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Similar to the linear Harbourne constant recently introduced in [2], we study the elliptic

H-constants of P2 and of Abelian surfaces. We also study the Harbourne indices of

curves on these surfaces. In particular, we show that there are configurations of smooth

plane cubic curves whose Harbourne indices are arbitrarily close to −4. Consequently,

we obtain that the H-constant of any surface X is less than or equal to −4. Related to

these problems, we moreover give a new inequality for the number and multiplicities of

singularities of elliptic curves arrangements on Abelian surfaces, inequality which has

a close similarity to the one of Hirzebruch for lines arrangements on the plane.

1 Introduction

The Harbourne constant (for short H-constant) of a surface and some related variants

of it have been recently introduced in [2], bringing new problems and open questions on

curves and their singularities on surfaces. As explained in [2], the H-constant measures

the local negativity of curves on surfaces, in analogy with the local positivity measured

by Seshadri constants. It has emerged from the context of the bounded negativity

conjecture (BNC):

Conjecture. Let X/C be a smooth projective surface. There exists an integer b(X) such

that for every (reduced) curve C on X , one has C2 ≥ −b(X). �
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2 X. Roulleau

This ancient and now intensively studied conjecture [2, 3, 5, 8, 15, 18] is trivially

true for the plane, but we do not know the behavior of the problem if one takes blow-ups

of it. The H-constant was introduced to approach that question. For a blow-up X ′ → X

of a surface X at a set P of s > 0 distinct points and C ↪→ X a curve, we denote by C̄ the

strict transform of C in X ′ and we define the quantity:

H(C,P) = (C̄)2

s
.

The H-constant of X is defined by:

HX := inf
C,P

H(C,P),

where the infimum is taken over every reduced curves C and finite non-empty sets of

points P on X . If finite, the H-constant has the interesting property that whenever BNC

holds for X , then it holds for any of its blow-ups at different points. Let us define the

Harbourne index (H-index for short) of a curve C on X by:

H(C) := inf
P
H(C,P) ∈ R,

where P varies among non-empty finite sets of points on X , so that HX = infC H(C).

The linear H-constant HL,P2 = infC H(C) for the plane is defined in [2]; here X = P2

and the infimum is over every unions C of lines in P2. Using Hirzebruch bounds on

the singularities of lines configurations [1], the authors prove that HL,P2 ≥ −4. They

moreover give an example of a configuration of lines C with very negative H-index:

H(C) = −225/67, therefore one knows that −225/67 ≥ HL,P2 ≥ −4, and −225/67 ≥
HL,P2 ≥ H

P2 .

In this aritcle, we similarly study the elliptic H-constant HEl,X of a surface X ,

which we define by:

HEl,X = inf
C,P

H(C,P) = inf
C
H(C)

where the infimum is over unions C of elliptic curves on the surface X (throughout

this aritcle, “elliptic curve” means a smooth genus 1 curve, without specifying a group

structure). Let C be a configuration of elliptic curves on an Abelian surface A. Since an

elliptic curve on A is the image of a line in C2 (the universal cover of A), the curve C has

only ordinary singularities, as for the configurations of lines in P2 studied in [2]. For

k ≥ 2, we denote by tk the number of k-points on C, that is, the points with multiplicity

k. Let f0 = ∑
tk and f1 = ∑

ktk.
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Bounded Negativity, Miyaoka–Sakai Inequality 3

Theorem 1. Let Sing(C) be the set of singularities of C. We have

H(C) = H(C,Sing(C)) = − f1
f0

≥ t2 + 1
4 t3

f0
− 4 ≥ −4. (1.1)

The elliptic H-constant of A satisfies HEl,A ≥ −4. The H-index of C equals −4 if and only

if all the singularities on C are 4-points.

The H-constant and elliptic H-constant are isogeny invariants: if A and B are

isogenous, then HA = HB and HEl,A = HEl,B. �

Let A be either the surface (C/Z[j])2, where j2 + j + 1 = 0, or (C/Z[i])2, i2 = −1.

