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Abstract

We consider the following property for a group G : (RZ,) if Hi,...,H, are finitely
generated subgroups of G then the set HiHy---Hy = {h1---hn|hin € H1,...,hn € Hy}
is closed with respect to the profinite topology of G. It is obvious that finite groups and
finitely generated commutative groups have the property (RZ,). L. Ribes and P. Zalesskil
proved that any free group has (RZ,). We show that the property (RZ,) is stable under
the free product operation. We use techniques developped by B. Herwig and D. Lascar on
the one hand, R. Gitik on the other hand.

M. Hall [5] defined the profinite topology on a group G as being the coarsest topology
such that every morphism from G into a finite discrete group is continuous. A group whose
profinite topology is Hausdorff is called residually finite (RF'). It is known that a free group
is RF. K. Gruenberg [3] proved that the free product of two RF groups is also RF. A group
whose all finitely generated subgroups are closed with respect to the profinite topology is called
locally extended residually finite (LERF). M. Hall [4] proved that a free group is LERF,
N. Romanovskii [11] and R. Burns [1] proved independently that the free product of two LERF
groups is itself LERF.

We are interested, here, in a stronger property introduced by J.-E. Pin and C. Reutenauer
[9] : a group is said to have the Ribes-Zalesskii property at rank n (RZ,) where n is an
integer, if for all finitely generated subgroups Hi,. .., Hy theset H1Hy---Hp = {h1---hy, | b1 €
Hy,...,h, € Hy,} is closed for the profinite topology. Property RZ is the conjunction of
properties RZ,, for all n. RZ; is simply the property of being LERF. L. Ribes and P.A.
Zalesskii [10] proved that free groups satisfy RZ.

For the rest of this article we fix an integer n.

The aim of this article is to prove the following theorem :

Theorem 1 If Gi and G are two groups with RZ, then the free product Gy * G2 also has
RZ,.

To prove this result we use methods developed on the one hand by B. Herwig and D. Lascar
[6][7] who gave another proof of L. Ribes and P. Zalesskii’s result and on the other hand by R.
Gitik [2] who gave other proofs of Gruenberg’s, Romanovskii’s and Burns’ results.

I am really indebted to B. Herwig and D. Lascar for showing me and explaining to me
their works. Moreover I will present here part of their work (section 1 and definitions and
propositions 10, 11 and 12 of section 4) in order to have a self-contained article.

From theorem 1 one easily deduces L. Ribes and P. Zalesskil’s result. Indeed, Z has RZ and
a finitely generated free group is a free product of copies of Z.

1 n-partitioned structures

B. Herwig and D. Lascar introduced a class of structures, that will be called n-partitioned,
which are deeply linked with property RZ,.



Definition [7] An n-partitioned structure is a relational structure I in the language
{U1,...,Upn,—} such that the U; are unary predicates that define a partition of M, — is a
binary relation that goes from U; to Uiy (i=1,...,n—1).

In an n-partitioned structure —* is the transitive closure of —.

We will always denote a first order structure and its underlying set by the same symbol.

If on a set, we have several n-partitioned structures we will write —>gy and —3; to prevent
ambiguities.

U;(91) or simply U; stands for the set : {m € 9 | M | U;(m)}.

We denote by - the “complement” of —, that is to say the relation from U; to Uy
(¢ = 1,...,n — 1) such that s>t <= —(s — t). —¢* denotes, in the same way the
complement of —* (and not the transitive closure of —¢).

The link between n-partitioned structures and RZ, property is illustrated by the following
definition and proposition.

Definition [7] Let G be a group and let Hy,...,H, be subgroups of G. We define
G(G,H,...,H,) as the n-partitioned structure such that for alli=1,....n U;={azH; |z €
G} and foralli=1,...,n—1 and for allz,y € G H; — yH;11 if and only if tH;NyH; 11 #
0.

Observe that G acts on G(G, Hy, ..., H,) by left multiplication.

