
4 — Inégalité des accroissements finis

1 Le résultat principal

Soient E et F deux espaces vectoriels normés sur K, Ω un ouvert de E et f : Ω→ F une application.
Si a, b ∈ E on note ]a, b[= {(1 − t)a + tb, t ∈]0, 1[} et [a, b] = {(1 − t)a + tb, t ∈ [0, 1]}, appelés

”segment ouvert” et ”segment fermé”.

Théorème 1.1. Soit f : Ω→ F différentiable, a, b ∈ Ω tels que [a, b] ⊂ Ω. Alors

‖f(a)− f(b)‖F ≤ ‖a− b‖E sup
x∈]a,b[

‖DF (x)‖L .

Attention l’inegalité précédente est fausse en général si le segment [a, b] n’est pas entièrement contenu
dans Ω.

Corollaire 1.2. Si Ω est un convexe et si il existe un réel M tel que ‖Df(x)‖L ≤M, (∀x ∈ Ω), alors:

‖f(a)− f(b)‖F ≤ M ‖a− b‖E , ∀a, b ∈ Ω.

Le corollaire ci-dessus s’applique typiquement quand Ω est un boule ouverte.

Corollaire 1.3. Si Ω est connexe et si Df(x) = 0 pour tout x ∈ Ω, alors f est une fonction constante
sur Ω.

Pour démontrer le théorème 1.1, on commence par établir la version suivante :

Théorème 1.4. Soit [α, β] ⊂ R et ϕ : [α, β]→ F continue sur [α, β] et dérivable sur ]α, β[. Alors

‖ϕ(α)− ϕ(β)‖F ≤ ‖α− β‖ sup
t∈]α,β[

‖ϕ′(t)‖ .

2 Applications

Théorème 2.1. Soit Ω un ouvert de E, x0 ∈ Ω. On suppose que f : Ω→ F est une application continue,
différentiable sur Ω\{x0} et on suppose aussi que la limite de Df(x) existe dans l’espace L(E,F ) lorsque
x→ x0 et x ∈ Ω \ {x0} et on note L cette limite. Alors f est différentiable en x0 et Df(x0) = L.

Théorème 2.2. Soit Ω un ouvert de (E, ‖.‖), et fn : Ω→ F , n ∈ N une suite d’application différentiables
sur Ω. On suppose que la suite fn converge simplement sur Ω vers f et que la suite Dfn converge
uniformément sur Ω vers g. Alors:

1) f est différentiable sur Ω et Df = g.
2) Si les fonctions fn ∈ C1(Ω) alors f ∈ C1(Ω).

Dans le cas spécial des fonctions de R dans R (ou C), on a l’énoncé analogue mais où l’on peut
simplement utiliser les dérivées, au lieu des différentielles:

Théorème 2.2.-bis Soit Ω un ouvert de R, et fn : Ω → R (ou C) , n ∈ N une suite d’application
dérivables sur Ω. On suppose que la suite fn converge simplement sur Ω vers f et que la suite des
dérivées f ′n converge uniformément sur Ω vers g. Alors: f est dérivable sur Ω et f ′ = g.

Le théorème 2.2 (ou 2.2-bis) s’applique souvent à des séries de fonctions, en prenant fn =
∑n

0 uk. Il
se reformule de la manière suivante, dans le cas des séries de fonctions de R dans C:

Corollaire 2.3. Soit uk : Ω → F , n ∈ N une suite d’application dérivables de Ω (ouvert de R) dans
C. On suppose que la série

∑∞
0 uk converge simplement sur Ω vers f et que la série

∑∞
0 u′k converge

uniformément sur Ω vers g. Alors f est dérivable sur Ω et f ′ = g.
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Exemple 2.1. a/La fonction f(x) =
∑∞
n=0

cos(nx+1)
1+n3 est de classe C1 sur R. (On peut appliquer le

théorème 2.2 ou bien le corollaire 2.3 avec Ω = R.)
b/ Même chose pour la fonction g(x) =

∑∞
n=0

cos(nx2+1)
1+n3 . (Cette fois le théorème s’applique sur

n’importe quel ouvert borné de R.)

——————–

L’espace C1
b (Ω,R). Soit Ω un ouvert de Rn. On note C1

b (Ω,R) l’espace vectoriel des fonctions f : Ω→ R
de classe C1, qui sont bornées sur Ω et dont les dérivés partielles ∂f

∂x1
, · · · , ∂f∂xn

sont aussi bornées sur Ω.
On définit alors la norme suivante sur C1

b (Ω,R) que l’appelle la norme naturelle de C1
b (Ω,R):

‖f‖C1
b

= sup
Ω
|f |+ sup

Ω
| ∂f
∂x1
|+ · · ·+ sup

Ω
| ∂f
∂xn
| = ‖f‖∞ +

∑
j

‖ ∂f
∂xj
‖∞ .

Théorème 2.4. L’espace C1
b (Ω,R), muni de sa norme ‖.‖C1

b
est complet.

La démonstration du théorème 2.4 est une application du théorème 2.3.
——————–

Théorème 2.5. (Dérivation d’une fonction définie par une intégrale) Soit Ω un ouvert de Rn,
[a, b] un intervalle de R et f : Ω × [a, b] → R. On suppose que f est continue sur Ω × [a, b] et que pour
tout j ∈ {1, · · · , n} les fonctions ∂f

∂xj
(., .) existent et sont continues sur Ω× [a, b]. Alors la fonction

ϕ(x) =
∫ b

a

f(x, t)dt, x ∈ Ω

est de classe C1 sur Ω et
∂ϕ

∂xj
(x) =

∫ b

a

∂f

∂xj
(x, t)dt, x ∈ Ω.

Corollaire 2.6. Si I est un intervalle ouvert de R et si f ∈ C1(Ω× I,R), alors pour tout a, b ∈ I (avec
a < b) les hypothèses du théorème précédent sont satisfaites pour la fonction f , sur le domaine Ω× [a, b].

Notez tout de même que dans le théorème on n’a pas besoin que f soit différentiable par rapport à t,
comme c’est le cas dans le corollaire .

Notez aussi que, pour tout x ∈ Ω fixé, ϕ(x) est définie comme l’intégrale sur [a, b] d’une fonction
continue de [a, b] dans R, ce qui a bien un sens (intégrale de Riemann d’une fonction continue).

3 Le cas spécial des fonctions de R dans R
On rappelle le théorème dit de ”l’égalité des accroissements finis” qui ne s’applique qu’aux fonctions de
R dans R.

Théorème 3.1 (Rolle). Soit [a, b] un intervalle de R et f : [a, b] → R une application. On suppose que
f est continue sur [a, b] et dérivable sur ]a, b[, alors il existe c ∈]a, b[ tel que

f(b)− f(a) = f ′(c) (b− a).

Exercice 3.2. Soit f dérivable de R dans R telle que limx→+∞
f(x)
x = 0. Montrez que lim+∞ f ′(x) = 0.

Exercice 3.3. Montrez en donnant un exemple que l’égalité du théorème de Rolle n’est plus vraie en
général pour une fonction C1 de R dans R2. Donnez une interprétation géométrique (ou cinématique)
de ce fait (prendre par exemple la fontion t 7→ eit).
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