By the constructions of Hirzebruch [11] and Holzapfel [13, Example 5.4], there exist

configurations C of elliptic curves on A such that their H-indices satisfy H(C) = −4,

therefore the bound −4 in Theorem 1 is optimal. Actually, using Kobayashi’s results

[14], one obtains that for any Abelian surface A the equality H(C) = −4 is attained by an

elliptic curve configuration C if and only if the complement of the strict transform of C

in the blow-up of A at the singularity set Sing(C) is isomorphic to an open ball quotient

surface. By Theorem 1, this is the case if and only if the singularities of C are 4-points

only. Our result thus gives a strong restriction for such ball quotient surfaces (see also

[11] on that subject).

The inequality − f1
f0

≥ t2+ 1
4 t3

f0
− 4 in Theorem 1 is a corollary of a general result

stated in Theorem 9. For any configuration with ordinary singularities C = ∑i=d
i=0 Ci of

smooth curves Ci, Theorem 9 gives an inequality involving the geometric genus and

the number and multiplicities of singularities of C. This Theorem 9 is proved by using

(Z/nZ)d covers of Abelian surfaces. In particular, we obtain the following result:

Theorem 2. For a configuration of elliptic curves on an Abelian surface, one has

t2 + 3

4
t3 ≥

∑
k≥5

(2k − 9)tk. �

This is the exact analog of the well-known inequality t2 + 3
4 t3 ≥ d +∑

k≥5(2k −
9)tk due to Hirzebruch for a configuration of d ≥ 6 lines in P2 such that td = td−1 =
td−2 = 0 (see [12, eq. (9)]). Observe that for lines on the plane, Hirzebruch inequality

implies that there are always nodes or 3-points ; on the contrary, that restriction does

not apply for elliptic curves on Abelian surfaces, but the condition t2 = t3 = 0 implies

that the configuration is related to ball quotient surfaces. There is a huge literature on

arrangements of lines on the plane, our approach for arrangements of elliptic curves on
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4 X. Roulleau

Abelian surfaces shows a close similarity and opens new questions on the construction

of such arrangements.

About the elliptic and H-constants of the plane, we obtain the following results:

Theorem 3. There exist configurations Cn of smooth cubic curves in P2 such that:

lim
n
H(Cn,Sing(Cn)) = −4, �

(where Sing(Cn) is the set of singular points of Cn) and therefore −4 ≥ HEl,P2 ≥ H
P2 .

From Theorem 3 and functorial properties of the H-constants, we get the

following corollary on the Harbourne constant of any surfaces:

Corollary 4. Let X be a smooth surface. Then −4 ≥ H
P2 ≥ HX . �

The article is organized as follows. In the second section, we prove Theorem

3 and Corollary 4 concerning the elliptic H-constant and the Harbourne constant of

the plane. In the third section, we prove Theorem 2, and Theorem 1 is proved in the

fourth section. In the last section, we discuss some questions and problems raised by

the definitions of the H-index of a curve and H-constant of a surface.

2 Elliptic Curve Configurations on the Plane

The main result of this section is as follows:

Theorem 5. There exist a sequence {Cn}n∈3N∗ of configurations of smooth cubic curves

on P2 such that:

lim
n
H(Cn,Sing(Cn)) = −4. �

Let us recall that a k-point (k ∈ N, k ≥ 2) on a curve C is an ordinary singularity

of multiplicity k.

Let p : Z → P2 be the blow-up of P2 at the 12 singular points PFe = {p1, . . . ,p12}
of the Fermat configuration of 9 lines:

{(x3 − y3)(x3 − z3)(y3 − z3) = 0}.

Each line contains four points in PFe and each point in PFe is a 3-point. In [20], end of

Section 4, some elliptic curves configurations Hn (with n ∈ 3N∗) on Z with the following
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Bounded Negativity, Miyaoka–Sakai Inequality 5

properties are constructed:

(i) Hn is the union of 4
3 (n

2−3) elliptic curves Ei, which are fibers of some elliptic

fibrations of Z (in particular E2
i = 0),

(ii) The singularities of Hn are 1
3 (n

2 − 3)(n2 − 9) 4-points and 4(n2 − 3) 3-points.

(iii) Each elliptic curve Ei of Hn contains n2−nine 4-points and nine 3-points,

these 3-points are on 9 of the 12 exceptional divisors above the points in

PFe.

(iv) Each exceptional divisor above the points in PFe contains 1
3 (n

2 − 3) 3-points

of Hn.