Proposition 2 [7] Let G be a group and Hy,...,H, be subgroups of G and let G be the asso-
ciated n-partitioned structure. Then for all x € G we have :

r€H,---H, <= H, —{zH,

Proof: Let z € H; --- H,,, there exists h; € Hy,..., h, € H, such that x = h; --- h,,. We easily
see that in g, Hy — hiHy — hhhoH3 — -+ — hihy---h,_1H, = xH,.

Conversely, let zo,...,z,-1 be elements of G such that Hy, — z2Hs — --- — zH,.
Using the definition of G, Hy N xz2H> # (), thus there exists hy € Hy such that zoHs = hi Hs.
Similarly there exists ho € Ha,...,h, € H, such that zyHr = hy --- hy—1 Hy. This proves the
proposition. O

In fact we could prove a slightly stronger equivalence. Let i, j be two integers 1 <i < j <n
and z,y € G then :
xzH; —)E ij <~ .’L‘_ly € H;-- -Hj
Let 9t C 9 be two n-partitioned structures. We will say that 9t is a substructure of 9
(or that 91 is an extension of 9) if the relations Uy, ...,U,, — on M are the restrictions of
those relations on N.

2 Pre-actions

We define a quite general notion for first order relational structures, but we will only use it in
the context of n-partitioned structures.

Definition Let 9t be a relational structure, o partial isomorphism of 9 is an isomor-
phism between two substructures of M. We will consider the empty application as a partial
isomorphism.

PI(9M) is the set of partial isomorphisms of 9.

For every partial isomorphism g of 9t and every element m € 90t the notation g(m) supposes
that m is in the domain of g. PI(9M) is equipped with a composition operation, an inverse and
a partial order :

Vg,h € PI(OM), Vm,m' € M (goh)(m) =m' < Im" € M, h(m) =m" Ag(m") =m'



Yg € PI(M), Ym,m' €M g '(m) =m' < g(m')=m
Vg,h € PI(M) g Ch < Vm,m' € M (g(m) =m' = h(m) =m’)

It is obvious that the group of automorphisms of 9, Aut(9M) is a sub-monoid of PI(9MN).
Let g € PI(9) and 2 be a substructure of 9. The restriction of g to 2 is the partial
isomorphism g[2 defined by :

!

Vm,m' € M (g[A)(m) =m' < m,m' e AAg(m)=m

Our work is based on the following definition of pre-action. We will say that a subset, S, of
a group G is symmetric if it is stable by inverse and if it contains the unit element of G.

Definition Let 9 be a relational structure, let G be a group, S a finite symmetric subset of
G. Let M be an extension of M and @ an action of G on N. An application ¢ : G — PI(IM)
is the pre-action induced by S and @ if and only if :

e Vs€S p(s) =@(s)[M

e Vg e G,Vm,m' € M p(g)(m) =m' < Fs1,...,50 € S g=51---5¢ AN p(s1)0---0
@(se)(m) = m'

Remark 1 In the conditions of the previous definition :
o ¢ is uniquely determined by S and @;
* Vg€ G, v(g) C @(9);
® Vg, h € G, ¢(g) o p(h) C p(gh);
e VgeG, p(g)™ " =p(g7");
* ¢(e) =Idm.
We leave the proof of this remark to the reader.

As for an action we have a notion of stabilizer :

Definition Let ¢ be a pre-action of a group G on a structure M, then for every element
m € I, the stabilizer of m is the subset of G : Stab(m) = {g € G | ¢(g)(m) = m}.
It is clear that with these definitions a stabilizer is always a subgroup of G.

Proposition 3 Let ¢ be a pre-action of G on a finite structure MM, induced by a finite sym-
metric subset S and an action @ of G on an extension N of M, then for all element m € I,
Stab(m) is a finitely generated subgroup of G. Moreover if ¢ is an action of G on I then every
stabilizer is a subgroup of finite index in G.
Proof : Let t1,...,t, be the elements of S, let m € M. We will show that Stab(m) is generated
by those of its elements that can be written as w(ty,...,t,), where w(zy,...,z,) is a word
in the free group on generators z,...,z, of length smaller than twice the cardinality of 9
plus two. Indeed, let g € Stab(m), there exists si,...,s¢ € S such that ¢ = s;---s, and
P(s1) 0+ 0 p(s¢)(m) = m. So for each i, 1 < i < £, p(s) o -+ 0 p(s¢)(m) is defined as an
element of M. If £ > 2card(M) + 1 then there are i, 1 < i < j < card(9M) + 1 such that
@(si--s0)(m) = p(sj---s7)(m). Let h = s1---sj_15;" ---s7" and k = s1---8;_18; 5.
Then h, k € Stab(m), g = hk and h and k can be written as products of elements of S of length
strictly smaller than .

