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1 Introduction

This note is the text of a lecture delivered by the author at the workshop
“Model Theory, Profinite Topology and Semigroups” held in Coimbra (Por-
tugal) in June 2001. The aim is to give here an overview of the links between
the study of the profinite topology of free groups and the technics of extension
of partial isomorphisms and partial action of groups. There are no proofs in
this note as most of the results are published elsewhere as indicated in the
text. Moreover if we give all the definitions used here, it may be useful for the
reader to go back to the original articles to get more details and examples.

The second goal of this note is to explain the perspectives of this area.
Therefore we include at the end a few open problems.

The origin of this research comes from the interaction between model
theory, profinite topology of groups and formal languages. Indeed it came
out from the conjecture of J ~E Pin on the profinite topology of free groups
(which is now known as Ribes-Zalesskii’s theorem) that he needed in order
to solve the type II conjecture of J. Rhodes. Then B. Herwig and D. Lascar
gave another proof of this conjecture using some model theory associated with
automorphisms of first order structures as it has been done by E. Hrushovski
in his proof that the class of graphs has the extension property (see below).

In fact the question of extending partial ismoprhisms of structures and of
studying automorphism groups was already popular among model theorists.
It is quite natural while trying to classify first-order structures to look at their
automorphism groups. This had been done in various manners. One can refer
to the article by D. Lascar! to obtain information in this direction and to
learn about the small index property.

Section 2 is devoted to define relational structures and their partial iso-
morphisms. Then we introduce the extension property as it was defined by
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B. Herwig and D. Lascar?. The reader should refer to their work for all that
concern extension property and profinite topology of free groups. In section 3
we deal with the profinite topology of groups. We describe several properties
of free groups and we give examples of groups having the same properties.
Partial actions are the core of section 4. We present there the results that
link extension properties and the profinite topology of groups. A precise and
detailed presentation of these topics can be found in works by the author®*.
The last two sections present perspectives of this research field. We consider
in section 5 a wide class of extension properties by defining T -free structures.
They relate to the profinite topology of groups through left systems. For T-
free structures and left systems our main sources are the work of B. Herwig
and D. Lascar? and that of J. Almeida and M. Delgado!'®. The last section
contains some open problems.

2 Relational structures

2.1 Some definitions

A language is a (finite) set of symbols together with their arity.

A relational structure M is a set endowed with interpretations of re-
lational symbols from a given language. For a given symbol R we denote by
Ry or simply R its interpretation in M.

Example 1 A graph for us is a relational structure in the language £ = {R}
where R is a binary relation. With this definition a graph is oriented and it
is said unoriented if the relation R is symmetric.

A substructure A of M is a subset of M where each symbol of relation
is interpreted as the restriction of its interpretation in M.

A partial isomorphism of a relational structure is an isomorphism be-
tween two substructures.

We denote by PI(M) the inverse monoid of all partial isomorphisms of
a relational structure M. This inverse monoid is equipped with the usual
partial order, which can be defined alternatively by the inclusion of graphs :
we say that ¢ is an extension of p if the underlying graph of the function p
is a subset of the graph of the function gq.

If A is a substructure of a relational structure M and p is in PI(M) we
define the restriction of p to A and we denote it by p[A as follows :

Va,y € A, p[A(z) =y <= p(z) =y.

Aut(M) is the subgroup of PI(M) of all automorphisms of the relational
structure M.
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In this note we will use a particular kind of relational structures that were
invented by B. Herwig and D. Lascar : the n-partitionned structures.
The language for these structures is £ = {—,Uy,...,U,} where — is a
binary relation and Uy, ..., U, unary predicates. An L-structure M is said
to be n-partitionned if the predicates U; defines a partition of M and if the
realtion — holds between elements satisfying U; and elements satisfying U; 41
(i=1,...,n,n+1=1).

A n-partitionned structure is n-cycle free if it does not contains n ele-
ments sy, ...,S, such that

§1 —> SS9 —» - —> 8 —> S1-

2.2 Ezxtension properties

To link these relational structures and their partial isomorphisms to the profi-
nite topology of free groups, we use the extension property for a class of
structures.

A class C of structures has the extension property if given any finite
structure A of C and a finite collection py,...,p, of partial isomorphisms of
A, the following properties are equivalent :

1. there exists an extension M of A (possibly infinite) in C and automor-
phisms py,...,p, of M that extend pq,...,pr;

2. there exists a finite extension B of A in C and automorphisms p1, ..., p,
of B that extend py,...,p;.

Tt is obvious that the class of sets have the extension property. Indeed one
can always take B equals to A and extends partial isomorphisms of a finite
set to automorphisms.