Let us recall briefly how the configurations Hn are obtained. LetA be the Abelian surface

A = (C/Z[j])2, where j2+ j+1 = 0. Let us define T0 = {y = 0}, T∞ = {x = 0}, the horizontal
and vertical axes, respectively, T1 = {x = y} the diagonal and Tj = {x = −jy}. The elliptic
curves configuration

C1 = T0 + TI + T∞ + Tj (2.1)

has one singularity only ; it is a 4-point. Let [m] : A → A the multiplication by m ∈ Z[j]
map. Let n ∈ N ; the curve Cn = [n]∗C1 is a configuration of 4n2 elliptic curves, its

singularity set is the set of the n4 n-torsion points, and every singularity of Cn is a 4-

point. These configurations Cn were discovered by Hirzebruch in [11] ; we use them in

Section 4.

The endomorphism [j] is an order 3 automorphism of A, it fixes a set P9 of nine

isolated points. Let b : Ā → A be the blow-up of A at P9. The automorphism [j] acts
on Ā and fixes the nine exceptional divisors above P9. The quotient surface Ā/[j] is the

surface Z (see e.g., [20]) ; the images by the quotientmap π : A → Z of the nine exceptional

divisors on Ā are the strict transform on Z of the nine lines of the Fermat configuration.

The 12 exceptional divisors of the blow-up Z → P2 are the images by π∗b∗ of the 12

elliptic curves on A going through three among the nine points in P9. The irreducible

components of Hn are the smooth genus 1 irreducible components of the support of

π∗b∗Cn.
Let Cn be the image on P2 of Hn by the blow-up map p : Z → P2. Then we see

that:

(i) Cn is the union of 4
3 (n

2 − 3) smooth degree 3 curves Ei.
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6 X. Roulleau

(ii) Each curve Ei contains n2 − 9 4-points and goes through 9 of the 12 points

in PFe.

(iii) The singularities of Cn are 1
3 (n

2 −3)(n2 −9) 4-points and the 12 points in PFe

have multiplicity (n2 − 3).

These configurations Cn are constructed anew in [4] by a different approach, via Halphen

cubics.

Let C be a plane curve of degree d, and let P be a set of s > 0 points in P2. Let us

denote by mp the multiplicity of C at a point p ∈ P2 (where mp = 0 means p �∈ C). By the

definition of H(C,P) given in Section 1, one has:

H(C,P) = d2 −∑
p∈P m2

p

s
.

One now applies that formula to the curve Cn of degree d = 4(n2 − 3) and to the set of

singular points Sing(Cn) of Cn ; one obtains:

H(Cn,Sing(Cn)) = −4
n4 − 30n2 + 81

n4 − 12n2 + 63
,

and it proves Theorem 5. The value H(Cn,Sing(Cn)) could have been obtained in an other

way, by computing the self-intersection of the strict transform C̄n of the curve Cn on the

blow-up Xn of P2 at Sing(Cn), using the fact that the surface Xn is also the blow-up of Z

at every 4-points of Hn and the curve C̄n is the strict transform of Hn.

Remark 6.

(1) For example, one has H(C21,Sing(C21)) = − 20148
5257 	 −3.83.

(2) The above configurations {Cn}n∈3N∗ are strongly linked to some compactifica-

tions {Xn}n∈N of some open ball quotient surfaces constructed by Hirzebruch

in [11] and for which limn
c21
c2
(Xn) = 3, that is, one is close to the upper bound

in the Miyaoka–Yau inequality. �

In the following Lemma 7 and Corollary 8, we write HX (C,P) for H(C,P) when C

is a curve on a surface X and P is a finite non-empty set of points of X .