The second part of the proposition is classical. O

Let ¢ be a pre-action of a group G on 9. An orbit over ¢ is a minimal subset of 9 stable
under the pre-action.



3 A characterization of groups with RZ,

In [2] a characterization of residually finite groups and of LERF groups was given using par-
tial isomorphisms of finite graphs. This method can be generalized to RZ, thanks to the
n-partionned structures that were introduced by B. Herwig and D. Lascar in [7]. To prove that
the free groups satisfy RZ, they established a weaker version of the part (ii)=(i) of the next
proposition.

Proposition 4 Let G be a group. The following statements are equivalent :
(i) G satisfies RZ,,;

(i) For every n-partitioned finite structure A and for every pre-action ¢ of G on 2 that is
induced by a finite symmetric subset S and the action @ of G on an extension I of A,
there exists a finite extension B of A and an action ¢ of G on B that extends ¢ such
that (—3p) [A = (— %) [A.

Proof :

(if)= (i) : Let Hy,...,Hy, be finitely generated subgroups of G and ¢ ¢ Hy---H,. Let
G(G,Hy, ..., H,) be the associated n-partitionned structure. Let 2 be the finite substructure of
G(G,H,,...,H,) that contains Hy,...,H, and cH,. Let S be a symmetric finite subset of G
that contains ¢ and a system of generators for each of the H;. Such an S exists because
Hiy,...,H, are finitely generated subgroups. G acts on G(G, Hy, ..., H,) by left multiplication,
and we consider the pre-action ¢ of G on 2 induced by this action and S.

Using (ii) there exists a finite n-partitioned structure % that extends 2 and an action @ of
G on B, that extends ¢. Let K; = Stabg (H;) = {9 € G | $(9)(H;) = H;}, these are subgroups
of G of finite index by proposition 3. Also we have H; < K; because S contains a system of
generators of H;.

Let ¢' = G(G,Ky,...,K,) be the n-partitioned structure associated to G, Kj,...,K,.
Looking carefully at the embedding of G’ in B defined by zK; — ¢(z)(H;), we can view G’ as
a subset of B. It is not precisely a substructure although the U; agree and the following relation
holds : for all s,t € G' if s —>¢g: t then s — s t. Indeed the restriction of the action @ agrees
with the left multiplication on G', thus if g,h € G and u € gK; N hK;y; then gK; = ¢(u)(H;)
and th'—i—l = @(U)(H,’.}.l). But we know that H; —rB H’H—l- So (ZJ(U)(H,) —B gb(u)(HH_l)

Condition (i) implies that (—g)[* = (—3%)[?. But proposition 2 shows that
Hy—>gcHy, so Hi—>»>xcH, and as a result K15, cK,. Using proposition 2 again we get
c¢g Ky---K,. K is a clopen subgroup of G, and K; --- K,, is a finite union of cosets of K;
and thus a clopen subset of G.

For each element ¢ of G that is not in H; --- H,, we found a closed neighborhood Kj --- K,
of Hy--- H, that does not contain ¢. Hence Hj --- H, is closed with respect to the profinite
topology of G.

(i)= (ii) : This part is much more technical, and the reader should be familiar with the
previous paragraph before going further.

Let 2, 9M, ¢, @ be as in the hypothesis of (ii). Let 2 be a finite substructure of 9 that
contains 2 such that (—5;)[A = (—5,)[™A. A’ is easily obtained from 2 by adding a finite
number of elements of M.

