TD7. Indépendance. Espérance conditionnelle. Vecteurs Gaussiens

Exercice 1: Convergence en loi et convergence des fonctions de répartition.

Soit $(X_n)_{n\geq 0}$ et X des v.a.r définies sur (Ω, \mathcal{A}, P) . Soit F_n la fonction de répartition de X_n et F cellle de X.

- 1. Montrez qu'il y a équivalence entre
 - (a) Pour tout x point de continuité de F, $\lim_{n\to\infty} F_n(x) = F(x)$.
 - (b) X_n converge en loi vers X quand $n \to \infty$.
- 2. Montrez sur un exemple qu'on peut avoir X_n converge en loi vers X quand $n \to \infty$, et $F_n(x)$ ne tend pas vers F(x) si x n'est pas un point de continuité de F.

Exercice 2: Espérance conditionnelle et projection dans L^2 .

Soit (Ω, \mathcal{A}, P) un espace probabilisé et $X \in L^2(\Omega, \mathcal{A}, P)$. Soit $(A_i, i \in \mathbb{N})$ un système exhaustif d'évènements tel que $\forall i \in \mathbb{N}, P(A_i) > 0$. Soit \mathcal{G} la tribu engendrée par les $(A_i, i \in \mathbb{N})$. Expliciter $E(X|\mathcal{G})$. Même question si $X \in L^1(\Omega, \mathcal{A}, P)$.

Exercice 3: Un cas particulier du précédent.

Soient X et Y deux variables aléatoires telles que X prend ses valeurs dans un ensemble dénombrable $\{x_i, i \in \mathbb{N}\}$, avec $\forall i \in \mathbb{N}$, $P(X = x_i) > 0$. Expliciter E(Y|X).

Exercice 4: Soient X et Y deux variables aléatoires sur (Ω, \mathcal{A}, P) . On suppose que X est à valeurs dans \mathbb{N} , et que Y suit une loi exponentielle de paramètre 1. On suppose de plus que la loi de X conditionnelle à Y est une loi de Poisson de paramètre Y, i.e

$$\forall k \in \mathbb{N}, \ P[X = k|Y] = \exp(-Y)\frac{Y^k}{k!} \text{ P.p.s.}.$$

Déterminer la loi de (X, Y), la loi de X, la loi de Y conditionnelle à X = k.

Exercice 5: Soit X une loi exponentielle de paramètre $\alpha > 0$. Soit $(X_n)_{n \ge 1}$ un échantillon de X. Soit d'autre part N une variable aléatoire indépendante de la suite (X_n) et suivant une loi géométrique de paramètre $p \in]0; 1[: \forall n \in \mathbb{N}^*, P(N=n) = p(1-p)^{n-1}$. On pose $S = X_1 + \ldots + X_N$. Calculer E(S|N) et E(N|S).

Exercice 6: Soit (X,Y) de loi uniforme sur le triangle $\Delta \stackrel{\triangle}{=} \{(x,y) \in \mathbb{R}^2, 0 < x < y < 1\}$. Calculer E(Y|X), E(X|Y), et $E(X^2|Y)$.

Exercice 7: Soit X une variable aléatoire de densité $\frac{2}{(\text{Log}2)^2} \frac{\text{Log}(1+x)}{1+x} \, \mathbb{1}_{[0,1]}(x)$ par rapport à la mesure de Lebesgue. Soit Y une variable aléatoire telle que la loi conditionnelle de Y sachant X est de densité $\frac{1}{\text{Log}(1+X)} \frac{1}{1+y} \, \mathbb{1}_{[0,X]}(y)$, i.e. $\forall f$ mesurable bornée,

$$E[f(Y)|X] = \int_0^X \frac{1}{\log(1+X)} \frac{f(y)}{1+y} \, dy.$$

X et Y sont-elles indépendantes? Calculer la loi de Y, la loi conditionnelle de X sachant Y, et E(Y|X).

Exercice 8: Soient $\mathcal{G}, \mathcal{F}, \mathcal{H}$ des tribus sur Ω , telles $\mathcal{G} \subset \mathcal{H} \subset \mathcal{F}$. Soit $X \in L^2(\Omega, \mathcal{F}, P)$. Montrer l'égalité $E[(X - E(X|\mathcal{H}))^2] + E[(E(X|\mathcal{H}) - E(X|\mathcal{G}))^2] = E[(X - E(X|\mathcal{G}))^2]$.

Exercice 9: Soit (Ω, \mathcal{A}, P) un espace probabilisé, et X, Y deux éléments de $L^2(\Omega, \mathcal{A}, P)$, tels que E(X|Y) = Y, et E(Y|X) = X. Montrer que X = Y p.s.

Exercice 10: Soit X une variable aléatoire de densité f sur \mathbb{R} . On suppose que f est paire.

- 1. Calculez E(X|X). Le résultat signifie-t-il que X et X sont indépendantes?
- 2. On définit pour tout x in \mathbb{R} , $\operatorname{sgn}(x) = \mathbb{I}_{]0,+\infty[}(x) \mathbb{I}_{]-\infty,0[}(x)$. Montrez que $\operatorname{sgn}(X)$ et |X| sont indépendantes.

Exercice 11: Soit $X = (X_1, X_2)$ un vecteur gaussien de moyenne (0,0) et de matrice de covariance $\begin{pmatrix} 1 & \sqrt{3}/2 \\ \sqrt{3}/2 & 1 \end{pmatrix}$.

- 1. Les variables X_1 et X_2 sont-elles indépendantes?
- 2. Soit $\xi = E(X_1|X_2)$. Trouvez la fonction caractéristique de ξ .

Exercice 12: Soient Y_1 , Y_2 des variables aléatoires qui suivent la loi normale centrée réduite. Soit η une variable aléatoire telle que $P(\eta = 0) = P(\eta = 1) = 1/2$. On suppose que η , Y_1 , Y_2 sont indépendantes. Trouvez $E(\eta Y_1 + \eta Y_2 | (Y_1 + Y_2))$.

Exercice 13: Soit $(\epsilon_i, i \geq 1)$ une suite de v.a.i.i.d de loi $\mathcal{N}(0, 1)$. Pour $n \geq 1$, on pose

$$X_0 = 0 , \ X_n = \theta X_{n-1} + \epsilon_n ,$$

où $\theta \in \mathbb{R}$.

- 1. On suppose que $|\theta| < 1$. Montrez que X_n converge en loi vers une variable X dont on précisera la loi.
- 2. On suppose que $|\theta| > 1$. Montrez que $\theta^{-n}X_n$ converge p.s. vers une variable X. Donnez une expression explicite pour X et précisez sa loi.
- 3. On suppose $\theta = 1$. Calculez $Z_n = E(X_n | (X_{n-1}, X_{n+1}))$. Montrez que Z_n / \sqrt{n} converge en loi et trouvez la loi limite.