Let f : X → Y be a dominant morphism between two smooth surfaces. Let C be

a reduced curve on Y . Suppose that C does not contain components of the branch locus

B of f and let P be a set of s > 0 points in Y , disjoint from B (so that f ∗C and f ∗P are

reduced of pure dimensions 1 and 0, respectively).
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Bounded Negativity, Miyaoka–Sakai Inequality 7

Lemma 7. Under the above assumptions on C, one has HX (f ∗C, f ∗P) = HY (C,P). �

Proof. Let d be the degree of f and let p be a point of P. Since f is étale over Y \ B, the
d points above p have the same multiplicity mp inside C ′ = f ∗C than p inside C and:

HX (f
∗C, f ∗P) = C̄ ′2

ds
= dC2 − d

∑
m2

p

ds
= C̄2

s
= HY (C,P). �

Lemma 7 and Theorem 5 imply:

Corollary 8. Let X be a smooth surface. Then HX ≤ H
P2 ≤ −4. �

Proof. Let f : X → P2 be a generic projection of X on to the plane. Let C be a curve in

P2 and let P be a finite set of points. Let g ∈ PGL3(C) be an automorphism of the plane

such that the curve C ′ = g∗C 	 C do not contain any components of the branch divisor

B of f and P ′ = g∗P is disjoint from B. We then apply Lemma 7 to f , C ′ and P ′, to obtain

HX (f
∗C ′, f ∗P ′) = H

P2(C
′,P ′).

We can see that H
P2(C

′,P ′) = H
P2(C,P), and by taking the infimum over every curves

and finite sets in X (respectively, P2), we obtain the inequality HX ≤ H
P2 . Moreover, by

Theorem 5, one has H
P2 ≤ −4. �

3 Arrangements of Curves on Abelian Surfaces and (Z/nZ)d Covers

Let A be an Abelian surface and let C = ∑d
i=1 Ci be a reduced divisor with only ordinary

singularities (i.e., singularities resolved after one blow-up), a union of d ≥ 2 smooth

divisors Ci (e.g., Ci may be the union of genus 1 fibers of a fibration of A on to an elliptic

curve). As in [17, point G, p. 408], let g be the geometric genus of C, that is,

g− 1 =
∑

gj − 1,

where gj is the genus of the irreducible component Ci. Let us denote by tk the number of

k-points on C, that is, the number of singularities with multiplicity k.

Theorem 9. We have

10g− 10 + t2 + 3

4
t3 ≥

∑
k≥5

(2k − 9)tk,
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8 X. Roulleau

and

H(C,Sing(C)) = 2g− 2 − f1
f0

≥ 2t2 + 9
8 t3 + 1

2 t4 + 8 − 8g

f0
− 9

2
. (3.1)

Suppose that C is a configuration of elliptic curves. Then

H(C) = − f1
f0

≥ t2 + 1
4 t3

f0
− 4 ≥ −4, (3.2)

where H(C) is the H-index: H(C) = minP H(C,P). Moreover H(C) = −4 if and only if all

the singularities on C are 4-points. �

The remaining of this section is the proof of Theorem 9. Let us recall a Theorem

of Namba on branched covers. Let M be a manifold, D1, . . . ,Ds be irreducible reduced

divisors onM , and n1, . . . ,ns be positive integers.We denote byD the divisorD = ∑
niDi.

Let Div(M ,D) be the sub-group of the Q-divisors generated by the entire divisors and:

1

n1
D1, . . . ,

1

ns
Ds.

Let ∼ be the linear equivalence in Div(M ,D), where G ∼ G′ if and only if G − G′ is an

entire principal divisor. Let Div(M ,D)/ ∼ be the quotient and let Div0(M ,D)/ ∼ be the

kernel of the Chern class map

Div(M ,D)/ ∼ → H1,1(M ,R)

G → c1(G)
.

Theorem 10 (Namba, [19, Theorem 2.3.20]). There exists a finite Abelian cover which

branches at D with index ni over Di for all i = 1, . . . , s if and only if for every j = 1, . . . , s

there exists an element of finite order vj = ∑ aij
ni
Di + Ej of Div0(M ,D)/ ∼ (where Ej an

entire divisor and aij ∈ Z) such that ajj is coprime to nj.

Then the subgroup in Div0(M ,D)/ ∼ generated by the vj is isomorphic to the

Galois group of such an Abelian cover. �

We find the inequalities among the tk’s in Theorem 9 using (Z/nZ)d covers of A

ramified above curves related to the curves Ci. These inequalities involve quantities that

are “linear” under isogenies, by which we mean that if φ : B → A is an isogeny of degree

m, then the number of k-points on φ∗C (a reduced curve), the intersections between the

φ∗Ci’s and φ∗C, the geometric genus minus 1 of φ∗C . . . are the ones of C, Ci . . . multiplied
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Bounded Negativity, Miyaoka–Sakai Inequality 9

by m. By that property, inequalities involving linear terms in the tk’s and C2
i proved on

abelian surface B are then inequalities for A.