Let Q be the set of orbits of 2’ under the pre-action ¢. Note that each orbit is a subset of
one of the U; and thus the partition of 2’ induces a partition Q = Q; i) -- -1 Q,, (| denotes
the disjoint union). For each C € Q we choose a base point 7(C) € C. We choose also an
application o : 2’ — G such that for all s € A', p(o(s))(7(C)) = s. At last we define for
every C € Q, H(C) = Stab(7(C)) which is a finitely generated subgroup of G.

Lemma 5 Let Cy € Q4,...,C, € Qy,, let H; = H(C;). The following three conditions hold for
i=1,...,nand1<i<j<n:



(i) for all s,s' € C;, if s # s' then 1 € o(s)H;o(s')™!

(ii) for all s1,s2 € Cy, for all ty,ta € Ciy1 if St —> t1 and so—>ts then
1 ¢ 0(sa)Hio(s1) " o(t1)Hizao(ta) ™"

(m) Vs e C;, Vt € Cj, ifsﬁe*mt, Vs; € Ci, Vsit1,tip1 € Cigr - .. ,VSj_l,tj_1 € Cj_l,th € Cj
such that s; — tit1, Sit1 — tiy2,...,8j—1 — t; then

1 ¢ a(s)Hio(si) " o (tiy1) Hisr0(sip1) ™" - o (tj—1)Hjr0(sj-1) " o (t;) Hjo (1)~

We are aware of the awkwardness of these conditions, but we fear that they cannot be
avoided. Let us make a picture for the previous lemma, :
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Situation of the n-partitioned structure 9t and of pre-action ¢ in hypothesis of condition (iii), with
i=1and j=n.
Thick and horizontal arrows represent relation — gy,
Thin and curve arrows represent the pre-action of G on 9.

Proof : In the hypothesis of (i) suppose that 1 = o(s)h;o(s’)~™! with h; € H;. Then
p(1)(s") = s’ but also

P()(s") = p(a(s)hia(s) T1)(s") = p(a(s)h:)(1(C)) = p(a())(7(C:)) = s

a contradiction.

It is clear that condition (ii) is a particular case of condition (iii). Nevertheless it would be
useful for the reader to prove that (ii) holds before tackling condition (iii).

In the hypothesis of condition (iii) suppose now that

1=0(s)hio(si) " o(tiz1)hit10(six1) " - 0 (tjm1)hj—10(sj—1) " ot ) hjo(t) ™



with h; € Hi, hiy1 € Hiyq,..., h; € Hj, then we consider the following elements of I :

ui+1 = p(o(s

Uig2 = P
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(
10( i+1)h z+1U(5z‘+1)_1)(tz’+2)
(tix1)hiz10(sip1) " o(tir2)hirao(sip2) ™) (sir2)

uj—r = @(o(8)hio(si) ™" - o(tj—a)hj—20(sj—2) ") (tj-1)
= @(o(s)hio(si)™" -~ o(tj_a)hjs0(sj_2) " o(tj—1)hj_10(sj—1)"")(sj-1)

Let u; = s. For each i < k < j — 1, we have uy, = @¢(z1)(sx) and upr1 = @(x)(tgr1) for some
Ty - So U —>m Uk+1 that is

S = Uiyl —rom Ui42 —rom " —rom Uj—1

Moreover
t = @(o(t)h; o(t;) ) (t;) = @(o(s)hio(s) ™" - o(tj1)hj10(s;-1) 7 ) ()
and thus u;_; —gn t. As aresult s — 3, t which is a contradiction. |

Let us point out that any of the subsets of G we considered in the previous lemma
(o(s)H;o(s") ™Y, o(so)H;o(s1) to(ty)Hip10(t2) Lete...) is closed with respect to the profinite
topology of G. Indeed G satisfies RZ,, and these subsets are translated (say by left multiplica-
tion) of products of finitely generated subgroups of G.

For every possible choice of it = 1,...,n, C € Q and s,s' € C, s # s’ we can find a finite
image G/N of G (N is a normal subgroup of finite index in G) such that 1 € o(s)H;o(s')~!

