Statistical clustering of temporal networks through a dynamic stochastic block model

Catherine Matias and Vincent Miele

CNRS - Université Pierre et Marie Curie, Paris catherine.matias@math.cnrs.fr http://cmatias.perso.math.cnrs.fr/

Rencontres de Statistique Avignon/Marseille Juin 2016

MP

Outline

Introduction and model

Inference

Simulations

Real data set

Clustering dynamic networks I

$$
t=t_{1}
$$

Clustering dynamic networks I

$$
t=t_{1}
$$

Clustering dynamic networks I

$$
t=t_{1}
$$

$$
t=t_{2}
$$

Clustering dynamic networks I

$$
t=t_{1}
$$

$$
t=t_{2}
$$

Clustering dynamic networks I

$t=t_{1}$

$$
t=t_{2}
$$

Issues

- Deal with the label switching across time.
- See the evolution of individual nodes: who is changing group between 2 time points?

Our goal: smooth recovery of the clusters across time.

Clustering dynamic networks II

Discrete time networks

- Observe Y^{1}, \ldots, Y^{T} adjacency matrices (graphs snapshots),
- $\forall t, Y^{t}=\left(Y_{i j}^{t}\right)_{1 \leq i, j \leq N_{t}}$ may contain either binary, discrete or continuous values (contact information)
- Individuals may be present/absent at each time step t.

Nodes clustering

- Clusters model heterogeneity in nodes interactions,
- They summarize information through a finite number of behaviors.
- Many different approaches: spectral algorithms, community detection (e.g. based on modularity criterion), model-based clustering (e.g. latent space models, SBM)

Here, we choose to focus on the Stochastic block model (SBM) for undirected graphs, with no self-loops.

Static part modeling: SBM - binary case

$$
\begin{aligned}
& n=10, Q=3 \\
& Z_{5}^{t}=\bullet \\
& Y_{12}^{t}=1, Y_{15}^{t}=0
\end{aligned}
$$

Binary case; parameter $\boldsymbol{\beta}^{t}=\left(\beta_{q l}^{t}\right)_{1 \leq q \leq l \leq Q}$

- Q groups (=colors $\bullet \bullet \bullet$).
- $\left\{Z_{i}^{t}\right\}_{1 \leq i \leq n}$ i.i.d. in $\{1, \ldots, Q\}$ not observed.
- Observations: presence/absence of an edge at time t, given through adjacency matrix $\left\{Y_{i j}^{t}\right\}_{1 \leq i<j \leq n}$,
- Conditional on $\left\{Z_{i}^{t}\right\}$'s, the r.v. $Y_{i j}^{t}$ are independent $\mathcal{B}\left(\beta_{Z_{i}^{t} Z_{j}^{t}}^{t}\right)$.

Static part modeling: SBM - weighted case

$$
\begin{aligned}
& n=10, Q=3, \\
& Z_{5}^{t}=\bullet \\
& Y_{12}^{t} \in \mathbb{R}^{s}, Y_{15}^{t}=0
\end{aligned}
$$

Weighted case; parameter $\left(\boldsymbol{\beta}^{t}, \boldsymbol{\gamma}^{t}\right)=\left(\beta_{q l}^{t}, \gamma_{q l}^{t}\right)_{1 \leq q \leq l \leq Q}$

- Latent variables: idem
- Observations: weights $Y_{i j}^{t}$, where $Y_{i j}^{t}=0$ or $Y_{i j}^{t} \in \mathbb{R}^{s} \backslash\{0\}$,
- Conditional on the $\left\{Z_{i}^{t}\right\}$'s, the random variables $Y_{i j}^{t}$ are independent with density

$$
\phi\left(\cdot ; \beta_{Z_{i}^{t} Z_{j}^{t}}^{t}, \gamma_{Z_{i}^{t} Z_{j}^{t}}^{t}\right):=\left(1-\beta_{Z_{i}^{t} Z_{j}^{t}}^{t}\right) \delta_{0}(\cdot)+\beta_{Z_{i}^{t} Z_{j}^{t}}^{t} f\left(\cdot, \gamma_{Z_{i}^{t} Z_{j}^{t}}^{t}\right),
$$

(Assumption: f has continuous cdf at zero).

