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Abstract
A Nikulin configuration is the data of 16 disjoint smooth rational curves on a K3
surface. According to awell known result of Nikulin, if a K3 surface contains aNikulin
configuration C, then X is a Kummer surface X = Km(B) where B is an Abelian
surface determined by C. Let B be a generic Abelian surface having a polarization M
with M2 = k(k + 1) (for k > 0 an integer) and let X = Km(B) be the associated
Kummer surface. To the natural Nikulin configuration C on X = Km(B), we associate
another Nikulin configuration C′; we denote by B ′ the Abelian surface associated to
C′, so that we have also X = Km(B ′). For k ≥ 2 we prove that B and B ′ are
not isomorphic. We then construct an infinite order automorphism of the Kummer
surface X that occurs naturally from our situation. Associated to the two Nikulin
configurations C, C′, there exists a natural bi-double cover S → X , which is a surface
of general type. We study this surface which is a Lagrangian surface in the sense of
Bogomolov-Tschinkel, and for k = 2 is a Schoen surface.
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1 Introduction

To a set C of 16 disjoint smooth rational curves A1, . . . , A16 on aK3 surface X , Nikulin
proved that one can associate a double cover B̃ → X branched over the curve

∑
Ai ,

such that the minimal model B of B̃ is an Abelian surface and the 16 exceptional
divisors of B̃ → B are the curves above A1, . . . , A16. The K3 surface X is thus a
Kummer surface.

We call a set of 16 disjoint (−2)-curves on a K3 surface a Nikulin configuration.
Let us recall a classical construction of Nikulin configurations. The Kummer surface
X = Km(B) of a Jacobian surface B can be embedded birationally onto a quartic
Y of P3 with 16 nodes. Projecting from one node one gets another projective model
for X , this is a double cover Y ′ → P

2 of the plane branched over 6 lines tangent
to a conic. The strict transform (in X ) of that conic is the union of two (−2)-curves
A1, A′

1, with A1A′
1 = 6. One of these two curves, A1 say, corresponds to the node

from which we project. Above the 15 intersection points of the 6 lines there are 15
disjoint (−2)-curves A2, . . . , A16 on X , which corresponds to the 15 other nodes of
the quartic Y .

The divisors C = ∑16
i=1 Ai , C′ = A′

1 + ∑16
i=2 Ai are two Nikulin configurations.

The Abelian surface B is then the Jacobian of the double cover of A1 branched over
A1 ∩ A′

1.
Let now k > 0 be an integer and let (B, M) be a polarized Abelian surface with

M2 = k(k + 1), such that B is generic, i.e. NS(B) = ZM . Let X = Km(B) be the
associated Kummer surface, let L ∈ NS(X) be the class corresponding to M (so that
L2 = 2M2), and let C = A1 + · · · + A16 be the natural Nikulin configuration on
Km(B) (the class L is orthogonal to the Ai ’s). We obtain the following results, which
for k = 1 are the results we recalled for Jacobian Kummer surfaces:

Theorem 1 Let be t ∈ {1, . . . , 16}. There exists a (−2)-curve A′
t on Km(B) such that

At A′
t = 4k + 2 and Ct = A′

t + ∑
j �=t A j is another Nikulin configuration.

The numerical class of A′
t is 2L − (2k + 1)At ; the class

L ′
t = (2k + 1)L − 2k(k + 1)At

generates the orthogonal complement of the 16 curves A′
t and {A j | j �= t}; moreover

L ′2
t = L2.

A Kummer structure on a Kummer surface X is an isomorphism class of Abelian
surfaces B such that X � Km(B). It is known that Kummer structures on X are in
one-to-one correspondence with the orbits of Nikulin configurations by the action of
the automorphism group of X (see Proposition 21). In [29, Question 5], Shioda raised
the question whether if there could be more than one Kummer structure on a Kummer
surface. In [10], Gritsenko andHulek noticed that Km(B) � Km(B∗), where B∗ is the
dual of B, a (1, t)-polarized Abelian surface (thus B �� B∗ if t > 1). In [12] Hosono,
Lian, Oguiso and Yau proved that the number of Kummer structures is always finite
and they construct for any N ∈ N

∗ aKummer surface of Picard number 18with at least
N Kummer structures. When the Picard number is 17 (which is the case of our paper),
by results of Orlov [20] on derived categories, the number of Kummer structures on
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X equals 2s where s is the number of prime divisors of 1
2M

2. In Sect. 3.3, we obtain
the following result

Theorem 2 Suppose k ≥ 2. There is no automorphism of X sending the Nikulin
configuration C = ∑16

j=1 A j to the configuration Ct = A′
t + ∑

j �=t A j .

