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Inférence statistique des valeurs extrêmes spatiales

Why do we need statistics of spatial extremes ?

I extreme events

I rare by definition, but often high impact

I physical dynamics and stochastic behavior often different under stress

I spatial processes : take into account spatial dependence

; use models with a sound foundation in extreme value theory,
avoid plain Gaussian models appropriate only for central tendencies

I emphasis is on the tail of the distribution ; extrapolation

I objective : model, quantify, predict extreme risks
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Goals of this talk

1. present asymptotic theory for spatial extremes and the resulting asymptotic
models, well suited to capture asymptotic dependence

2. show that many real data have a tendency towards asymptotic independence

3. review some models suitable for asymptotically independent data
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Introduction to spatial extreme value theory

Introduction to spatial extreme value theory
Max-stable limit processes for maxima
Generalized Pareto limit processes for threshold exceedances

Modeling precipitation extremes around Zurich

Interlude : Are asymptotically dependent models the right choice ?

Examples of models for asymptotic independence

Conclusion
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Introduction to spatial extreme value theory

What observations are ”extreme” ? – Maxima
We obtain a sample of maxima by considering block maxima over blocks of size n.
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Introduction to spatial extreme value theory

What observations are ”extreme” ? – Threshold exceedances
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Introduction to spatial extreme value theory

Max-stable limit processes for maxima

Max-stable limit processes for pointwise maxima

Let be given i.i.d. copies Xi of a stochastic process X = {X (s)}.

Maximum domain of attraction
If sequences σn(s) > 0, µn(s) exist such that{

max
i=1,...,n

σn(s)−1 [Xi (s)− µn(s)]

}
fdd→ {Z(s)}, n→∞ (1)

with non-degenerate limit process Z = {Z(s)},
then Z is a max-stable process.
We say that X is in the max-domain of attraction of Z .

Max-stability of Z means that (1) holds exactly for Z .
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Introduction to spatial extreme value theory

Max-stable limit processes for maxima

Univariate limit distributions

The univariate limit distributions are extreme-value distributions Z(s) ∼ EVξ(s).

We can choose σn(s), µn(s) such that

EVξ(s)(z) = exp
(
−Tξ(s)(z)

)
, EVξ(s)(z) = exp

(
−Tξ(s)(z)

)
, Tξ(s)(z) = (1 + ξ(s)z)

−1/ξ(s)
+

with shape parameter ξ(s) ∈ R that determines the tail decay rate
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Introduction to spatial extreme value theory

Max-stable limit processes for maxima

Tail dependence summaries

Multivariate extremal coefficients
Th extremal coefficient θ ∈ [1,D] of max-stable random vector Z = (Z1, . . . ,ZD) with

Zj
d
= Z1 is defined through

P(Z1 ≤ x , . . . ,ZD ≤ x) = P(Z1 ≤ x)θ. (2)

Interpretation : D/θ is average ”cluster size” of extreme events.

For stochastic processes, we can consider the extremal coefficient function
θ(s1, s2) ∈ [1, 2] of bivariate extremal coefficients.

The tail correlation function λ(s1, s2) = 2− θ(s1, s2) ∈ [0, 1] is a particular type of
correlation function.

9/32



Inférence statistique des valeurs extrêmes spatiales

Introduction to spatial extreme value theory

Max-stable limit processes for maxima

Asymptotic dependence and asymptotic independence

Asymptotic independence of X (s1) and X (s2) corresponds to independence of Z(s1)
and Z(s2), i.e., to θ(s1, s2) = 2 and λ(s1, s2) = 0.

Otherwise (λ > 0), we observe asymptotic dependence.

More generally (even if a max-stable limit does not exist),

for standardized variables
X? = (X?1 ,X

?
2 ) = (1/(1− FX (s1)(X (s1))), 1/(1− FX (s2)(X (s2)))),

we can define the tail correlation coefficient λ(s1, s2) as

λ(s1, s2) = lim
x→∞

P(X?1 > x | X?2 > x).

In spatial data, asymptotic independence means that the most extreme events become
more and more isolated in space.

Note : Gaussian processes are asymptotically independent [Sibuya, 1960].
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Introduction to spatial extreme value theory

Max-stable limit processes for maxima

The spectral construction of max-stable processes

[de Haan, 1984]

A max-stable process Z? can be represented through a spectral construction

Z?(s) = max
i=1,2,...