Let φ = [m] : A → A be the multiplication by m ∈ N map. Recall that φ∗D ∼
m(m+1)

2 D+ m(m−1)
2 [−1]∗D for any divisorD (see [6, Proposition 2.3.5]). By takingm = 2n, one

can therefore suppose that the divisors Ci are n-divisible, that is, there exists divisors

Li such that Ci ∼ nLi. The divisor vi = 1
nCi − Li is in Div0(A,nC)/ ∼, has order n, and

the multiplicity of an irreducible component C ′
i in

1
nCi is

1
n . The group generated by

divisors 1
nCi−Li is isomorphic to (Z/nZ)d and there exists a (Z/nZ)d cover of A branched

with index n over C. For the computation of the Chern numbers of the resolution Xn of

that cover, we refer to the local analysis of the (Z/nZ)d-branched covers of the plane

constructed by Hirzebruch in [11] (see also the geometric approach of [9]).

The following quantities f0, f1, f2 are linear under isogenies:

f0 =
∑
k≥2

tk, f1 =
∑
k≥2

ktk, f2 =
∑
k≥2

k2tk.

Let π : Z → A be the blow-up at the f0 − t2 = ∑
k≥3 tk singularities of C of multiplicities

k ≥ 3 and let C̄ = ∑
C̄i be the strict transform of C in Z. For a singularity p of C of

multiplicity kp ≥ 3, we denote by Ep ↪→ Z the exceptional curve over p. There exists a

degree nd map f : Xn → Z branched with index n above the curve C̄. Above Ep lies nd−r

(r = kp) copies in Xn of a smooth curve Fp, which is a (Z/nZ)r−1 cover of Ep ramified with

index n at r points, thus

e(Fp) = nr−1(2 − r)+ rnr−2 = nr−2(2n+ r(1 − n)).

Since the Galois group permutes these curves, we have (Fp)2 = −nr−2. If a singularity p

of C is a node, then Xn is smooth over p and the fiber of f at p has only nd−2 points.

We have

e(C) = 2 − 2g+ f0 − f1, e(C \ Sing(C)) = 2 − 2g− f1, e(A \ C) = −e(C) = 2g− 2 + f1 − f0,

and C2 = ∑
C2
i + f2 − f1 = 2g− 2 + f2 − f1. Therefore we obtain

e(Xn \ f −1Ep) = nde(A \ C)+ nd−1e(C \ Sing(C))+ nd−2t2

and

1

nd−2
e(Xn \ f −1Ep) = n2(2g− 2 + f1 − f0)+ n(2 − 2g− f1)+ t2.
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10 X. Roulleau

Above each exceptional divisor Ep in Z, there are nd−k curves with Euler number e(Fp),

thus

e(Xn) = e(Xn \ f −1Ep)+
∑
k≥3

nd−2tk(2n+ k(1 − n))

and

1

nd−2
e(Xn) = (2g− 2 + f1 − f0)n

2 + 2(1 − g+ f0 − f1)n+ f1 − t2.

Let us now compute the canonical divisor: KXn is numerically equivalent to the

pullback of

K =
∑

Ep + n− 1

n

(∑
Ep + π∗C −

∑
kpEp

)
=
∑
p

2n− 1 + kp(1 − n)

n
Ep + n− 1

n
π∗C.

We get

K2 =
∑
k≥3

− (2n− 1 + k(1 − n))2

n2
tk +

(
n− 1

n

)2

C2,

and we obtain

1

nd−2
K2
Xn

= (2g− 2 + 3f1 − 4f0)n
2 + 4(f0 − f1 − g+ 1)n− f0 + f1 + t2 + 2g− 2.

Since the surface Xn covers an Abelian surface, its Kodaira dimension is non-negative.

Then we get by using the Miyaoka–Yau inequality:

1

nd−2
(3c2 − K2

Xn
) = (f0 + 4g− 4)n2 + 2(f0 − f1 − g+ 1)n+ 2f1 + f0 − 4t2 − 2g+ 2 ≥ 0.