Therefore the two configurations C, Ct belong in two distinct orbits of Nikulin con-
figurations under the action of Aut(X). As far as we know, Theorem 2 gives the first
explicit construction of two distinct Kummer structures on a Kummer surface: the
constructions in [10,12] use lattice theory and do not give a geometric description of
the Nikulin configurations.

We already recalled that when X is a Jacobian Kummer surface, there exists a non-
symplectic involution ι on X such that the double cover π : X → P

2 is the quotient
of X by ι (after contraction of the 16 (−2)-curves). That involution exchanges the
(−2)-curves A1 and A′

1 and fixes the 15 other curves {A j | j �= 1}. For X a K3 surface
with a polarization L such that L2 = 2k(k + 1) and t ∈ {1, . . . , 16}, let θt be the
involution of NS(X) ⊗ Q defined by L → L ′

t , At → A′
t (as defined in Theorem 1),

and θt (A j ) = A j for j �= t . When k = 1, θ1 is in fact the action of the involution ι

on NS(X) : ι∗ = θ1. We do not have such an interpretation when k > 1 (this is in fact
the content of Theorem 2), but we obtain the following result on the product θiθ j :

Theorem 3 For 1 ≤ i �= j ≤ 16 there exists an infinite order automorphism μi j of X
such that the action of μi j on NS(X) is μ∗

i j = θiθ j .

The classification of the automorphism group of a generic Jacobian Kummer surface
has been completed byKeum [13] (who constructed the last unknown automorphisms)
and by Kondo [14] (who proved that there was indeed no more automorphisms). We
are far from such a knowledge for non Jacobian Kummer surfaces, thus it is interesting
to have a construction of such automorphismsμi j . Let A be anAbelian variety. In [18],
Narasimhan and Nori prove that the orbits by Aut(A) of the principal polarisations
in the Néron-Severi group NS(A) are finite. Similarly, one could think to prove that
the number of Kummer structures on a K3 is finite by associating to each Nikulin
configuration C the pseudo-ample divisor LC orthogonal to C and by proving that
the number of orbits of such LC under the action of Aut(X) in NS(X) is finite. Our
approach is closer to that idea than to the solutions previous proposed e.g. in [12] or
[10], and it gives us more informations on Aut(X).

Observe that one can repeat the construction in Theorem 1, starting with configura-
tion Ci instead of C, but Theorem 3 tells us that the Nikulin configurations so obtained
will be in the orbit of the Nikulin configuration C under the automorphism group
X , thus we do not obtain new Kummer structures (tu l’as déjà signalé!) in that way
(observe also that Ct and Ct ′ (t �= t ′) are in the same orbit).

The paper is organized as follows: In Sect. 2 we construct the curve A′
i such that

Ai A′
i = 4k + 2 and we prove Theorem 1. This is done by geometric considerations

on the properties of the divisor L ′
i , which we prove is big and nef.

In Sect. 3, we construct the automorphisms mentioned in Theorem 3. This is done
by using the Torelli Theorem for K3 surfaces. We then prove Theorem 2, which is
obtained by considerations on the lattice H2(X ,Z).

In Sect. 4, we study the bi-double cover Z → X associated to the two Nikulin
configurations C = ∑16

i=1 Ai , C′ = A′
1 + ∑16

i=2 Ai . When k = 2, Y is a so-called
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Schoen surface, a fact that has been already observed in [24]. Schoen surfaces carry
many remarkable properties (see e.g. [7,24]). For example the kernel of the natural
map

∧2H0(Z ,�Z ) → H0(Z , KZ )

is one dimensional, and is not of the formw1∧w2, i.e. by the Castelnuovo De Franchis
Theorem, it does not come from a fibration of Z onto a curve of genus ≥ 2. Surfaces
with this property are called Lagrangian. We will see that for the other k > 1, the
surfaces are also Lagrangian.