εi (s)/Ui , Ui ∼ PPP(du) on [0,∞),

I here : unit Fréchet marginal distribution, pr(Z?(s) ≤ z) = exp(−1/z), z > 0

I profile processes εi (s), i = 1, 2, . . . are i.i.d. with E εi (s)+ = 1

The spectral construction can be used to construct spatial max-stable models :

I centered Gaussian profile process : ε1(s) = W (s)df+ , df > 0
; extremal-t process Z?(s) [Opitz, 2013, Thibaud and Opitz, 2016]

df = 1 : Schlather process [Schlather, 2002]

I log-Gaussian profile process :
ε1(s) = exp(W (s)− σ2(s)/2) where σ2(s) = Var(W (s))
; Brown–Resnick type process Z∗(s) [Kabluchko et al., 2009]
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Introduction to spatial extreme value theory

Max-stable limit processes for maxima

Example 1 : Schlather process
[Schlather, 2002]

I extremal-t process with df = 1
I simulation on [0, 10]× [0, 10]
I exponential correlation function with range 3 in Gaussian profile process W (s)df+
I plot of log(Z?(s))

−2

−1

0

1

2

0 2 4 6 8 10

0

2

4

6

8

10

−2

−1

0

1

2

3

4

5

0 2 4 6 8 10

0

2

4

6

8

10

12/32
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Introduction to spatial extreme value theory

Max-stable limit processes for maxima

Example 2 : Extremal-t
[Opitz, 2013]

I extremal-t process with df = 4
I simulation on [0, 10]× [0, 10]
I exponential correlation function with range 3 in profile process W (s)df+
I plot of log(Z?(s))
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Introduction to spatial extreme value theory

Max-stable limit processes for maxima

Example 3 : Brown–Resnick process
[Brown and Resnick, 1977, Kabluchko et al., 2009]

I simulation on [0, 10]× [0, 10]
I profile process exp(W (s)− σ2(s)/2) with fractional Brownian motion W (s)

(Hurst index 1/4)
I plot of log(Z?(s))
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Inférence statistique des valeurs extrêmes spatiales

Introduction to spatial extreme value theory

Max-stable limit processes for maxima

Statistical inference
Idea : use max-stable limit distributions for observed maxima

I cdf of max-stable vector is

G(z) = exp
(
−V (T−1

ξ1
(z1), . . . ,T−1

ξD
(zD)

)
,

where V (z) with V (tz) = t−1V (z) is the exponent function

I full likelihood inference impossible in high dimension since combinatorial
explosion of terms when deriving cdf

I common likelihood-based inference through pairwise likelihood approach

I in spatial modeling, we need :
I a marginal model for ξ(s), σ(s), µ(s)
I a dependence model (Schlather, Brown–Resnick, extremal-t, ...)

I simulation of max-stable processes is based on the spectral construction,
conditional simulation is tricky but possible

I extrapolation :

I if {Z(s)} =
{
µ(s) + σ(s)T−1

ξ(s)
(Z?(s))

}
models annual maxima,

then
{
µ(s) + σ(s)T−1

ξ(s)
(nZ?(s))

}
models n-year maxima

I often Monte–Carlo based calculation of complicated functionals f (Z)
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Introduction to spatial extreme value theory

Generalized Pareto limit processes for threshold exceedances

From maxima to threshold exceedances

I difficulties with maxima-based modeling

I pointwise maximum process Mn can be composed of components of different events
; not straightforward to derive results for individual extreme events

I cannot capture non-i.i.d. behavior within blocks

I equivalent limit relations exist for threshold exceedances

I in practice, can fix the threshold value to balance bias and variance in estimation

I however, there is no natural ordering relation for multivariate and spatial data,
making the definition of “extreme events” ambiguous
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Introduction to spatial extreme value theory

Generalized Pareto limit processes for threshold exceedances

Genereralized Pareto limits for threshold exceedances

I the univariate max-domain of attraction condition holds iff
threshold exceedances converge to a generalized Pareto distribution :

σu(s)−1(X (s)− µu(s)) | (X (s) > u)→ Y (s) ∼ GPξ(s), u ↑ F−1
X (s)

(1−)

where GPξ(s)(y) = 1− Tξ(s)(y)/Tξ(s)(u) with Tξ(s)(y) = (1 + ξ(s)y)
−1/ξ(s)
+

I for characterizing dependence and for estimating models,
it is useful to treat separately marginal and dependence behavior