(mod N). As there are only finitely many choices for i, C, s and s’, we can find a finite image
G/N that satisfies all these conditions simultaneously. This is the very place where we use that
A’ is finite.

In the same way, there are only finitely many conditions of type (iii), thus we can find a

finite image G/M of G such that :

Vi, j,1<i<j< n,VC; € Q;, .. .,VCj € Qj,VS,Si S Ci,vsi+1,ti+1 S Cz’—i—la-- .,Vt]’,t € Cj,
if s> gt and s; — tit1,...,8j—1 — t; then

1 ¢ a(s)Hio(si) " o(tip1) Hiy10(si1) ™" -+ -a(tj1)Hj-10(sj-1) ‘o (t;) Hjo(t)~"  (mod M).

Taking K(C) = (M NN)H(C) for each C € Q, K(C) is a subgroup of finite index of G and we
can state the following lemma :

Lemma 6 Let Cy € Q4,...,C,, € Qu, let K; = K(C;). The following four conditions hold for
i=1,...,nand1<i<j<n:

(l) H; C K;
(ii) for all s,s' € C;, if s # s' then 1 € o(s)K;o(s')!
(i13) for all s1,s5 € C;, for all t1,ts € Ciyy1 if s1 — t1 and so—>>to then

1 g U(SQ)K/L'U(SI)_lg(tl)Ki_i_lU(tz)_l

(Z"U) Vs € C;, Vt € Cj, ’ifs%;‘mt, Vs; € C;, Vsz'—i-l;ti—i-l (S Cz’—i—l . ,VSj_l,tj_l (S C’j_l,th € C]'
such that S; —> ti+1, Si+1 — tz’+1, vy 8j—1 — tj then



1€ a(s)Kio(s:) " o(tir1) Kit10(sit1) ™ -~ 0(tj—1) Kj10(sj-1) o (t;) Ko (t) ™
O

We are now going to define an extension 2B of ' (and therefore of ) satisfying the conclusion
of proposition 4 (ii). For each orbit C € Q, let C = {K(C)|z € G}. C is finite because K(C)
is a subgroup of G of finite index.

Lemma 7 Each C embeds naturally in C and the action of G on C (by left multiplication)
extends the pre-action of G on C. ~

. « » : e c — C
Proof : The “natural” embedding is : { s o(s)K(C)
6 (ii). For each s € C, and for each g € S one has o(¢(g)(s))H(C) = go(s)H(C). Therefore,
as H(C) Cc K(C) the action of G on C extends the pre-action ¢. O

. It is injective because of lemma

Let us now define U; = Weea, C and B = |, U;. G acts on B by left multiplication in a
way that preserves each C. We call this action . Through the previous lemma we can see 2
as a subset of 8, and the action @ of G on 9B is an extension of the pre-action ¢ of G on 2.

We define on B the smallest n-partitioned structure compatible with the structure of 2" and
with the action of G. That is to say :

~ ~ def s' —ru t
V(s,t) €U; x Uiy, s —p t &= (s, ) € Us(A) x Ui (W), Iu € G A s = @(u)(s')
At =@u)(t)

Lemma 8 2’ is a substructure of B.

Proof : Of course if s, € A" and s —>gy t then s —>q t. Conversely if s,t € A and s —> oy ¢

there exists s',t' € A’ and u € G such that s = ¢(u)(s), t = @(u)(t') and s’ —q t'. From the

definition of B and @ we see that s and s’ are in the same orbit under ¢, say C. Similarly ¢

and t' are in the same orbit C’ € Q. One has o(s')"luc(s) € K(C) and o(t')"tuc(t) € K(C").