In Sect. 4.1, we discuss the singularities of the curve Ai + A′
i . The transversality

of the intersection of two rational curves on a K3 surface is an interesting but open
problem in general (see e.g. [11]). We also study the curve �i on the Abelian surface
B coming from the pull-back of the curve A′

i . That curve �i is hyperelliptic and
has a unique singularity, which is a point of multiplicity 4k + 2, and therefore �i has
geometric genus≤ 2g. In the case of a Jacobian surface,�i has been used as the branch
locus of covers of B by Penegini [22] and Polizzi [21], for creating new surfaces of
general type. We end this paper by remarking that �i is a curve with the lowest known
H-constant (see [25] for definitions and motivations) on an Abelian surface.

2 Two Nikulin configurations on Kummer surfaces

2.1 Two rational curves A1, A′
1 such that A1A

′
1 = 2(2k + 1)

Let k > 0 be an integer and let B be an abelian surface with a polarization M such that
M2 = k(k + 1). We suppose that B is generic so that M generates the Néron-Severi
group of B. Let X = Km(B) be the associated Kummer surface and A1, . . . , A16 be
its 16 disjoint (−2)-curves coming from the desingularization of B/[−1].

By [17, Proposition 3.2], [9, Proposition 2.6], corresponding to the polarization M
on B, there is a polarization L on Km(B) such that

L2 = 2k(k + 1)

and L Ai = 0, i ∈ {1, . . . , 16}. The Néron-Severi group of X = Km(B) satisfies:

ZL ⊕ K ⊂ NS(X),

where K denotes the Kummer lattice (the saturated sub-lattice of NS(X) containing
the 16 classes Ai ). For B generic among polarized Abelian surfaces rk(NS(X)) = 17
and NS(X) is an overlattice of finite index of ZL ⊕ K which is described precisely in
[9], in particular we will use the following result:

Lemma 4 ([9, Remarks 2.3 & 2.10]) An element � ∈ NS(X) has the form � =
αL − ∑

βi Ai with α, βi ∈ 1
2Z. If α or βi for some i is in

1
2Z \ Z, then at least 4 of

the β j ’s are in
1
2Z \ Z, if moreover α ∈ Z, at least 8 of the β j ’s are in

1
2Z \ Z.
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The divisor

A′
1 = 2L − (2k + 1)A1

is a (−2)-class, indeed:

(2L − (2k + 1)A1)
2 = 8k(k + 1) − 2(2k + 1)2 = −2,

and one has A′
1Ai = 0 for i = 2, . . . , 16. By the Riemann-Roch Theorem and since

L A′
1 > 0, the class A′

1 is represented by an effective divisor. Let us prove the following
result

Theorem 5 The class A′
1 can be represented by a (−2)-curve and A1A′

1 = 2(2k+1).
The set of (−2)-curves

A′
1, A2, . . . , A16

is another Nikulin configuration on X.

In order to prove Theorem 5, let us define

L ′ = (2k + 1)L − 2k(k + 1)A1.

One has L ′A′
1 = 0 and

L ′2 = (2k + 1)22k(k + 1) − 8k2(k + 1)2 = 2k(k + 1) = L2.

First let us prove:

Proposition 6 One has:

a) The divisor L ′ is nef and big. Moreover a (−2)-class � satisfies �L ′ = 0 if and
only if � = A′

1 or � = A j for j in {2, . . . , 16}.
b) The linear system |L ′| has no base components.
c) The linear system |L ′| defines a morphism from X = Km(B) to P

k2+k+1 which
is birational onto its image and contracts the divisor A′

1 and the 15 (−2)-curves
Ai , i ≥ 2.

Proof Proof of a).We already know that L ′2 = 2k(k+1) > 0. By the Riemann-Roch
Theorem either L ′ or −L ′ is effective. Since LL ′ > 0, we see that L ′ is effective.
On a K3 surface, the (−2)-curves are the only irreducible curves with negative self-
intersection, thus L ′ is nef if and only if L ′� ≥ 0 for each irreducible (−2)-curve �.
Let

� = αL −
16∑

i=1

βi Ai , α, βi ∈ 1

2
Z
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be the class of � in NS(X). Since � represents an irreducible curve we have α ≥ 0.
Moreover if � = Ai then the condition L ′� ≥ 0 is trivially verified so that we can
assume �Ai ≥ 0, which gives βi ≥ 0. From the condition �2 = −2, we get

k(k + 1)α2 −
∑

i

β2
i = −1 (2.1)

Assume that the (−2)-curve � satisfies L ′� < 0. We have

0 > L ′� = ((2k + 1)L − 2k(k + 1)A1) � = 2αk(k + 1)(2k + 1) − 4k(k + 1)β1,

thus

β1 >
(2k + 1)

2
α.