The second result concerning extension property was proved by
E. Hrushovski® : graphs have the extension property.

In these two first examples the first condition of the definition is always
satisfied, which means that the second is as well. The usefulness of the first
condition will only become clear in the following examples.

It is a result of B. Herwig and D. Lascar? that n-cycle free, n-partitionned
structures have the extension property. This is a complicated result which was
proved in order to get a new proof of the result of L. Ribes and P. Zalesskii
that will be mentionned in the sequel. Here condition 1 of the definition is
not always satisfied.

B. Herwig and D. Lascar? obtained some even stronger result for the
extension property. They proved that the class of T-free structures (of which
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n-cycle free n-partitionned structures is a particular case) has the extension
property. We will wait until section 5.2 before giving the definition of 7-free
structures.

3 Profinite topology

The goal of this note is to recall the deep link between the profinite topology
of groups and extension of partial isomorphisms. We begin with free groups
which may be more familiar and easier. Then we will deal with the general
case of groups and for that we will introduce the notion of partial action of a
group on a structure.

The profinite topology on a group G is the coarsest topology for which any
mapping from G into a finite discrete group is continuous. A basis of clopen
neighborhoods of 1 for this topology is given by the finite index subgroups.

3.1 Free groups

Many results are known on the profinite topology of free groups. It is known
to be Hausdorff. This means that a free group is residually finite, in other
words that for any non-trivial element z of a free group F' there exists a finite
group G and a morphism 7 from F' to G that maps z to a non trivial element.

It is also known that any finitely generated subgroup of a free group is
closed with respect to its profinite topology. This means that a free group is
LERF (locally extended residually finite), in other words that for any finitely
generated subgroup H of a free group F' and any element z of F' which is
not in H, there exists a finite group G and a morphism 7 from F' to G which
separates H and z :

w(z) & w(H).

The second of these results was obtained in the pioneering article of M.
Hall® where the profinite topology is introduced.

This second result is tightly linked with the extension property for the
class of sets. Indeed let F' be a free group on an alphabet ¥. To any subgroup
H of F' we can associate the set M of left cosets of H and for any letter of
the alphabet define an automorphism of M by left multiplication. If H is
finitely generated and z is an element of F', we can define the finite subset A
of M whose elements are the cosets wH where w is a subword of one of the
generators of H or of z. To any letter we can now define a partial isomorphism
of A which is the restriction of the automorphism of M.

proceeding: submitted to World Scientific on September 30, 2001 4




Figure 1. An example of partial isomorphisms associated with a finitely generated subgroup
of a free group.

bH
b
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cha 1H b'H
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The extension property for sets gives us a finite set B containing A and
for each letter of the alphabet an automorphism of B that extends the corre-
sponding partial isomorphism of A. This is enough to define a morphism =«
from F' into the symmetric group on B which is a finite group. And it is easy
to check that

(z) & m(H).

Example 2 Let F =< a,b,c >, H =< ab,bbb,c"bc > and z = cbha™'.
Figure 1 shows the set A and the partial isomorphisms.

The sketch of this proof that free groups are LERF and example 2 were
given here because they illustrates the correspondance between finitely gen-
erated subgroups of free groups and partial isomorphisms. They show how
extension of partial isomorphisms can be used to prove that some subsets of
free groups are closed for the profinite topology.

After these old results on the profinite topology of free groups, R. Gitik
and E. Rips proved :

Theorem 1 (7) Let H and K be finitely generated subgroups of a free group
F. The double coset HK is closed for the profinite topology of F'.

We say that a free group is double coset separable or RZs.

This result is tightly linked with the extension property for the class of
graphs. Indeed it is a corollary of Hrushovski’s result.

L. Ribes et P. Zalesskil proved an even stronger result :

Theorem 2 (8) Let Hy, ..., H, be finitely generated subgroups of a free group
F'. The product set Hy - -- H, is closed for the profinite topology of F.
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We say that a free group is RZ,,.

In turn this result is tightly linked with the extension property for the
class of n-cycle free n-partionned graphs. B. Herwig and D. Lascar used the
extension property for n-cycle free n-partitionned structures to give a new
proof of theorem 2.

3.2 Profinite topology of groups

We are here interested in groups whose profinite topology has similar property
to that of free groups.

A group is said residually finite (RF) if its profinite topology is Haus-
dorff. It is said LERF if all its finitely generated subgroups are closed for
its profinite topology. And, it is RZ,, if for all finitely generated subgroups
H,y,...,H,, the product set H; --- H, is closed for the profinite topology. We
say that a group is RZ if it is RZ,, for all integer n.