Dynamics: Markov chain on latent groups

Latent Markov chain

- Across individuals: $\left(Z_{i}\right)_{1 \leq i \leq N}$ iid,
- Across time: Each $Z_{i}=\left(Z_{i}^{t}\right)_{1 \leq t \leq T}$ is a stationary Markov chain on $\{1, \ldots, Q\}$ with transition $\boldsymbol{\pi}=\left(\pi_{q q^{\prime}}\right)_{1 \leq q, q^{\prime} \leq Q}$ and initial stationary distribution $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{Q}\right)$.

Goal
Infer the parameter $\theta=(\boldsymbol{\pi}, \boldsymbol{\beta}, \boldsymbol{\gamma})$, recover the clusters $\left\{Z_{i}^{t}\right\}_{i, t}$ and follow their evolution through time.

Other very close works

[Yang et al., 2011] and [Xu and Hero, 2014] propose very close models (in the binary setup).
Main differences with our work

- We allow for both groups and parameters to vary with time and discuss valid assumptions for parameters' identifiability;
- We model binary as well as weighted graphs;
- We propose a model selection criterion for the number of clusters;
- We discuss a proper clustering index for measuring the classification performances taking into account label switching across time.

Identifiability: the problem

If both $\left(\beta^{t}, \gamma^{t}\right)_{t}$ and $\left(Z^{t}\right)_{t}$ can change, the parameters are not identifiable.

Toy example with 3 groups \{hub, community, periphery $\}$

First scenario:

- $\forall 2 \leq i \leq 6,21=$
$Z_{i}^{2}=$
- $\forall 7 \leq i \leq 12, Z_{i}^{1}=$
$Z_{i}^{2}=$
- $\left(\beta^{t_{1}}, \gamma^{t_{1}}\right)=\left(\beta^{t_{2}}, \gamma^{t_{2}}\right)$

Identifiability: the problem

If both $\left(\beta^{t}, \gamma^{t}\right)_{t}$ and $\left(Z^{t}\right)_{t}$ can change, the parameters are not identifiable.

Toy example with 3 groups \{hub, community, periphery $\}$

$$
t=t_{1}
$$

$$
t=t_{2}
$$

First scenario:

- $\forall 2 \leq i \leq 6, Z_{i}^{1}=$
$-\forall 7 \leq i \leq 12,7_{i}^{1}=$

$>\left(\beta^{t_{1}}, \gamma^{t_{1}}\right)=\left(\beta^{t_{2}}, \gamma^{t_{2}}\right)$

Identifiability: the problem

If both $\left(\beta^{t}, \gamma^{t}\right)_{t}$ and $\left(Z^{t}\right)_{t}$ can change, the parameters are not identifiable.

Toy example with 3 groups \{hub, community, periphery\}

$$
t=t_{1}
$$

$$
t=t_{2}
$$

First scenario:

- $\forall 2 \leq i \leq 6, Z_{i}^{1}=$ community, $Z_{i}^{2}=$ periphery
- $\forall 7 \leq i \leq 12, Z_{i}^{1}=$ periphery, $Z_{i}^{2}=$ community
- $\left(\beta^{t_{1}}, \gamma^{t_{1}}\right)=\left(\beta^{t_{2}}, \gamma^{t_{2}}\right)$

Identifiability: the problem

If both $\left(\beta^{t}, \gamma^{t}\right)_{t}$ and $\left(Z^{t}\right)_{t}$ can change, the parameters are not identifiable.

Toy example with 3 groups $\{$ hub, community, periphery $\}$

$$
t=t_{1}
$$

$$
t=t_{2}
$$

Second scenario:

- $\forall i, Z_{i}^{1}=Z_{i}^{2}$
 community ,
 periphery.