Combining with Eq. (2.1) we get

−1 = k(k + 1)α2 −
∑

i

β2
i < −1

4
α2 −

16∑

i=2

β2
i .

which is
1

4
α2 +

16∑

i=2

β2
i < 1 (2.2)

thus α ∈ {0, 1/2, 1, 3/2}.
If α = 0, by (2.1) either exactly one of the βi = 1 (but this is not possible since it

would give � = −Ai ) or exactly 4 of the β ′
i s are equal to

1
2 and the others are 0 but

such a class is not contained in NS(X) by Lemma 4.
If α = 1

2 , then from inequality (2.2), βi ∈ {0, 1
2 } for i ≥ 2 and at most 3 of these

βi ’s equal 1
2 . By Lemma 4 at least 4 of the βi are in 1

2Z \ Z, thus 3 of the βi , i ≥ 2
equals 1

2 and the others are 0. Then from Eq. (2.1), we get:

β2
1 = k2 + k + 1

4
.

Suppose that there exists n ∈ N such that k2 + k + 1 = n2. Then n > k, but since
n2 ≥ (k + 1)2 > k2 + k + 1, we get a contradiction. Hence ∀k ∈ N

∗, the integer
k2 + k + 1 is never a square and therefore the case α = 1

2 is impossible.
If α = 1, at most 2 of the βi ’s with i > 1 are equal 1

2 and the others are 0, by
applying Lemma 4 we get βi = 0 for i > 1 and β1 ∈ N. Then Eq. (2.1) implies

β2
1 = k2 + k + 1,

which we know has no integral solutions for k > 0.
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If α = 3
2 , at most 1 of the βi ’s with i > 1 is 1

2 , this is also impossible by Lemma
4, therefore such � does not exist and this concludes the proof that L ′ is big and nef
for all k ≥ 1.

Assume that the (−2)-curve � satisfies L ′� = 0 and is not A j for j ≥ 2. Then one
has β1 = (2k+1)

2 α, and one computes that either α = 2, β1 = 2k + 1 and � = A′
1,

or α = 1, β1 = (2k+1)
2 α and (up to re-ordering) β2 = b3 = b4 = 1/2. Since α is an

integer the second case is impossible by Lemma 4.
Proof of b). By [23, Section 3.8] either |L ′| has no fixed part or L ′ = aE + �,

where |E | is a free pencil, and � a (−2)-curve with E� = 1. In that case, write
� = αL − ∑

βi Ai . Then

2k(k + 1) = L ′2 = 2a − 2

gives a = k2 + k + 1. In particular, a is odd. But

a − 2 = L ′� = 2k(k + 1)(2k + 1)α − 4k(k + 1)β1

and since α, β1 ∈ 1
2Z, one gets that a is even, which yields a contradiction. Therefore

|L ′| has no base components. By [27, Corollary 3.2], it then has no base points.
Proof of c). The linear system |L ′| is big and nef without base points. We have to

show that the resulting morphism has degree one, i.e. that |L ′| is not hyperelliptic (see
[27, Section 4]). By loc. cit., |L ′| is hyperelliptic if there exists a genus 2 curve C such
that L ′ = 2C or there exists an elliptic curve E such that L ′E = 2.

In the first case L ′2 = 8, but since L ′2 = 2k(k + 1), that cannot happen. Assume
now

E = αL −
∑

βi Ai ,

for E with EL ′ = 2, we get

2 =
(
αL −

∑
βi Ai

)
((2k + 1)L − 2k(k + 1)A1) = k(k + 1) (2(2k + 1)α − 2β1) .

Since α, β1 ∈ 1
2Z, 2(2k+1)α−2β1 is an integer, thus we get k = 1 and 6α−2β1 = 1.

Since E2 = 0, one obtain

2α2 =
∑

β2
i ,

using β1 = 3α − 1
2 , one reaches a contradiction.

Therefore |L ′| defines a birational map X → P
N onto its image, contracting the

(−2)-curves � such that L ′� = 0, moreover N = h0(L ′)−1 = L ′2
2 +1 = k2 +k+1.

��
We can now prove Theorem 5:
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Proof We proved that the only (−2)-classes that are contracted by L ′ are A′
1, A2,

. . . , A16. We know moreover that A′
1A j = Ai A j = 0 for 2 ≤ i �= j ≤ 16. Since

one has L ′A′
1 = 0 the base point free linear system |L ′| contracts the connected

components of A′
1 to some points. Therefore by the Grauert contraction Theorem (see

[4, Chapter III, Theorem 2.1]), the support of A′
1 is the union of irreducible curves

(Ci )i∈{1,...,m} (form ∈ N, m �= 0) such that the intersection matrix (CiC j ) is negative
definite.