Thus o(s')"lo(t') € K(C)o(s)"lo(t)K(C'). From Lemma 6 (iii) we deduce that s —g t.
O

Lemma 9 (—5)[% = (—3,) [

Proof : From the previous lemma and the definition of ', we have (—§;)[2A C (—5)[2.
Conversely let s,t € 2 such that s —% t. Suppose s € Uy(2) and t € Up(2A) to simplify
notations. There exist s1,892,%2,...,80_1,tn_1,tn € A", ro,...,7n_1 € B and wy,... w,_1 €
G such that : @(wi)(s1) = s, r2 = G(w1)(t2) = G(w2)(s2)s - rn-1 = G(Wn—2)({tn-1) =
P(wp—1)(Sp—1) and t = G(wp_1)(tn). Let Cy be the orbit of s and s; in A, Cy the orbit of
S2,t2,..., Cp the orbit of ¢, and ¢. From the equalities we get that

1e U(S)K(Cl)0'(31)_IU(tQ)K(CQ)U(SQ)_l T O'(tn_l)K(Cn—l)O‘(Sn—l)_la(tn)K(Cn)U(t)_1

and lemma 6 (iv) shows that s —3, ¢. |

This construction of B completes the proof of proposition 4.

4 Coloring n-partitioned structures

In this section the definitions and propositions 10, 11 and 12 are of B. Herwig and D. Lascar.
As their work is not in print we are going to state all definitions, results and proofs which we
will need in the last section.

Definition [7] Let 9t be an n-partitioned structure and V be a subset of M.
V is closed in M if and only if for all s,t e M if s — t and s€V thent e V.
The closure of V is the smallest closed subset of 9 that contains V.
A root of V is an element s of V such that for all t in the closure of V. t—¢s.



For all k=1,...,n dimg (V) is the number of roots of V that are in Uy.
The dimension of V' is the tuple (dimy(V),...,dim,(V)).

Dimensions are ordered lexicographically. The reader should prove that if V is a closed
subset, W a subset and V¢ W C 9 then dimV < dimW.

Proposition 10 [7] Let 9 be a finite n-partitioned structure, then there exists a finite set, P,
of unary predicates on I (the so-called “colors”) such that :

(i) for all Q in P, Q(IM) is closed in I;
(i) for all m € M, there exists Qm € P such that Q. (M) is the closure of {m} in IM;
(iii) for each closed subset V of M, card({Q € P | V C Q(M)}) only depends on dimV'.

Proof : Let {di,...,d,} = {dimV |V C M}, di > --- > d,, be the set of all dimensions of
subsets of M. We will decide by downward induction on dimV', the number of predicates we
want in P such that V = Q ().

Let Py be a finite set of predicates on 9t that satisfy properties (i) and (ii) above. Let
ry = max{card{Q € P, | V C Q(m)} | V I, dimV = dl}

For every closed subset, V, of 9 of dimension d;, we add new predicates () such that
QM) =V to Py to get Py such that card{Q € P, |V C Q(9M)} = ry.

Now, suppose we have constructed P;_; and rg_; such that for every closed subset V' of 9t
of dimension d; greater than di_1, card{Q € Pr—; | V C Q("M)} = r;. Then we define P}, and
T.

Let 7, = max{card{Q € Pr—1 |V CQ(M)} | V C M, dimV =d;}. For every closed subset
V of M, of dimension dy we add new predicates @ such that Q(9M) = V to Pr_1 to get a set
Py, such that card{@ € P, | V C Q(OM)} = .

The set of predicates P, constructed in this way obviously satisfies conditions (i) and (ii)
of the proposition. Let V be a closed subset of M, dj, = dimV and Q € P.. If V C Q(M)
then dim@(91) > dimV and thus @ € P,. We have constructed the set Py, in such a way that
card{Q € P, | V C Q(9M)} = ri. This proves that the set of predicates P, satisfies condition
(ii). O

This proposition will be very useful, because of the following construction. If P is a set and
r an integer, Pl"] is the collection of subsets of P of cardinality r.

Definition [7] Let P be a set (the set of colors). And let ¥ = (ry,...,r,) be a tuple of
positive integers. The homogeneous n-partitioned structure associated to P and 7 is
the structure 9 such that U;(9N) = Pl and for alli =1,...,n — 1 and for all s € Pl and
t € Plrivil s — t if and only if s C t.