Identifiability

If both $\left(\beta^{t}, \gamma^{t}\right)_{t}$ and $\left(Z^{t}\right)_{t}$ can change, the parameters are not identifiable.

```
Main Assumption: Fixed diagonal connectivity parameters
\forallq\in\mathcal{Q},\forallt,\mp@subsup{t}{}{\prime},\mathrm{ we assume that}
{llachary case: 
Results
* Undor the above assumption (plus other classical
    assumptions), we prove identifiability (up to a global label
    switching) of the model's parameters.
* We underly that in the affiliation case no current method
    can avoid label switching between time steps! The
    parameters are not identifiable.
```


Identifiability

If both $\left(\beta^{t}, \gamma^{t}\right)_{t}$ and $\left(Z^{t}\right)_{t}$ can change, the parameters are not identifiable.

Main Assumption: Fixed diagonal connectivity parameters $\forall q \in \mathcal{Q}, \forall t, t^{\prime}$, we assume that

$$
\begin{cases}\text { Binary case: } & \beta_{q q}^{t}=\beta_{q q}^{t^{\prime}}, \\ \text { Weighted case: } & \gamma_{q q}^{t}=\gamma_{q q}^{t} .\end{cases}
$$

Results

- Under the above assumption (plus other classical assumptions), we prove identifiability (up to a global label switching) of the model's parameters.
- We underly that in the affiliation case, no current method can avoid label switching between time steps! The parameters are not identifiable.

Outline

Introduction and model

Inference

Simulations

Real data set

Variational Expectation Maximization (VEM) I

Complete data \log-likelihood (here $\left.Z_{i}^{t}=\left(Z_{i 1}^{t}, \ldots, Z_{i Q}^{t}\right)\right)$.
$\log \mathbb{P}_{\theta}(\mathbf{Y}, \mathbf{Z})=\sum_{i=1}^{N} \sum_{q=1}^{Q} Z_{i q}^{1} \log \alpha_{q}+\sum_{t=2}^{T} \sum_{i=1}^{N} \sum_{1 \leq q, q^{\prime} \leq Q} Z_{i q}^{t-1} Z_{i q^{\prime}}^{t} \log \pi_{q q^{\prime}}$

$$
+\sum_{t=1}^{T} \sum_{1 \leq i<j \leq N} \sum_{1 \leq q, l \leq Q} Z_{i q}^{t} Z_{j l}^{t} \log \phi\left(Y_{i j}^{t} ; \beta_{q l}^{t}, \gamma_{q l}^{t}\right) .
$$

- Conditional expectation of latent \mathbf{Z}, given observations \mathbf{Y} may not be exactly computed,
- Use instead a variational approximation

$$
\mathbb{Q}_{\tau}(\mathbf{Z})=\prod_{i=1}^{N} \mathbb{Q}_{\tau}\left(Z_{i}\right)=\prod_{i=1}^{N} \mathbb{Q}_{\tau}\left(Z_{i}^{1}\right) \prod_{t=2}^{T} \mathbb{Q}_{\tau}\left(Z_{i}^{t} \mid Z_{i}^{t-1}\right)
$$

Variational Expectation Maximization (VEM) II

Let

$$
J(\theta, \tau):=\mathbb{E}_{\mathbb{Q}_{\tau}}\left(\log \mathbb{P}_{\theta}(\mathbf{Y}, \mathbf{Z})\right)+\mathcal{H}\left(\mathbb{Q}_{\tau}\right)
$$

and note that

$$
\log \mathbb{P}_{\theta}(\mathbf{Y})=J(\theta, \tau)+\mathcal{K} \mathcal{L}\left(\mathbb{Q}_{\tau} \| \mathbb{P}_{\theta}(\mathbf{Z} \mid \mathbf{Y})\right)
$$

VEM principle
Iterate the following steps

- VE-step: Compute $\tau^{(k+1)}=\operatorname{Argmax}_{\tau} J\left(\theta^{(k)}, \tau\right)$,
- M-step: Compute $\theta^{(k+1)}=\operatorname{Argmax}_{\theta} J\left(\theta, \tau^{(k+1)}\right)$.

More details can be found in the paper ...

