4 — INEGALITE DES ACCROISSEMENTS FINIS

1 Le résultat principal

Soient E et F' deux espaces vectoriels normés sur K, 2 un ouvert de F et f : 2 — F une application.
Si a,b € E on note Ja,b[= {(1 — t)a + tb, t €]0,1[} et [a,b] = {(1 — t)a + tb, t € [0,1]}, appelés
”segment ouvert” et ”"segment fermé”.

Théoréme 1.1. Soit f : Q — F différentiable, a,b € Q tels que [a,b] C Q. Alors

1f(a) = fO)llr < [la—Dblg zlpb[llDF(z)Hc-

x

Attention l'inegalité précédente est fausse en général si le segment [a, b] n’est pas entierement contenu
dans .

Corollaire 1.2. Si Q est un conveze et si il existe un réel M tel que |Df(x)|z < M, (Vx € Q), alors:
1f(@) = fO)lp < M [la—=blg, Va,beQ.
Le corollaire ci-dessus s’applique typiquement quand €2 est un boule ouverte.

Corollaire 1.3. Si () est connexe et si Df(x) =0 pour tout x € Q, alors f est une fonction constante
sur €.

Pour démontrer le théoreme 1.1, on commence par établir la version suivante :

Théoréme 1.4. Soit [a, 5] CR et ¢ : [a, 5] — F continue sur [, 3] et dérivable sur |a, B[. Alors

(@) —e@)lr < [la =B Sup " @Il -

e]a’ﬂ[

2 Applications

Théoréme 2.1. Soit Q2 un ouvert de E, xo € Q. On suppose que f : Q — F est une application continue,
différentiable sur Q\ {xo} et on suppose aussi que la limite de Df(x) existe dans l’espace L(E, F') lorsque
x—xo et x € Q\ {xo} et on note L cette limite. Alors f est différentiable en x et Df(xg) = L.

Théoreme 2.2. Soit Q un ouvert de (E, ||.||), et fn : Q@ — F , n € N une suite d’application différentiables
sur . On suppose que la suite f, converge simplement sur ) vers f et que la suite Df,, converge
uniformément sur ) vers g. Alors:

1) f est différentiable sur Q et Df = g.

2) Si les fonctions f, € C1(2) alors f € C1(Q).

Dans le cas spécial des fonctions de R dans R (ou C), on a I’énoncé analogue mais ou l'on peut
simplement utiliser les dérivées, au lieu des différentielles:

Théoréme 2.2.-bis Soit Q un ouvert de R, et f, : @ — R (ou C) , n € N une suite d’application
dérivables sur Q. On suppose que la suite f,, converge simplement sur ) vers f et que la suite des
dérivées f! converge uniformément sur Q vers g. Alors: f est dérivable sur Q et ' = g.

Le théoréme 2.2 (ou 2.2-bis) s’applique souvent & des séries de fonctions, en prenant f, = > ¢ uy. 1l
se reformule de la maniere suivante, dans le cas des séries de fonctions de R dans C:

Corollaire 2.3. Soit uy : @ — F , n € N une suite d’application dérivables de Q0 (ouvert de R) dans
C. On suppose que la série ZSO u converge simplement sur 0 vers f et que la série ZSO uj, converge
uniformément sur Q) vers g. Alors [ est dérivable sur Q et f' = g.



Exemple 2.1. a/La fonction f(z) = .., % est de classe C' sur R. (On peut appliquer le

théoréme 2.2 ou bien le corollaire 2.3 avec ! =R.)
. 2
b/ Méme chose pour la fonction g(z) = > ", %

n’importe quel ouvert borné de R.)

(Cette fois le théoréme s’applique sur

L’espace C}(Q,R). Soit ©Q un ouvert de R”. On note C} (£2, R) l'espace vectoriel des fonctions f :  — R

de classe C!, qui sont bornées sur € et dont les dérivés partielles %, cee aan sont aussi bornées sur 2.

On définit alors la norme suivante sur C} (€2, R) que 'appelle la norme naturelle de C} (92, R):
_ of of | _ of
ey =sypl1+sypl g1+l 1= Wl + 1L e

Théoréme 2.4. L’espace C}(Q,R), muni de sa norme [-lcp est complet.

La démonstration du théoreme 2.4 est une application du théoreme 2.3.

Théoréme 2.5. (Dérivation d’une fonction définie par une intégrale) Soit Q un ouvert de R",
[a,b] un intervalle de R et f : Q xf[a,b} — R. On suppose que f est continue sur Q x [a,b] et que pour

tout j € {1,--- ,n} les fonctions %(., .) existent et sont continues sur X [a,b]. Alors la fonction
J

b
() :/ flz,t)dt, ze€Q

est de classe Ct sur Q et
yp
6SC]'

b
0
(x) = —f(a?,t)dt, x € Q.
a ij
Corollaire 2.6. Si I est un intervalle ouvert de R et si f € C*(2 x I,R), alors pour tout a,b € I (avec
a < b) les hypothéses du théoréme précédent sont satisfaites pour la fonction f, sur le domaine Q X [a, b].

Notez tout de méme que dans le théoréeme on n’a pas besoin que f soit différentiable par rapport a ¢,
comme c’est le cas dans le corollaire .

Notez aussi que, pour tout x € Q fixé, p(z) est définie comme l'intégrale sur [a,b] d’une fonction
continue de [a, b] dans R, ce qui a bien un sens (intégrale de Riemann d’une fonction continue).

3 Le cas spécial des fonctions de R dans R

On rappelle le théoreme dit de "I’égalité des accroissements finis” qui ne s’applique qu’aux fonctions de
R dans R.

Théoreme 3.1 (Rolle). Soit [a,b] un intervalle de R et f : [a,b] — R une application. On suppose que
f est continue sur [a,b] et dérivable sur ]a,b[, alors il existe ¢ €]a, b| tel que

f®) = f(a) = f'(¢) (b - a).
f@)

x

Exercice 3.2. Soit f dérivable de R dans R telle que lim,_. 1 o = 0. Montrez que lim,  f'(x) = 0.

Exercice 3.3. Montrez en donnant un exemple que l'égalité du théoréme de Rolle n’est plus vraie en
général pour une fonction C* de R dans R%2. Donnez une interprétation géométrique (ou cinématique)
de ce fait (prendre par exemple la fontion t — e't).



