3.5.3 Exercices (algorithmes pour l'optimisation avec contraintes)

Exercice 133 (Méthode de pénalisation).

Soit f une fonction continue et strictement convexe de \mathbb{R}^n dans \mathbb{R} , satisfaisant de plus :

$$\lim_{|x| \to +\infty} f(x) = +\infty.$$

Soit K un sous ensemble non vide, convexe (c'est-à-dire tel que $\forall (x,y) \in K^2$, $tx + (1-t)y \in K$, $\forall t \in]0,1[$), et fermé de \mathbb{R}^n . Soit ψ une fonction continue de \mathbb{R}^n dans $[0,+\infty[$ telle que $\psi(x)=0$ si et seulement si $x \in K$. Pour $n \in \mathbb{N}$, on définit la fonction f_k par $f_k(x)=f(x)+n\psi(x)$.

- 1. Montrer qu'il existe au moins un élément $\bar{x}_k \in \mathbb{R}^n$ tel que $f_k(\bar{x}_k) = \inf_{x \in \mathbb{R}^n} f_k(x)$, et qu'il existe un unique élément $\bar{x}_K \in K$ tel que $f(\bar{x}_K) = \inf_{x \in K} f(x)$.
- 2. Montrer que pour tout $n \in \mathbb{N}$,

$$f(\bar{x}_n) \le f_k(\bar{x}_n) \le f(\bar{x}_K).$$

- 3. En déduire qu'il existe une sous-suite $(\bar{x}_{n_k})_{k\in\mathbb{N}}$ et $y\in K$ tels que $\bar{x}_{n_k}\to y$ lorsque $k\to +\infty$.
- 4. Montrer que $y = \bar{x}_K$. En déduire que toute la suite $(\bar{x}_k)_{n \in \mathbb{N}}$ converge vers \bar{x}_K .
- 5. Déduire de ces questions un algorithme (dit "de pénalisation") de résolution du problème de minimisation suivant :

$$\begin{cases}
\text{Trouver } \bar{x}_K \in K; \\
f(\bar{x}_K) \leq f(x), \forall x \in K,
\end{cases}$$

en donnant un exemple de fonction ψ .

Exercice 134 (Convergence de l'algorithme d'Uzawa). Corrigé en page 279

Soient $n \ge 1$ $p \in \mathbb{N}^*$. Soit $f \in C^1(\mathbb{R}^n, \mathbb{R})$ une fonction telle que

$$\exists \alpha > 0, \ (\nabla f(x) - \nabla f(y)) \cdot (x - y) \ge \alpha |x - y|^2, \ \forall x, y \in {\rm I\!R}^n.$$

Soit $C \in M_{p,n}(\mathbb{R})$ (C est donc une matrice, à éléments réels, ayant p lignes et n colonnes) et $d \in \mathbb{R}^p$. On note $D = \{x \in \mathbb{R}^n, Cx \leq d\}$ et $\mathbb{C}^+ = \{u \in \mathbb{R}^p, u \geq 0\}$.

On suppose $D \neq \emptyset$ et on s'intéresse au problème suivant :

$$x \in D, \ f(x) \le f(y), \ \forall y \in D.$$
 (3.68)

- 1. Montrer que $f(y) \ge f(x) + \nabla f(x) \cdot (y-x) + \frac{\alpha}{2}|x-y|^2$ pour tout $x,y \in \mathbb{R}^n$.
- 2. Montrer que f est strictement convexe et que $f(x) \to \infty$ quand $|x| \to \infty$. En déduire qu'il existe une et une seule solution au problème (3.68).

Dans la suite, on note \overline{x} cette solution.

Pour
$$u \in \mathbb{R}^p$$
 et $x \in \mathbb{R}^n$, on pose $L(x, u) = f(x) + u \cdot (Cx - d)$.

3. Soit $u \in \mathbb{R}^p$ (dans cette question, u est fixé). Montrer que l'application $x \to L(x,u)$ est strictement convexe (de \mathbb{R}^n dans \mathbb{R}) et que $L(x,u) \to \infty$ quand $|x| \to \infty$ [Utiliser la question 1]. En déduire qu'il existe une et une seule solution au problème suivant :

$$x \in \mathbb{R}^n$$
, $L(x, u) \le L(y, u)$, $\forall y \in \mathbb{R}^n$. (3.69)

Dans la suite, on note x_u cette solution. Montrer que x_u est aussi l'unique élément de \mathbb{R}^n t.q. $\nabla f(x_u) + C^t u = 0$.

