Année universitaire 2015/2016

Site:	□ Luminy	⊠ St-Charles	\square St-Jérôme	☐ Cht-Gombert	☐ Aix-Montperrin	\square Aubagne-SATIS
Sujet session de : \square 1er semestre \square 2ème semestre \boxtimes Session 2					Durée de l'épreuve : 3H	
Examen de : \square L1 \square L2 \boxtimes L3 \square M1 \square M2 \square LP \square DU					Nom diplôme : Licence de Mathématiques	
Code Apogée du module : ENSMI6U2 Libellé du module : Equations o					différentielles	
Document autorisé : \square OUI \boxtimes NON					Calculatrices autorisées : \square OUI \boxtimes NON	

Examen - Mardi 28 juin 2016

Aucun document n'est autorisé. Les calculatrices ne sont pas autorisées. Les exercices sont indépendants et peuvent être traités dans n'importe quel ordre.

Exercice 1 On considère le système différentiel suivant avec $c \in \mathbb{R}$:

$$\begin{cases} x' = cx + y \\ y' = -x + cy \end{cases}$$

- 1. Soit A, B deux matrices carrées de même taille. Sous quelle condition peut-on écrire $e^{A+B}=e^A+e^B$?
- 2. Écrire le système ci-dessus sous la forme X' = AX, avec $X = (x, y)^t$ et A une matrice 2×2 .
- 3. Pour tout $t \in \mathbb{R}$, calculer l'exponentielle de matrice e^{tA} .
- 4. En déduire la solution du système ci-dessus qui vérifie $x(0) = x_0$ et $y(0) = y_0$.

Exercice 2 On considère le circuit RLC constitué d'une bobine d'inductance L, d'un condensateur de capacité C en série et d'une résistance de résistivité R en série. Le circuit est soumis à un échelon de tension E (en volts). On cherche à calculer la tension V (en volts) aux bornes du condensateur. On note I l'intensité (en ampères) du courant électrique dans le circuit. On rappelle que

$$LC\frac{d^2V}{dt^2} + RC\frac{dV}{dt} + V = E(t)$$
(1)

- 1. Mettre le système sous la forme d'un système différentiel d'ordre 1.
- 2. Montrer que si on se donne V(0) et V'(0), l'équation (1) admet une unique solution définie sur \mathbb{R} .
- 3. On suppose que E=0 et R=0. Déterminer la solution qui vérifie V(0)=1 et V'(0)=0.
- 4. On suppose que L=C=R=1 et que $E(t)=\cos(2t)$. Déterminer la solution qui vérifie V(0)=1 et V'(0)=0.

Exercice 3 On considère le système différentiel suivant, qui modélise l'évolution de deux populations x et y:

$$\begin{cases} x' = x(1-y) \\ y' = y(1-x). \end{cases}$$

- 1. Écrire le système sous la forme X' = F(X), où $X = (x, y)^t$ est un vecteur de taille 2. Montrer que pour toute condition initiale $x(0) = x_0$, $y(0) = y_0$, il existe une unique solution maximale au problème de Cauchy associé.
- 2. Chercher et trouver des solutions (I, X) qui vérifient y(t) = 0 sur tout leur intervalle de définition. En déduire l'unique solution maximale de l'EDO vérifiant $x(0) = x_0$, y(0) = 0.
- 3. Donner également l'unique solution maximale qui vérifie x(0) = 0, $y(0) = y_0$.
- 4. On cherche des solutions qui vérifient x(t) = y(t) sur tout leur intervalle de définition.
 - (a) Écrire l'équation que doit vérifier x(t) dans ce cas.
 - (b) Résoudre cette équation.
 - (c) En déduire l'unique solution maximale du système qui vérifie $x(0) = y(0) = x_0$.
- 5. On considère maintenant une solution maximale vérifiant $x(0) = x_0 > 0$ et $y(0) = y_0 > 0$. On note $]T_{min}, T_{max}[$ son intervalle de définition (avec éventuellement $T_{min} = -\infty$ et $T_{max} = +\infty$).
 - (a) Déduire des questions précédentes que si $x_0 > 0$ et $y_0 > 0$, alors x(t) > 0 et y(t) > 0 pour tout $t \in]T_{min}, T_{max}[.$
 - (b) En déduire que $x'(t) \le x(t)$ et $y'(t) \le y(t)$ sur tout l'intervalle de définition, puis que $T_{max} = +\infty$.
- 6. On s'intéresse maintenant aux points d'équilibre du système.
 - (a) Trouver ces points d'équilibre.
 - (b) Calculer la différentielle de F. En déduire les systèmes linéaires approchés au voisinage des différents points d'équilibres.
 - (c) Étudier la stabilité de l'origine pour ces systèmes linéaires.
 - (d) Que peut-on en déduire sur la stabilité des points d'équilibres du système initial?
- 7. Représentation graphique : faire un diagramme des phases, qui devra indiquer
 - les points d'équilibres,
 - les solutions calculées précédemment,
 - les zones où x est croissante, décroissante (idem pour y).
- 8. Essayer de tracer d'autres solutions sur le diagramme des phases. Avez-vous une idée de l'évolution des deux populations x et y en temps grand? (vous pouvez répondre sans justification, mais n'hésitez pas à justifier si le temps le permet).