with isometric FN -action that
has dense orbits, there exists a sequence of finite subtrees K (n) of uniformely bounded
diameter, such that:

T = lim
n→∞ TK(n).

Proof. It is well known [GL95] that the number of branch points in T is a countable
set P that is dense in every segment of T . It suffices to consider the countable subfamily
(Pn)n∈N = P� KA and to define K (n) as convex hull of the set {P1, . . . , Pn}. Since the heart
KA is the convex hull of the limit set �A, the claim is a direct consequence of Corollary 6·2.

�

6·3. Approximations by simplicial trees

An algebraic lamination L is said to be closed by diagonal leaves, if for any leaves (X, X ′)
and (X ′, X ′′) in L one either has X = X ′′, or (X, X ′′) is again a leaf in L . We remark that,
if T is an R-tree with a minimal action of FN by isometries that has dense orbits, it follows
from Section 2·6 that the dual lamination L(T ) of T is closed by diagonal leaves. Also,
for a system of isometries K with independent generators, we deduce from Section 3·5 and
Section 4·2 that the admissible lamination Ladm(K) is closed by diagonal leaves.

An algebraic lamination L is said to be minimal up to diagonal leaves if it does not contain
a proper non-trivial sublamination that is closed by diagonal leaves.
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COROLLARY 6·4. Let T be an R-tree with a minimal, very small action of FN that has
dense orbits. Let A be a basis of FN . If a compact subtree K ⊂ T does not contain �A, and
if the dual lamination L(T ) is minimal up to diagonal leaves, then the approximation tree
T min
K is free simplicial (i.e. it belongs to the unprojectivized Outer space cvN rather than to

its boundary ∂cvN ).

Proof. From Proposition 3·11 we know that the dual lamination L(TK) of TK is a sublam-
ination of the admissible lamination Ladm(K). The lamination Ladm(K) is closed by diagonal
leaves and is a sublamination of L(T ), by Lemma 5·3. Since �A is not a subset of K , The-
orem 5·4 implies that the admissible lamination Ladm(K) is a strict sublamination of L(T ).

From the minimality of L(T ) up to diagonal leaves we deduce that Ladm(K) and L(TK)

are empty, so that (compare Section 2·4) the action of FN on T min
K is free and discrete. �

This corollary indicates that the resolution of an arbitrary R-tree with isometric G-action,
for more general groups G, via systems of partial isometries on a finite tree, as promoted
by the Rips machine, may yield directly a simplicial tree, i.e. without having to go through
further iterations in Rips’ procedure.
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