Thomas Ourmières-Bonafos

Maître de conférences

Institut de Mathématiques de Marseille

Member of the team Analyse Appliquée

I2M, Centre de Mathématiques et Informatique
Technopôle de Château Gombert
39, rue F. Joliot Curie
13453 Marseille Cedex 13

E-mail :
Phone : (+33) 04-13-55-14-69
Office : R226
Publication list : Click here !
Curriculum vitæ: Click here !
Photo credits: Yohann Le Floch

Research                  Enseignements

Research interests


  1. A variational formulation for Dirac operators in bounded domains. Applications to spectral geometric inequalities, with Pedro R.S. Antunes, Rafael D. Benguria, Vladimir Lotoreichik,
    Preprint, 2020 - ArXiv
  2. Two-dimensional Dirac operators with singular interactions supported on closed curves, with Jussi Behrndt, Markus Holzmann, Konstantin Pankrashkin,
    To appear in Journal of Functional Analysis. ArXiv
  3. A sharp upper bound on the spectral gap for graphene quantum dots, with Vladimir Lotoreichik,
    Mathematical Physics, Analysis and Geometry, 22:13, 2019. ArXiv - journal
  4. Dirac operators on hypersurfaces as large mass limits, with Andrei Moroianu and Konstantin Pankrashkin,
    To appear in Communications in Mathematical Physics. ArXiv- journal
  5. Effective operator for Robin eigenvalues in domains with corners, with Magda Khalile and Konstantin Pankrashkin,
    To appear in Annales de l'Institut Fourier. ArXiv
  6. Dirichlet spectrum of the Fichera layer, with Monique Dauge and Yvon Lafranche,
    Integral Equations and Operator Theory, 90:60, 2018. ArXiv - journal
  7. Dirac operators with Lorentz scalar interactions, with Markus Holzmann and Konstantin Pankrashkin,
    Reviews in Mathematical Physics, vol. 30, No. 05, 1850013, 2018. - ArXiv - journal
  8. Self-adjointness of Dirac operators with infinite mass boundary conditions in sectors, with Loïc Le Treust,
    Annales Henri Poincaré, 19(5), 1465-1487, 2018 - HAL - journal
  9. Spectral asymptotics for delta-interactions on sharp cones, with Konstantin Pankrashkin and Fabio Pizzichillo,
    Journal of Mathematical Analysis and Applications, 458, pp. 566 - 589, 2018 - ArXiv - journal
  10. A strategy for self-adjointness of Dirac operators: Applications to the MIT bag model and delta-shell interactions, with Luis Vega,
    Publicacions Matemàtiques, vol. 62(2), 2018. - ArXiv - journal
  11. Discrete spectrum of interactions concentrated near conical surfaces, with Konstantin Pankrashkin,
    Applicable Analysis, vol. 97(9), 2018 - ArXiv - journal
  12. Spectral transitions for Aharonov-Bohm Laplacians on conical layers, with David Krejčiřík and Vladimir Lotoreichik,
    Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2019. ArXiv - journal
  13. On the bound states of Schrödinger operators with delta-interactions on conical surfaces, with Vladimir Lotoreichik,
    Communications in Partial Differential Equations, 41(6) :999-1028, 2016 - ArXiv - journal
  14. Spectral asymptotics of the Dirichlet Laplacian in a conical layer, with Monique Dauge and Nicolas Raymond,
    Communications on Pure and Applied Analysis, 14(3) :1239-1258, 2015 - HAL - journal
  15. Dirichlet eigenvalues of asymptotically flat triangles,
    Asymptotic Analysis, 92(3-4) :279-312, 2015 - HAL - journal
  16. Dirichlet eigenvalues of cones in the small aperture limit,
    Journal of Spectral Theory, 4(3) :485-513, 2014 - HAL - journal

Other publications

  1. Dirac operators and shell interactions: a survey, with Fabio Pizzichillo,
    To appear in Mathematical Challenges of Zero-Range Physics (Springer INdAM Series). ArXiv

PhD thesis

Talks (past and future)

, technopôle de Château Gombert, 39 rue F. Joliot Curie 13453 Marseille Cedex 13, France