(3.3)

As in [12], we will use a refinement of the Miyaoka–Yau inequality for the surfaces Xn

that contain smooth rational curves and elliptic curves, that is, for n = 2 or 3. Let Y be a

surface of non-negative Kodaira dimension. Suppose that there exists on Y some smooth

disjoint elliptic curves Dj and m disjoint (−2) curves, disjoint also from the curves Dj,

then:

Theorem 11. (Miyaoka [16, Corollary 1.3]). We have

3c2(Y)− K2
Y ≥ 9

2
m−

∑
(Dj)

2. �
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Bounded Negativity, Miyaoka–Sakai Inequality 11

For n = 3, we get from equation 3.3:

1

3d−2
(3c2 − K2

X3
) = 4(7g− 7 + 4f0 − f1 − t2) ≥ 0.

Taking into account the fact that over the 3-points the surface contains 3d−3t3 elliptic

curves of self-intersection −3, we can refine that inequality and obtain

− f1
f0

≥ t2 + 1
4 t3 − 7g+ 7

f0
− 4.

For g = 1, that is, C is a configuration of elliptic curves, let Sing(C) be the singularity

set of C, then we get:

H(C,Sing(C)) = − f1
f0

≥ t2 + 1
4 t3

f0
− 4.

For P a (non-empty) set of points in A, one can use the same demonstration as in

[2, Theorem 3.3] for the linear H-constant of P2 to conclude that H(C,P) ≥ H(C,Sing(C)),

therefore H(C) = H(C,Sing(C)). Suppose that the bound −4 is attained, then 4f0 = f1,

t2 = t3 = 0 and from equality
∑

k≥5(k−4)tk = 2t2 + t3, we see that tk = 0 ∀k ≥ 5. The only

possibility is t4 �= 0, which indeed exists (see below).

For n = 2, the surface X2 contains 2d−3t3 disjoint (−2)-curves and it contains

t42d−4 elliptic curves of self-intersection −4, therefore

1

2d−2
(3c2 − K2

X2
) ≥ 9

4
t3 + t4

and

10g− 10 + 9f0 ≥ 2f1 + 4t2 + 9

4
t3 + t4,

which implies 10g− 10+ t2 + 3
4 t3 ≥ ∑

k≥5(2k− 9)tk. Using H(C,Sing(C)) = C2−f2
f0

=
∑

C2i −f1
f0

and 2g− 2 = ∑
C2
i , we get

H(C,Sing(C)) ≥ 2t2 + 9
8 t3 + 1

2 t4 + 8 − 8g

f0
− 9

2
.

4 The Elliptic H-Constants of Abelian Surfaces

Let X be a smooth projective surface and let C be a configuration of smooth disjoint

elliptic curves on X . Let us recall the following result:
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12 X. Roulleau

Theorem 12 ([14, Theorem 2, (1.3)], Kobayashi). The universal cover of X \C is the unit

ball if and only if (KX + C)2 = 3e(X \ C), where e denotes the Euler number. �

Let C be a configuration of elliptic curves on an Abelian surface A. Let X → A be

the blow-up at the singular points of C and let C̄ be the strict transform of C in X . We

obtain:

Corollary 13. The elliptic curve configuration C on A has H-index H(C) = −4 if and

only if X \ C̄ is a ball quotient surface, that is, its universal cover is the ball.

In that case, the curve C has only 4-points singularities and there exists a cov-

ering X3 → A branched with order 3 over [3]∗C such that X3 is a smooth compact ball

quotient surface: c21(X3) = 3c2(X3). �

Remark 14. Using Abelian covers ofA = (C/Z[j])2, Hirzebruch also obtained a compact

ball quotient surface (see [11]). �

Proof. One computes that (KX + C̄)2 = f1 − f0 and e(X \ C̄) = f0. Therefore, one has

equality (KX + C̄)2 = 3e(X \ C̄) if and only if 4f0 = f1, which is equivalent by Theorem 9

to H(C) = −4 and to the condition that C has only 4-points.

Let Xn → A be the covering associated to the elliptic curve configuration [2n]∗C
in the proof of Theorem 9. By equation 3.3, the value of 1

nd−2 (3c2(Xn)−K2
Xn
) is f0(n− 3)2.