Model selection

ICL criterion

$$
I C L(Q)=\log \mathbb{P}_{\hat{\theta}_{Q}}(\mathbf{Y}, \hat{\mathbf{Z}})-\frac{1}{2} Q(Q-1) \log (N T)-\operatorname{pen}(N, T, \boldsymbol{\beta}, \boldsymbol{\gamma}),
$$

- the second penalty pen $(N, T, \boldsymbol{\beta}, \boldsymbol{\gamma})$ depends on the distribution ϕ; we give expressions for classical cases (Bernoulli, Poisson, Gaussian, ...)
- Groups parameters $\boldsymbol{\pi}$ and connectivity parameters $(\boldsymbol{\beta}, \boldsymbol{\gamma})$ are not penalized in the same way (count the number of observations corresponding to these parameters).

Outline

Introduction and model

Inference

Simulations

Real data set

Clustering performances I

Indexes

- Global ARI: Adjusted Rand Index on the whole classification $\left\{Z_{i}^{t}\right\}_{1 \leq i \leq N, 1 \leq t \leq T}$,
- Averaged ARI: mean value of $A R I_{t}$, computed for each t on the classification $\left\{Z_{i}^{t}\right\}_{1 \leq i \leq N}$. Easier ! Label switching between time steps !

Clustering performances II

Simulations setup

- Binary graphs, $N=100$ nodes and $T \in\{5 ; 10\}, 100$ datasets,
- $Q=2$ latent groups and $\boldsymbol{\pi} \in\left\{\boldsymbol{\pi}_{\text {low }}, \boldsymbol{\pi}_{\text {med }}, \boldsymbol{\pi}_{\text {high }}\right\}$

$$
\boldsymbol{\pi}_{\text {low }}=\left(\begin{array}{cc}
0.6 & 0.4 \\
0.4 & 0.6
\end{array}\right) ; \boldsymbol{\pi}_{\text {med }}=\left(\begin{array}{cc}
0.75 & 0.25 \\
0.25 & 0.75
\end{array}\right) ; \boldsymbol{\pi}_{\text {high }}=\left(\begin{array}{cc}
0.9 & 0.1 \\
0.1 & 0.9
\end{array}\right) .
$$

- Connectivity parameter $\boldsymbol{\beta}$

Difficulty	β_{11}	β_{12}	β_{22}
low-	0.2	0.1	0.15
low+	0.25	0.1	0.2
medium-	0.3	0.1	0.2
medium+	0.4	0.1	0.2
med w/ affiliation	0.3	0.1	0.3

Clustering performances III

low group-stability

medium group-stability

high group-stability

Clustering performances IV

Yang et al.'s method with our initialization strategy

Model selection

Simulation setup

- Binary model, $Q=4$ groups, $\pi_{q q}=0.91$ and $\pi_{q l}=0.03$ for $q \neq l, 100$ datasets
- We draw i.i.d. random variables $\left\{\epsilon_{q l}\right\}_{1 \leq q \leq l \leq 4} \in[-1,1]$ and then choose $\beta_{q q}=0.4+\epsilon_{q q} 0.1$ and $\beta_{q l}=0.1+\epsilon_{q l} 0.1$ for $q \neq l$.

Outline

Introduction and model

Inference

Simulations

Real data set

Encounters between high school students I

Fournet and Barrat, 2014, http://www.sociopatterns.org/

- Face-to-face encounters of high school students (wearable sensors), $T=4$ days, $N=27$ students,
- Discrete weight with 3 bins. Selection of $Q=4$ groups.

Reconstructed dynamics

Encounters between high school students II

Estimated connectivity parameters

Conclusions

DynamicSBM

- Reconstruction of group's evolution through time
- Control of the label switching issue between different time steps
- Models binary or weighted datasets
- Model selection performed through ICL.

R package available at http://lbbe.univ-lyon1.fr/dynsbm and soon on the CRAN.
Preprint available at http://arxiv.org/abs/1506.07464
Thanks for your attention!

Extra short biblio

五
Xu, K. and A. Hero.
Dynamic stochastic blockmodels for time-evolving social networks.
Selected Topics in Signal Processing, IEEE Journal of 8(4), 552-562, 2014.

围 Yang, T., Y. Chi, S. Zhu, Y. Gong, and R. Jin. Detecting communities and their evolutions in dynamic social networks - a Bayesian approach.
Machine Learning 82(2), 157-189, 2011.