I standardize margins : X?(s) = 1/(1− FX (s)(X (s)))

I X?(s) is standard Pareto distributed if X (s) has continuous distribution

I define extreme events as exceedances of a homogeneous risk functional `

I X? is an extreme event if `(X?) > u with treshold u > 0

I need homogeneity (`(tx) = t`(x)) and positivity (`(x) > 0 if x > 0) for convergence

I for instance, `(x) given as x(s), maxs∈K x(s), mins∈K x(s) or means∈K x(si )
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Introduction to spatial extreme value theory

Generalized Pareto limit processes for threshold exceedances

Limit processes for `-exceedances

[Ferreira and De Haan, 2014, Dombry and Ribatet, 2015, Thibaud and Opitz, 2016]
If X is a the max-domain of attraction, we get

u−1X? | (`(X?) > u)→ Y ? ∼ GP`, u →∞, (3)

with an `-Pareto process Y ?.

I if (3) holds for `(x) = maxs x(s), the max-domain of attraction condition is
satisfied.

I if `(x) = max(x(s1), . . . , x(sD)), then pr(Y ?(s) ≤ y) = 1− V (y)/V (u) for
y > u

I we can retransform to the original scale of data,

Y (s) = µ(s) + σ(s)(Y ?(s)ξ − 1)/ξ,

yielding a generalized `-Pareto process
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Introduction to spatial extreme value theory

Generalized Pareto limit processes for threshold exceedances

Censored likelihood inference for threshold exceedances

Assume data xi = xi (sj ), i = 1, . . . , n have been observed on sites s1, . . . , sD .

Here we consider `(x) = max(x?(s1), . . . , x?(sD)).

I using the `-Pareto model amounts to pr(X∗ 6≤ x?) = V (x?) for x? > (u, . . . , u)

I non-extreme components x?i (sj ) < u are censored

I likelihood contribution of x?i :

I when none of the components exceeds its threshold : 1− V (u, . . . , u)

I when w.l.o.g. components x?i (s1), ..., x?i (sj0 ) are exceedances :

−
∂ j0

∂x1 × . . .× ∂xj0
V (x?i (s1), . . . , x?i (sj0 ), u, . . . , u)

19/32
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Modeling precipitation extremes around Zurich
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Modeling precipitation extremes around Zurich

Modeling precipitation extremes around Zurich

[Thibaud and Opitz, 2016]

I daily summer precipitation data (1962-2012) for 44 sites
(25 for estimation, 19 for validation)

I `-Pareto model with `(x) = max(x(s1), . . . , x(sD))

I marginal model :
σ(s) = βσ,0 + βσ,1LAT + βσ,2LON + βσ,3ALT
µ(s) = βµ,0 + βµ,1LAT + βµ,2LON + βµ,3ALT
ξ(s) ≡ ξ0

I extremal-t dependence with stable correlation function

I estimation :

I threshold u = 20 (marginal 95%-quantile)

I two-step estimation :
independence likelihood for marginal parameters,
full likelihood on standardized data for dependence parameters

I d̂f = 6
I Cor(s1, s2) = exp

[
−(‖h‖/β̂)κ̂

]
with β̂ = 483(35) km, κ̂ = 0.64(0.01)
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Modeling precipitation extremes around Zurich

Goodness-of-fit of the extremal coefficient function

I good coverage of confidence intervals for conditional distributions on validation
sites

I AIC-based model selection : extremal-t outperforms Brown–Resnick

Extremal coefficient function : empirical vs. fitted
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Modeling precipitation extremes around Zurich

Spatial prediction with the fitted model (1 June 1962)

I condition on values at observed sites

I conditional process has (transformed) finite-dimensional t-distributions

Left : conditional mean ; right : standard deviation
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Inférence statistique des valeurs extrêmes spatiales

Interlude : Are asymptotically dependent models the right choice ?

Introduction to spatial extreme value theory
Max-stable limit processes for maxima
Generalized Pareto limit processes for threshold exceedances

Modeling precipitation extremes around Zurich

Interlude : Are asymptotically dependent models the right choice ?

Examples of models for asymptotic independence

Conclusion
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Inférence statistique des valeurs extrêmes spatiales

Interlude : Are asymptotically dependent models the right choice ?