Thus for n = 3 we obtain a compact ball quotient surface. �

Let j = −1+i√3
2 with i2 = −1, we have:

Proposition 15. The elliptic H-constants of (C/Z[j])2 and (C/Z[i])2 are equal to −4. �

Proof. Hirzebruch [11] and Holzapfel [13] found elliptic curves arrangements C on

(C/Z[j])2 and (C/Z[i])2, respectively, with 4-points singularities only. Therefore by

Theorem 9, one has H(C) = −4 and the elliptic H-constant of these two surfaces

is −4.

We describe the example on (C/Z[j])2 in 2.1. It is the union of four elliptic curves

with only one singularity: t4 = 1, tk = 0 for k �= 4.

On the surface (C/Z[i])2, the configuration C has six irreducible components. For

u ∈ C, let Eu be the image of the line {y = ux} ⊂ C2 by the quotient map C2 → (C/Z[i])2
and let E∞ be the image of the line {x = 0}. The configuration is

C = E0 + E∞ + Ei−1 + E 1
2 (i−1) + E ′

−1 + E ′
i ,
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Bounded Negativity, Miyaoka–Sakai Inequality 13

where E ′
−1 = E−1 + (τ , 0), E ′

i = Ei + (τ , 0), for τ = 1+i
2 . The points 0, (τ , 0), (0, τ) are the only

singularities on C and are 4-points. �

Remark 16. Hirzebruch’s and Holzapfel’s examples are elliptic curves configurations

on Abelian surfaces with only 4-points singularities. That situation must be compared

with the plane where there do not exist configurations of d > 6 lines with t2 = t3 = 0

and td = td−1 = td−2 = 0 (by inequality 5.3 below). �

Let E,E ′ be two elliptic curves and let A be an Abelian surface.

Proposition 17. The H-constant and elliptic H-constant of A are invariants of the

isogeny class of A. Suppose A is isogenous to E × E ′. If E and E ′ are not isogenous,

then HEl,A = −2. If E and E ′ are isogenous, then HEl,A ≤ −3. �

Proof. Let φ : A → B be an isogeny between two Abelian surfaces ; it is an étale

map. Let C be a (reduced) curve on B, and let P be a set of points on B. By Lemma 7,

HA(φ
∗P,φ∗C) = HB(C,P), thus

inf
C,P

HA(C,P) ≤ inf
C,P

HB(C,P).

Since there exists an isogeny ψ : B → A too, we have the reverse inequality. That holds

also for the elliptic H-constant, since the pull-back by an isogeny of a genus one curve

is a union of genus one curves.

Let A be isogenous to E × E ′. Suppose that E and E ′ are not isogenous. Then a

configuration C of elliptic curves on E × E ′ is as follows:

C =
m∑
k=1

Fk +
n∑

k=1

F ′
k,

where the Fk (respectively, F ′
k) are fibers of the fibration of E × E ′ on to E (respectively,

E ′). Then by Theorem 9, H(C) = −2, and therefore HA,El = −2.

Suppose that E and E ′ are isogenous. Since the elliptic H-constant is an isogeny

invariant, we can suppose that E = E ′. Let � be the diagonal in E × E and let be

F = {y = 0}, F ′ = {x = 0}, where x,y are the coordinates. Then C = � + F + F ′

has one 3-point in 0, and no other singularities. Thus by Theorem 9, H(C) = −3 ≥
HA,El. �
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14 X. Roulleau

5 Remarks on the Harbourne Indices of Curves

5.1 Irreducible curves with low H-index

Let us recall that the Harbourne index of a curve C is defined by

H(C) = inf
P
H(C,P).

In view of the BNC, 1 it would be interesting to know irreducible curves C with low

H-index. Then by taking the appropriate blow-up one could get very negative curves

and maybe obtain counter examples to the Conjecture. By example, the H-indices of the

rational curves Cd of degree d in P2 with the maximal number of nodes go to −2 when

d grows to ∞ (on that subject, see also the introduction of [2]). If we want to go down,

we would need to impose singularities with higher multiplicities on the curve C, and it

may force C to have “negative genus”, that is, to be a union of (at least) two curves. That

explains why one rather considers unions of curves than irreducible curves. Moreover

considering reducible curves gives more functorialities to the H-constants, for example,

when one wishes to compare these constants through a dominant map f : X → Y .