Since X is a K3 surface, the curves Ci are (−2)-curves. Since L ′ only contracts
the (-2)-classes A′

1, A2, . . . , A16 that are disjoint, we get that m = 1 and we conclude
that A′

1 is the class of a (−2)-curve C1. ��

2.2 A projective model of the surface Km(B)

Let us describe a natural map from Km(B) to Pk+1, which is birational for k > 1:

Theorem 7 The class D = L − k A1 is big and nef with

(L − k A1)
2 = 2k

and for k ≥ 2 it defines a birational map

φ : Km(B) → P
k+1

onto its image X such that X (of degree 2k) has 15 ordinary double points and
moreover the curves A′

1 and A1 are sent to two rational curves of degree 2k such that
A1A′

1 = 2(2k + 1).

Remark 8 We have

A′
1 + A1 = 2(L − k A1)

so that A′
1 + A1 is cut out by a quadric of Pk+1 and is 2-divisible.

Proof We proceed as in Proposition 6.
Let us show that D is nef and big. We have to prove that D� ≥ 0 for each

irreducible (−2)-curve �. As above, let

� = αL −
∑

βi Ai , α, βi ∈ 1

2
Z,

be such that �D < 0. Then

�D = 2αk(k + 1) − 2kβ1 < 0,

implies β1 > (k + 1)α.
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Combining with the Eq. (2.1), we get

1 > (k + 1)α2 +
∑

i≥2

β2
i ,

thus α < 1. As in Proposition 6, the case α = 0 is impossible. If α = 1
2 , then

k ∈ {1, 2}, but as above, Lemma 4 implies that this is not possible. Thus D is nef and
big.

Let us now suppose k > 1. Let us show that |D| has no base components.
Suppose that there is a base component. Then D = aE + �, where a ∈ N, |E | is a
free pencil, � is a (−2)-curve and E� = 1. One has

2k = D2 = 2a − 2,

thus a = k + 1, so that

L − k A1 = (k + 1)E + �.

Suppose that � = A1, then 2k = A1D = k − 1 and k = −1, which is impossible. If
� = Ai , i ≥ 2, then 0 = DAi = k − 1, thus k = 1, but we assumed that k > 1.

Thus we can assume that � is not one of the Ai and write � = αL − ∑
βi Ai with

α, βi ≥ 0. One has
2k = DA1 = (k + 1)E A1 + 2β1, (2.3)

moreover
2k(k + 1) = (L − k A1)L = (k + 1)EL + 2k(k + 1)α. (2.4)

Since E A1 ≥ 0 we obtain from Eq. (2.3) that either β1 = k (and E A1 = 0) or
β1 = k−1

2 and E A1 = 1, in that second case since

E(L − k A1) = E((k + 1)E + �) = 1

one obtains EL = k + 1.
Since EL ≥ 0, we obtain from Eq. (2.4) that α ∈ {0, 1

2 , 1}, but as in Proposition
6, α = 0 is not possible. Moreover if α = 1, EL = 0, but this contradicts the Hodge
Index Theorem since E2 = 0 and L2 > 0, therefore α = 1

2 . If β1 = k, from�2 = −2,
one gets

k(k + 1)

4
− k2 −

∑

i≥2

β2
i = −1

which is

∑

i≥2

β2
i = 1

4
(−3k2 + k + 4).
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But for k > 1, −3k2 + k + 4 < 0 and we obtain a contradiction. If now β1 = k−1
2 ,

then EL = k + 1, but Eq. (2.4) gives EL = k, contradiction. Therefore |D| has no
base component.