Zurich data – have we reached asymptotics ?
Fitted extremal coefficient function vs. Empirical extremal coefficients
(empirical coefficients calculated for different thresholds)
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When going far into the tail of data, empirical coefficients tend to increase towards 2,
the value for asymptotic independence.
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Interlude : Are asymptotically dependent models the right choice ?

Other examples : asymptotic independence ?
Empirical estimates of extremal coefficients θ with respect to number of exceedances

precipitation (Cévennes, D = 21) precipitation (Drenthe, D = 15)
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0 50 100 150 200

0
1

2
3

4
5

6

np0

κ

0 50 100 150 200

0
2

4
6

8
1

0

np0

κ

Again, we observe a strong increase in estimates when going farther into the tail.
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Inférence statistique des valeurs extrêmes spatiales

Interlude : Are asymptotically dependent models the right choice ?

Can we handle asymptotic independence in spatial data ?

I max-stable models only allow either asymptotic dependence or classical
independence, but nothing in between

I empirical evidence of many spatial data sets suggests that an asymptotic
independent model would provide a better fit

I asymptotically dependent data : pr(X?1 > x ,X?2 > x) ∼ λx−1 with 0 < λ ≤ 1

I faster joint tail decay in asymptotically independent data, e.g.

pr(X?1 > x ,X?2 > x) ∼ h(x)x−η (4)

with η > 1 and slowly varying h, h(tx)/h(t)→ 1 (t →∞)

Can we have flexible spatial models for (4) ?
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Inférence statistique des valeurs extrêmes spatiales

Examples of models for asymptotic independence

Introduction to spatial extreme value theory
Max-stable limit processes for maxima
Generalized Pareto limit processes for threshold exceedances

Modeling precipitation extremes around Zurich

Interlude : Are asymptotically dependent models the right choice ?

Examples of models for asymptotic independence

Conclusion
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Examples of models for asymptotic independence

Inverted max-stable processes

[Wadsworth and Tawn, 2012]

Given a max-stable process Z?(s), the corresponding inverted max-stable process

X (s) = 1/Z?(s)

has exponential marginal distributions. Then X?(s) = exp(X (s)).

Its joint tail decay is

pr(X?1 > x , . . . ,X?D > x) = x−D/θ,

where 1 < θ ≤ D is the extremal coefficient of (Z(s1), . . . ,Z(sD)).

Since D/θ > 1, the dependence of the original max-stable process determines the joint
tail decay rate, leading to a flexible framework for modeling asymptotic
independence.

We can estimate this tail dependence model by using threshold exceedances in data,
i.e., by censoring non-exceeding data values in the pairwise likelihood.
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Examples of models for asymptotic independence

Gaussian scale mixture processes

[Opitz, 2016] + work in progress (joint with R. Huser, E. Thibaud)

Gaussian processes W (s) are well-studied and well-tractable for inference, but they
lack flexibility in the tail. We get more flexible tail behavior by embedding a random
variable R2 with R ≥ 0 for the variance :

X (s) = RW (s)

I if R has power law tail, then X is asymptotically dependent with extremal-t limit

I if R has Weibull-type tail, pr(R > r) ∼ r−c1 exp(−c2r−α), then X is
asymptotically independent with

pr(X?1 > x ,X?2 > x) ∼ h(x)x−[2/(1−ρ)]α/(α+2)
,

yielding flexible joint tail behavior strongly determined by α

I can interpolate smoothly between Gaussian dependence and asymptotic
dependence

I [Opitz, 2016] : Laplace model with R2 ∼ Exp has nice properties
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Conclusion

Introduction to spatial extreme value theory
Max-stable limit processes for maxima
Generalized Pareto limit processes for threshold exceedances

Modeling precipitation extremes around Zurich
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Conclusion

Conclusion

I Gaussian models are not flexible enough to capture extreme value behavior

I spatial extreme value theory provides exploratory tools and asymptotic models

I max-stable models are well studied and understood

I generalized Pareto models are better suited for threshold exceedances

I classical full likelihood inference is always tricky but possible in some cases, although
computationally heavy

I classical asymptotic models for spatial extremes are well adapted to capture
asymptotic dependence

I when convergence is not observed in data, we may need subasymptotic models,
in particular for asymptotic independence to avoid overestimation of extreme
joint risks
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