It is clear that we have a hierarchy of properties. Every group which is
RZ,1 is also RZ,,. Properties RZ; and LERF are equivalent and every LERF
group is RF. We give here various examples of groups with the properties of
their profinite topology.

Example 3 e [t is obvious that finite groups and finitely generated abelian
groups are RZ.

e It is a result of L. Ribes and P. Zalesskii® that free groups are RZ.

e An easy corollary of the previous example is that GLy(Z) and SLy(Z) are
RZ.

o As a corollary of results by the author® one gets that surface groups are
RZ;

e J. Lennox and J. Wilson® proved that polycyclic-by-finite groups are RZ,;
e The author proved in his thesis® that free metabelian groups are LERF;

o It is a result of K. Gruenberg'® that free solvable groups are RF.

4 Partial actions

For a group G with a set of generators S to define a morphism into an auto-
morphism group it is not enough to give an automorphism for each element
of S. Therefore we need a stronger definition than the one of partial isomor-
phism. This is the role of our notion of partial action.
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Let @ be an action of a group G on a relational structure M. Let A be a
finite substructure of M and S a finite subset of G. The partial action ¢ of
G on A induced by @ and S is the application ¢ from G into PI(A4) such that
for all g in G and for all a,a’ in A, we have

v(9)(a) = a'

if and only if there exists a finite collection s1,...,s,in S, €1,...,€6, in {£1}
and ag, . ..,a, in A such that

g=s{'-8, ag =a, a, = a' and, ¢(s;)(a;—1) = a;-
Although the definition is technical, it is rather a natural notion as illus-
trated by the following properties of partial actions.

Property 1 In the condition of the previous definition, we have :
1. Vs € S,9(s) = ¢(s)[4;
2. Vg € G,0(9) < 9(g) and p(g)™" = p(g7");
3. Vg,h € G,9(g) o p(h) < p(gh).

Thanks to this three properties it is clear that the stabilizer of an element
a of A which is defined as

Stab, (a) = {g € G|¢(9)(a) = a}

is a subgroup of G.

Moreover the requirement that S and A being finite enforces that a sta-
bilizer is a finitely generated subgoup of G.

We can extend the order on the inverse monoid of partial isomorphisms
into an order on partial actions. We say that ¢ is an extension of ¢ if for all
gin G, @(g) is an extension of p(g) as a partial isomorphism of A.

The preaction of G on A can now be also defined as the smallest applica-
tion from G into PI(A) satisfying the three above properties.

Of course an action (of a finitely generated group G) is a special case of
a preaction.

We use this definition of partial action to be able to define an extension
property of a given group similar to that of partial isomorphisms.

We say that a group G has the extension property for a class of rela-
tional structures C if given any partial action ¢ of G on a finite element A of
C which is induced by an action @ of G on a structure M of C there exists a
finite extension B of A which is in C and an action ¢ of G on B which extends

®p.
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The existence of ¢ and M plays here the role of the first condition in the
definition of the extension property in section 2.2.

The extension property for a class of structures, as defined in the previous
section, is the extension property of all free groups for this class of structures.

In the sequel of this note, we will try to understand the meaning of the ex-
tension properties for different class of structures. We will indeed try to trans-
late these properties into statements about the profinite topology of groups.

Theorem 3 (') A group has the extension property for sets if and only if it
is LERF.

In fact R. Gitik does not use our terminology but that of labeled graphs
and covers which are equivalent to our notions of partial action and extension.
Going a little further one can translate RZ,, into an extension property :

Theorem 4 (*) 1. A group has the extension property for graphs if and
only if it is RZ,.

2. A group has the extension property for n-cycle free, n-partition structures
if and only if it is RZ,.

We will not go into the proofs (which have been published) of these three
results. Although the first two one are quite elementary the last one is tech-
nical.

R. Gitik first used her result on LERF groups to give new proofs of results
on LERF groups. Using the previous characterisation of groups having RZ,,
property the author was also able to prove some new results :

Theorem 5 (%) 1. The free product of two RZ, groups is RZ,;

2. Surface groups are RZ.

5 Various properties ?

The translation between these two settings, extension properties and proper-
ties of the profinite topology of groups, is not a simple matter. We were able
to understand what is the extension property for n-cycle free, n-partitionned
structures (recall that they have been created to prove that free groups are
RZ,), but it appears to be more difficult in other cases.

5.1 RZ, hierarchy

We first want to stress out that it is not clear that the various RZ,, properties
are a strict hierarchy. There are example of groups which are RF and not
LERF (free solvable groups of class greater than 3'%:12), of groups which are

‘ proceeding: submitted to World Scientific on September 30, 2001 8




LERF and note RZ, (free metabelian groups®) and of groups which are RZs
but not RZ;3 (free nilpotent group of class 3%).