Let us show that |D| defines a birational map. We have to show that |D| is not
hyperelliptic. Suppose that D = 2C where C is a genus 2 curve. Then D2 = 8; since
D2 = 2k, we get k = 4. One has D = L − 4A1 and the class of C is 1

2 L − 2A1. Then
1
2 L ∈ NS(X), which contradicts the fact that L generates the orthogonal complement
of the Kummer lattice K in NS(KM(B)), and so L is primitive. Suppose now that there
exists an elliptic curve E such that DE = 2. Let

E = αL −
∑

βi Ai ,

with α ∈ 1
2Z. Since D = L − k A1, one has

DE = 2k(k + 1)α − 2kβ1,

therefore k(k + 1)α − kβ1 = 1. If α ∈ Z, then if β1 ∈ Z, one gets k = 1, if β1 = b
2

with b odd, then

k(2(k + 1)α − b) = 2

and k = 2 (we supposed k > 1), 6α − b = 2, which is impossible since b is odd. If
α = a

2 with a ∈ Z odd , then k((k + 1)a − 2β1) = 2. Then since 2β1 ∈ Z and k > 1,
one has k = 2 and 3a − 2β1 = 1, thus β1 = 3a−1

2 = 3α − 1
2 ∈ Z. We have moreover

(since k = 2):

0 = E2 = 6α2 −
∑

β2
i

thus

9α2 − 3α + 1

4
+

∑

i≥2

β2
i = 6α2,

and 3α2 − 3α + 1
4 ≤ 0, the only possibility is α = 1

2 , but then
∑

i≥2 β2
i = 1

2 , which

is impossible since, by Lemma 4, there is no class with βi = 1
2 for only 2 indices i .

Therefore when k > 1, |D| defines a birational map to PN , with N = D2

2 +1 = k+1.
That map contracts the curves � with �D = 0, ie A2, . . . , A16.

One has

A1(L − k A1) = 2k = A′
1(L − k A1),

thus the curves A1, A′
1 in P

k+1 have degree 2k. Moreover A1A′
1 = 2(2k + 1).

Let us prove that the 15 (−2)-curves Ai , i > 1 are the only ones contracted i.e.
they are the only solutions of the equation�D = 0, (D = L−k A1). Suppose� �= Ai ,
� = αL − ∑

βi Ai . One has �D = 0 if and only if
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α(k + 1) = β1,

and α2k(k + 1) − ∑
β2
i = −1, which gives

(k + 1)α2 +
∑

i>1

β2
i = 1,

which has no solutions by Lemma 4. ��
Remark 9 To the pair (L, A1) one can associate the pair (L ′, A′

1), with

L ′ = (2k + 1)L − 2k(k + 1)A1, A′
1 = 2L − (2k + 1)A1

with the same numerical properties

L2 = L ′2 = 2k, L A1 = 0 = L ′A′
1, L A′

1 = 4k(k + 1) = L ′A1.

The polarization L ′ comes from a polarizationM ′ on theAbelian surface B ′ associated
to the Nikulin configuration A′

1, A2, . . . , A16. We will see that for k = 1 the mapping

 : (L, A1) → (L ′, A′

1) is an involution of NS(X) which comes from an involution
of X , and the Abelian surfaces B, B ′ are isomorphic.

One can repeat the construction with (L ′, A2) instead of L, A1 etc... Let us define
the maps 
i , 
 j , {i, j} = {1, 2} by 
i (L) = (2k + 1)L − 2k(k + 1)Ai , 
i (Ai ) =
2L − (2k + 1)Ai , 
i (A j ) = A j . It is easy to check that 
1 ◦ 
2 has infinite order,
and we therefore obtain in that way an infinite number of Nikulin configurations. For
any k ∈ N, k �= 0, we will see that the map 
i ◦ 
 j for i �= j is in fact the restriction
of the action of an automorphism of X on NS(X).

2.3 The first cases k = 1, 2, 3, 4

In this subsection, we give a more detailed description of our construction when k is
small. One has

k 1 2 3 4

A1A
′
1 6 10 14 18

L2 4 12 24 40

and the morphism φ associated to the linear system |L−k A1| is fromKm(B) to Pk+1,
with k + 1 = 2, 3, 4, 5 (which produce the most famous geometric examples of K3
surfaces).

The case k = 1 has been discussed in the Introduction.
For k = 2, the result was already observed in [24]. The image of φ is a 15-nodal

quartic Q = Q4 in P
3, the curves A1, A′

1 are sent to two degree 4 rational curves
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(denoted by the same letters) meeting in 10 points. As we already observed, the divisor
A1 + A′

1 is a 2-divisible class. The double cover Y → Q branched over A1 + A′
1 has

40 ordinary double points coming from the 15 singular points on Q and from the 10
intersection points of A1 and A′

1. This surface Y is described in [24]. It is a general
type surface, a complete intersection in P4 of a quadric and the Igusa quartic. It is the
canonical image of its minimal resolution. The double cover S of Y branched over
the 40 nodes is a so-called Schoen surface. It is a surface with pg(S) = pg(Y ) = 5,
thus the canonical image of S is Y and the degree of the canonical map of the Schoen
surface is 2.