Proposition 11 [7] Let 9 be a finite n-partitioned structure, P a set of colors on I that
satisfies condition (i), (ii) and (i) of proposition 10. For i =1,...,n and m € U;(9M), let
r; = card{@ € P | m € Q(OMN)}. From condition (iii), r; does not depend on the choice
of m € U;j. Let ¥ = (r1...,ry), then there is an injection from 9M into the homogeneous
n-partitioned structure associated to P and 7, say N, which is given by :

f: M — N .
m +— f(m)={Q € P|meQM)}

This injection f is a morphism of n-partitioned structures such that for allm,n € M, m —5 n
if and only if f(m) —% f(n).

Proof : From condition (iii) of proposition 10 we know that for every m € Uj;, its image
under f is in P, From proposition 10 (ii) f is an injection. For all m,n € M, we have from
proposition 10 (i) m — 3, n implies that f(m) C f(n) and by definition of N, f(m) —%; f(n).
Conversely, from proposition 10 (i) and (ii) if f(m) C f(n) then n € Q,,,(9M). This proves that
m —gn n. |



To prove that the free groups satisfy RZ, B. Herwig and D. Lascar prove that they sat-
isfy property (ii) of proposition 4. For this purpose they use the very important following
proposition:

Proposition 12 [7] In the conditions of the previous proposition, every partial isomorphism p
of M, such that
Vm,n € M, m —gp n <= p(m) — i p(n),
extends to an automorphism of N.
We will not give the proof of this result here because we will not need it. But it explains
why 2 is called homogeneous, and why coloring structures is a natural operation when dealing
with partial isomorphisms.

Proposition 13 In the hypothesis of proposition 11, if ¢ is an action of a group G on 9N then
there exists an action 1 of G on N that extends .

Proof : Let W be the set of all closed subsets of 9. The action ¢ induces an action @ of G on
W @(9)(V) = {e(g9)(m) | m € V}. To check that this definition is correct, one has to check
that for every closed subset V of 9, @¢(g)(V) is also a closed subset of M. Moreover this action
preserves dimension.

Lemma 14 for all g € G, for every subset Ve W :
card{Q € P |V = Q(M)} = card{Q € P | 3(g)(V) = Q(IM)}

Proof : We prove this lemma by downward induction on dimV.

If V is of maximal dimension then {Q € P |V =Q(MM)} ={Q € P |V C Q(M)} and the
lemma results from condition (iii) of proposition 10. In the general case, let V'€ W be a closed
subset of M, and let ¥ be the set of closed subsets of M that strictly contain V. B. Herwig
noticed the following formula, :

card{Q € P |V =Q(M)} =card{Q € P |V C QM)} — Y card{Q € P | W = Q(M)}
wey

Applying the automorphism @(g) we get :
card{Q € P | &(9)(V) =QM)} = card{Q € P [ ¢(g)(V) C Q(M)}
— Y card{Q € P | g(g)(W) = Q(M)}

wey

Thanks to condition (iii) of proposition 10, taking in account that for all W € V, dimV < dimW
and the induction hypothesis we can conclude. O

Consider the partition (Py)yew of P, where Py = {Q € P | V = Q(9)}. The cardinality
of Py only depends on the orbit of V' under the action @. For each orbit C' let a¢ denotes the
corresponding cardinal of Py. For each V € W we fix a one-to-one correspondence oy from
{1,2,...,a¢} to Py, where C is the orbit of V' under the action ¢ of G on W. We can now
define an action ¢ of G on P :

Vg € G,YV € W,¥Q € Py,%(9)(Q) = 0(5)(v) © o7 (Q)
This clearly defines an application from G into Aut(P). We have to show that it is a morphism
of groups. Let g,h € G, V € W and Q € Py then ¢(g9h)(Q) = og(gnyv) © ov ' (Q) and
¥(g) o Y(h)(Q) = ¥(9)(o3m) vy © ov ' (Q)). Now, onyv) 0 ov ™" € Ppny() and thus 4(g) o
Y(h)(Q) = aggy(v) © 05(1,1)(‘,) 0 og(hy(v) © ov ' (Q). This proves that ¢ is a morphism.
This action ¢ induces an action, that we will also call 1) on 9N :