About the problem of constructing infinitely many irreducible curves with low

H-index, the example of totally geodesic curves on a Shimura surface or a ball quotient

surface X is particularly interesting. If smooth, such curves C of genus g satisfy C2 =
−2(g − 1) or C2 = −(g − 1), respectively. These curves were considered as possible

counterexamples for the BNC. But one of the main results of [3] in the Shimura surface

case, and in [15], [18] for the ball quotient case, is the fact that on X there are at most a

finite number of such curves C with C2 < 0. However, when one takes some blow-up of

X , one does not know the behavior of C̄2 for C̄ the strict transform of such a curve C.

It is classical that the singularities of a totally geodesic curve C on a Shimura or

a ball quotient surface are ordinary (as for elliptic curves on Abelian surfaces, that can

be proved by using the universal cover of X ; e.g., for a ball quotient X = B2/�, C is the

image of L∩B2 where L is a line). If X contains a totally geodesic curve, then there exists

an infinite number of such curves (see e.g., [7]) on X and by the above quoted result, all

but a finite number of such curves are singular. Let C be an irreducible singular totally

geodesic curve on X . Let δ ∈ N∗ be defined by KXC +C2 = 2g− 2+ 2δ, for g the geometric

genus of C. We have 2δ = f2 − f1 (where fi = ∑
k≥2 k

itk, for tk the number of k-points on

C), thus

H(C,Sing(C)) = C2 − f2
f0

= −KXC + 2g− 2 − f1
f0

.
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Bounded Negativity, Miyaoka–Sakai Inequality 15

Since C is a totally geodesic curve, we know moreover that KXC = 4g − 4 > 0 in the

Shimura case and KXC = 3g− 3 > 0 in the ball quotient case. Therefore we see that

H(C,Sing(C)) ≤ − f1
f0
.

Since always f1 ≥ 2f0, we obtain two more examples of families of irreducible curves C

with

lim inf
C

H(C) ≤ −2.

5.2 The H-indices of arrangements of lines

In the case of an arrangement of d lines in P2 with td = td−1 = td−2 = td−3 = 0 and d ≥ 6,

Hirzebruch [10, p. 140] proved the following inequality

t2 + 3

4
t3 ≥ d+

∑
k≥5

(k − 4)tk. (5.1)

Using that result, the authors of [2] obtained the following inequality for the H-index of

such a line arrangement C:

H(C) ≥ B1 := −4 + 1∑
tk

(
2d+ t2 + 1

4
t3

)
. (5.2)

A better inequality for the singularities of lines arrangements is given in [12, eq. (9)],

which is

t2 + 3

4
t3 ≥ d+

∑
k≥5

(2k − 9)tk. (5.3)

Proposition 18. Using inequality 5.3, one obtains:

H(C) ≥ B2 := 1∑
tk

(
3

2
d+ 2t2 + 9

8
t3 + 1

2
t4

)
− 9

2
. (5.4)

One has B2 ≥ B1 and therefore inequality 5.4 is sharper than 5.2. �

As a referee pointed out, inequality 5.2 has the advantage that the bound H(C) ≥
−4 is immediately clear, whereas at first glance, inequality 5.4 gives only H(C) ≥ 4.5

(this probably explains the choice of inequality 5.2 in [2]). For the Klein configuration of

lines (see [2, Section 4.1]) and the Fermat configurations of 9 and 12 lines, inequalities
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16 X. Roulleau

5.2 and 5.4 are equalities. For the Fermat configuration of 18 lines, inequality 5.4 is an

equality but this is not the case for inequality 5.2.

Proof. Using the combinatoric equality

(
d

2

)
= ∑d

k≥2 tk

(
k

2

)
, we have

H(C,Sing(C)) = d2 −∑
k≥2 k

2tk∑
tk

= d−∑
k≥2 ktk∑
tk

.

By 5.3, we have t2 + 3
4 t3 ≥ d+∑

k≥4(2k − 9)tk, thus

−
∑
k≥2

ktk ≥ 1

2

(
d+ 4t2 + 9

4
t3 + t4 − 9

∑
tk

)
(5.5)

and we obtain inequality 5.4. The fact that this new inequality is sharper comes from

the fact that inequality 5.3 is typically better than 5.1. �
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