For k = 3, one get a model Q6 of X in P
4 which is the complete intersection of a

quadric and a cubic. In a similar way as before, Q6 has 15 ordinary double points and
A1 and A′

1 are sent by |L − 3A1| to two rational curves of degree 6 with intersection
number 14.

For k = 4, one get a degree 8model Q8 of X inP5 which is the complete intersection
of 3 quadrics. That model has 15 ordinary double points and the curves A1 and A′

1 are
sent by |L − 4A1| to two rational curves of degree 8 with intersection number 18.

3 Nikulin configurations and automorphisms

3.1 Construction of an infinite order automorphism

Let us denote by Kabcd with a, b, c, d ∈ {0, 1} the 16 (−2)-curves on the K3 surface
X = Km(A), and as before let L be the polarization coming from the polarization of
A.

Let K be the lattice generated by the following 16 vectors v1, . . . , v16:

1

2

∑

p∈A[2]
Kp,

1

2

∑

W1

Kp,
1

2

∑

W2

Kp,
1

2

∑

W3

Kp,
1

2

∑

W4

Kp, K0000,

K1000, K0100, K0010, K0001, K0011, K0101, K1001, K0110, K1010, K1100

where Wi = {(a1, a2, a3, a4) ∈ (Z/2Z)4 | ai = 0}. By results of Nikulin, [19], the
lattice K is the minimal primitive sub-lattice of H2(X ,Z) containing the (−2)-curves
Kabcd . The discriminant group K∨/K is isomorphic to (Z2)

6 and the discriminant
form of K is isometric to the discriminant form of U (2)⊕3.

Lemma 10 (See [9, Remark 2.3]) The Néron-Severi group NS(X) is generated by K
and v17 := 1

2 (L + ω4d), where L is the positive generator of K⊥ with L2 = 4d (here

d = k(k+1)
2 ), and if L2 = 0 mod 8,

ω4d = K0000 + K1000 + K0100 + K1100,

if L2 = 4 mod 8,

ω4d = K0001 + K0010 + K0011 + K1000 + K0100 + K1100.
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One has moreover

Lemma 11 ([9, Remark 2.11]) The discriminant group of NS(X) is isomorphic to
(Z/2Z)4 × Z/4dZ. Suppose that d = 4 mod 8. Then NS(X)∨/NS(X) is generated
by

w1 = 1

2
(v6 + v8 + v10 + v12), w2 = 1

2
(v12 + v13 + v14 + v15),

w3 = 1

2
(v11 + v13 + v14 + v16), w4 = 1

2
(v9 + v10 + v12 + v13),

w5 = 1

2
(v6 + v12 + v13) + 1

4d
(v7 + v8 + v9 + v10 + (1 + 2d)v11 + v16 − 2v17)

Suppose that d = 0 mod 8. Then NS(X)∨/NS(X) is generated by

w1 = 1

2
(v6 + v12 + v14 + v16), w2 = 1

2
(v6 + v13 + v15 + v16),

w3 = 1

2
(v6 + v8 + v10 + v12), w4 = 1

2
(v6 + v8 + v9 + v13),

w5 = 1

2
(v11 + v12 + v13) + 1

4d
((1 + 2d)v6 + v7 + v8 + v16 − 2v17)

In both cases, the discriminant form of NS(X) is isometric to the discriminant form
of U (2)⊕3 ⊕ 〈4d〉 and the transcendental lattice TX = NS(X)⊥ is isomorphic to
U (2)⊕3 ⊕ 〈−4d〉.
Proof The columns of the inverse of the intersection matrix (viv j )1≤i, j≤17 is a base of
NS(X)∨ in the base v1, . . . , v17. From that data we obtain the generators w1, . . . , w5
of NS(X)∨/NS(X). The matrix (wiw j )1≤i, j≤5 is

⎛

⎜
⎜
⎜
⎜
⎝

0 1
2 0 0 0

1
2 0 0 0 0
0 0 0 1

2 0
0 0 1

2 0 0
0 0 0 0 1

4d

⎞

⎟
⎟
⎟
⎟
⎠

∈ M5(Q/Z),

one has moreover w2
i = 0 mod 2Z for 1 ≤ i ≤ 4 and w2

5 = 1
4d mod 2Z. Thus the

discriminant form

q : NS(X)∨/NS(X) → Q/2Z

is isometric to the discriminant form ofU (2)⊕3⊕〈4d〉. Since H2(X ,Z) is unimodular,
andU (−2) � U (2), we obtain TX (for more details see e.g. [11, Chap. 14, Proposition
0.2]). ��
In Sect. 2, we associated to L and to A j the divisors