4. On admet que le théorème de Kuhn-Tucker s'applique ici (cf. cours). Il existe donc $\overline{u} \in \mathbb{C}^+$ t.q. $\nabla f(\overline{x}) + C^t \overline{u} = 0$ et $\overline{u} \cdot (C\overline{x} - d) = 0$. Montrer que $(\overline{x}, \overline{u})$ est un point selle de L sur $\mathbb{R}^n \times \mathbb{C}^+$, c'est-à-dire :

$$L(\overline{x}, v) < L(\overline{x}, \overline{u}) < L(y, \overline{u}), \ \forall (y, v) \in \mathbb{R}^n \times \mathcal{C}^+.$$
 (3.70)

Pour $u \in \mathbb{R}^p$, on pose $M(u) = L(x_u, u)$ (de sorte que $M(u) = \inf\{L(x, u), x \in \mathbb{R}^n\}$). On considère alors le problème suivant :

$$u \in \mathcal{C}^+, \ M(u) \ge M(v), \ \forall v \in \mathcal{C}^+.$$
 (3.71)

- 5. Soit $(x,u) \in \mathbb{R}^n \times \mathbb{C}^+$ un point selle de L sur $\mathbb{R}^n \times \mathbb{C}^+$ (c'est-à-dire $L(x,v) \leq L(x,u) \leq L(y,u)$, pour tout $(y,v) \in \mathbb{R}^n \times \mathbb{C}^+$). Montrer que $x = \overline{x} = x_u$ (on rappelle que \overline{x} est l'unique solution de (3.68) et x_u est l'unique solution de (3.69)) et que u est solution de (3.71). [On pourra commencer par montrer, en utilisant la première inégalité, que $x \in D$ et $u \cdot (Cx d) = 0$.]
 - Montrer que $\nabla f(\overline{x}) + C^t u = 0$ et que $u = P_{\mathbb{C}^+}(u + \rho(C\overline{x} d))$, pour tout $\rho > 0$, où $P_{\mathbb{C}^+}$ désigne l'opérateur de projection orthogonale sur \mathbb{C}^+ . [on rappelle que si $v \in \mathbb{R}^p$ et $w \in \mathbb{C}^+$, on a $w = P_{\mathbb{C}^+}v \iff ((v-w)\cdot(w-z) \geq 0, \forall z \in \mathbb{C}^+)$.]
- 6. Déduire des questions 2, 4 et 5 que le problème (3.71) admet au moins une solution.
- 7. On admet que l'application $u\mapsto x_u$ est dérivable. Montrer que l'algorithme du gradient à pas fixe avec projection pour trouver la solution de (3.71) s'écrit (on désigne par $\rho>0$ le pas de l'algorithme) :

Initialisation. $u_0 \in \mathcal{C}^+$.

Itérations. Pour $u_k \in \mathbb{C}^+$ connu $(k \geq 0)$. On calcule $x_k \in \mathbb{R}^n$ t.q. $\nabla f(x_k) + C^t u_k = 0$ (montrer qu'un tel x_k existe et est unique) et on pose $u_{k+1} = P_{\mathbb{C}^+}(u_k + \rho(Cx_k - d))$.

Dans la suite, on s'intéresse à la convergence de la suite $(x_k, u_k)_{k \in \mathbb{N}}$ donnée par cet algorithme.

8. Soit ρ t.q. $0 < \rho < 2\alpha/\|C\|^2$ avec $\|C\| = \sup\{|Cx|, x \in \mathbb{R}^n \text{ t.q. } |x| = 1\}$. Soit $(\overline{x}, \overline{u}) \in \mathbb{R}^n \times \mathbb{C}^+$ un point selle de L sur $\mathbb{R}^n \times \mathbb{C}^+$ (c'est-à-dire vérifiant (3.70)) et $(x_k, u_k)_{k \in \mathbb{N}}$ la suite donnée par l'algorithme de la question précédente. Montrer que

$$|u_{k+1} - \overline{u}|^2 < |u_k - \overline{u}|^2 - \rho(2\alpha - \rho||C||^2)|x_k - \overline{x}|^2, \ \forall k \in \mathbb{R}^n.$$

En déduire que $x_k \to \overline{x}$ quand $k \to \infty$.

Montrer que la suite $(u_k)_{k\in\mathbb{N}}$ est bornée et que, si \tilde{u} est une valeur d'adhérence de la suite $(u_k)_{k\in\mathbb{N}}$, on a $\nabla f(\overline{x}) + C^t \tilde{u} = 0$. En déduire que, si rang(C) = p, on a $u_k \to \overline{u}$ quand $k \to \infty$ et que \overline{u} est *l'unique* élément de \mathcal{C}^+ t.q. $\nabla f(\overline{x}) + C^t \overline{u} = 0$.

277