Thereafter we conjecture that this hierarchy is strict, but we lack a proof.
Going back to extension properties, the fact that this hierarchy is not strict, for
example that RZ3 and RZ, are equivalent would indicate that in a sense that
is unclear one could encode 4-cycle free structures in 3-cycle free structures.

5.2 T -free structures

B. Herwig and D. Lascar? obtained other extension properties (for free
groups). They defined the classes of 7T-free structures which contain the class
of n-cycle free, n-partitionned structures.

We deal with a relational language £ and L-structures.

Let T and M be L-structure. A weak morphism from T to M is a
mapping f from T to M such that for every symbol R in £ of arity r and
every r-tuple t1,...,t, we have

RT(tla v 7tr) = RM(f(tl)a . af(tT))

Let T be a finite set of finite structures, a structure M is T-free if there
is no weak morphism from an element of 7 into M.

Theorem 6 (2) The class of T -free structures has the extension property

This result of B. Herwig and D. Lascar gives us informations on the profi-
nite topology of free groups. This will be detailed in the next section. Indeed
we are able to characterize groups which have the extension properties for all
classes of T-free structures.

But as before we can also focus on the class of groups which have the
extension property for a given class of T-free structures. And then the trans-
lation between the two settings is unclear. Moreover it is also unclear that
these various extension properties are not equivalent. It is possible that an
RZs3 group has the extension property for all class of 7 -free structures.

5.8 Left systems

To translate extension properties for 7-free structures within pure group theo-
retic settings, J. Almeida, M. Delgado!3, B. Herwig and D. Lascar introduced
left systems of equations in a group.

A left system over a group G is a finite set of equations of the following
forms :

T=;ycorr=;c

where c¢ is an element of G, z,y are variables from a set X and i =1,...,n.

proceeding: submitted to World Scientific on September 30, 2001 9




For an n-tuple H = (Hi,...,H,) of subgroups of G, a solution of the
left system S modulo H is a family (v;).ex of element of G such that

v H; = vycH; for all equation = =; ycin S
and
vy H; = cH;  for all equation £ =;cin S

A left system is finitely approximable in a group G if for all n-tuple
H = (Hy,...,H,) of finitely generated subgroups of G there exists an n-tuple
K = (Kjy,...,K,) of finite index subgroups of G such that H; is contained in
K; and such that S has a solution modulo # if and only if it has a solution
modulo K.

Details about these notions and the link with 7-free structures can be
found in the article of B. Herwig and D. Lascar?. There they are used mainly
for free groups, but we can generalize their work to all groups. The main
result that can be proved using the work done by J. Almeida, M. Delagado,
B. Herwig and D. Lascar, and inspired by the results of the author about RZ,,
groups is the following.

Theorem 7 A group G has the extension properties for all classes of T -free
structures if and only if all left systems are finitely approximable in G.

6 Open questions

We already mentioned some problems about extension properties. The first
one is to prove that the RZ,, hierarchy is strict, or more generally to under-
stand the relative strength of extension properties for different classes of T-free
structures. In particular it will be very interesting to find groups having some
extension properties and not others.

Another direction is to study groups having the maximal extension
property that is to say extension property for all classes of T-free struc-
tures. The class of group having the maximal extension property contains free
groups, finite groups and finitely generated abelian groups. It is very likely
that this class is closed under free products as is the class of RZ,, groups and
that it contains surface groups.

We conclude this note with a well-known open question that we state as
a conjecture.

A tournament is an oriented graph such that to different vertices have
exactly one oriented edge linking them. It can be seen as a relational structure
in a language £ having only one binary relation symbol with the following
requirement :

Vz, y(R(Z’, y) v R(y,m)) A _'(R(xa y) A R(ya m))
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Conjecture 1 The class of tournaments has the extension property.

The class of tournaments is not one of the classes of T -free structures . But
in this case we know how to translate this conjecture within a statement about
profinite topology of free groups. Precisely it is equivalent to a conjecture
about the oddadic topology of free groups.

The oddadic topology of a group G is the coarsest topology that makes
continuous all morphisms from G into finite groups of odd cardinal. The
normal subgroups of finite odd index are clopen for this topology. It is not
true that all finitely generated subgroups are closed for this topology. A
necessary condition for a subgroup H of a free group F to be closed is that
for all element z in F, if 22 is in H then z is in H. When this holds we say
that H is closed for square roots.

Conjecture 1 is equivalent to saying that this necessary condition is suf-
ficient :

Conjecture 2 A finitely generated subgroup of a free group is closed for the
oddadic topology of a free group if and only if it is closed for square roots.
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