Vg € G,Vn € Mp(g)(n) = {4(9)(Q) | Q € n}

From the construction and the definition of the injection from 9 into N, it is obvious that
for all g € G, ¥(g) extends ¢(g). |



5 Proof of the main theorem

Let G7 and G2 be two groups which satisfy RZ,,. Let G = G * G5 be their free product. K.
Gruenberg [3], R. Burns [1] and N. Romanovskii [11] have shown that G is residually finite and
LERF. Gitik [2] gave an another proof of this result using finite graphs and pre-actions. We
are going to mimic her argument and use proposition 4 to prove that G satisfies RZ,,.

Let 2 be a finite n-partitioned structure, S a finite symmetric subset of G and ¢ a pre-action
of G on A which is induced by S and by an action ¢ of G on an extension 90t of 2. We are going
to prove that there exists a finite extension € of 2 and an action ¥ of G on € that extends ¢
such that (—3;) [ = (—&)[2L.

Let S; C Gy and Sy C G2 be two finite symmetric subsets such that S C <Sl,.5’2>. To be
convinced that such S; and Ss exist just write the elements of S in normal form with respect
to the free product. Only finitely many elements of G; and G5 occur in these normal forms,
giving rise to suitable sets S; and Ss respectively. Let 2’ be a finite subset of 9t that contains
2A and such that the pre-action ¢ is a restriction of the pre-action ¢' of G on 2I' induced by
@ and S; U S2. Such a finite set ' exists, for it can be constructed from A by adding a finite
number of elements of 9 : for each s € S and for all m,n € A such that ¢(s)(m) = n, we add
the elements @(sg)(m),...,H(s2--s¢)(m), where s = 5189 - -+ s is the normal form of s in the
free product G = G * Gs.

It is enough to prove that there exists € a finite extension of 2’ and an action 9 of G on €
such that (—};) [ = (—¢)['. Indeed in these conditions € is a finite extension of A, ¢
extends ¢ and (—fy)[A = (—5)[A .

We now assume that S = S; US> and 2 = A’ We define pre-actions of G; and G5 on 2,
respectively ¢; and 2, that are induced by S; and S; and .

G1 and G4 satisfy RZ,, and thus using proposition 4 there exist finite structures 28, and
B, which extend 2, there exist actions ¢; and @2 of G; and G2 which extend ¢; and 2
respectively with the following property :

(=3 )@= (=)A= (—3,)2

Let 8 be the amalgamated sum of ®8; and B, over 2 : the underlying set of B is the
disjoint union of B\, B, \2A and 2, the predicates U; are defined naturally and the relation
—> g is the union of — 5, and —g,. As there are no — g between elements of %5;\2 and
elements of B, \2 the previous equality leads to :

(—p)[A=(—n)[A and —g=(—3)[B: (=1,2).

Moreover in an n-partitioned structure the dimension of a subset only depends on the restriction
of —* to this subset. Therefore if V' is a subset of ®B; (i = 1,2) then dimg,V = dimgV.

Let € be an homogeneous n-partitioned structure built from 9B as in proposition 10 and 11.
Then we can see B as a substructure of ¢ and from proposition 11 we have (—¢)[B =—%.
Let P be the set of predicates used to build €. Let V be a closed subset of %B; (i = 1,2).
The number of predicates @) € P such that Q(2B;) = V only depends on dimgV = dimgy, V.
Therefore € is also an homogeneous n-partitioned structure over B; and B,. We can use
proposition 13. There exist 1; and 15 actions of G; and G5, respectively, on € that extends
the actions ¢; and @s.

From the universal property of free products we can define an action ¥ of G on € that
extends ¥; and 9. We defined the v; such that ¢ extends the pre-action of G on 2 and thus
the pre-action ¢ of G of A.

For any finite n-partitioned structure 20 and any pre-action of G on 2 we have constructed
a finite extension C of A that fulfills the condition (ii) of proposition 4. This shows that G has
property RZ,, and ends the proof of our theorem.
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