L j = (2k + 1)L − 2k(k + 1)A j , A′
j = 2L − (2k + 1)A1.
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The vector space endomorphism

θ j : NS(X) ⊗ Q → NS(X) ⊗ Q

defined by θ j (Ai ) = Ai for i �= j and

θ j (A j ) = A′
j , θ j (L) = L j

is an involution, and we will see that it is an isometry (cf. Lemma 13). Let us define

�1 = θ2θ1.

The endomorphism �1 has infinite order, its characteristic polynomial det(T Id −�1)

is the product of (T − 1)15 and the Salem polynomial

T 2 + (2 − 4k2)T + 1.

The aim of this section is to prove the following result:

Theorem 12 The automorphism �1 extends to an effective Hodge isometry � of
H2(X ,Z) and there exists an automorphism ι of X which acts on H2(X ,Z) by ι∗ = �.

Let us start by the following Lemma:

Lemma 13 The morphisms θ1, θ2, �1 preserve NS(X) and are isometries of NS(X).

Proof It is simple to check that θ j preserves the lattice generated by K , L and v17 =
1
2 (L+ω4d). Since for all 1 ≤ i, j ≤ 16onehas θ j (Ai )θ j (Ak) = Ai Ak , θ j (L)θ j (Ai ) =
L Ai = 0, θ j (L)2 = L2, θ j is an isometry of NS(X), hence so is �1 = θ2θ1. ��
Let TX = NS(X)⊥. We define �2 : TX → TX as the identity. The map (�1,�2) is
an isometry of NS(X) ⊕ TX .

Lemma 14 The morphism (�1,�2) extends to an isometry � of H2(X ,Z).

Proof Let L1, L2 be the lattices L1 = NS(X), L2 = TX = NS(X)⊥. Let us denote
by

qi : L∨
i /Li → Q/2Z

the discriminant form of Li . By Lemma 11 and its proof, we know the form q1 on the
base wi .

One has L2 = U (2) ⊕ U (2) ⊕ 〈−4d〉. Let us take the base ei , 1 ≤ i ≤ 5 of L2
such that the intersection matrix of the e j ’s is

(ei e j )1≤i, j≤5 = −

⎛

⎜
⎜
⎜
⎜
⎝

0 2 0 0 0
2 0 0 0 0
0 0 0 2 0
0 0 2 0 0
0 0 0 0 4d

⎞

⎟
⎟
⎟
⎟
⎠

.
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The elements w′
i = 1

2ei for 1 ≤ i ≤ 4 and w′
5 = 1

4d e5 are generators of L
∨
2 /L2. Let

φ : L∨
2 /L2 → L∨

1 /L1

be the isomorphism (called the gluing map) defined by

φ(w′
i ) = wi .

One has q1(φ(
∑

aiw′
i )) = −q2(

∑
aiw′

i ) i.e.

q2 = −φ∗q1.

Since L1, L2 are primitive sub-lattices of the even unimodular lattice H2(X ,Z) with
L2 = L⊥

1 , the lattice H2(X ,Z) is obtained by gluing L1 with L2 by the gluing
isomorphism φ. In other words H2(X ,Z) is generated by all the lifts in L∨

1 ⊕ L∨
2 of

the elements (wi , w
′
i ), i = 1, . . . , 5 of the discriminant group of L1 ⊕ L2.

According to general results (see e.g. [16, p. 5]), the element (�1,�2) of the
orthogonal group of L1 ⊕ L2 extends to H2(X ,Z) if and only if the gluing map φ

satisfies φ ◦ �2 = �1 ◦ φ. A simple computation gives that for 1 ≤ i ≤ 4, one has
θ jwi = −wi = wi (for j ∈ {1, 2}), thus �1(wi ) = wi . Moreover we compute that

θ j (w5) = (1 − 2k2)w5

and since (1− 2k2)2 = 1 modulo 4d = 2k(k + 1), one gets �1(w5) = θ2θ1w5 = ω5.
Since by definition �2(w

′
i ) = w′

i for i = 1, . . . , 5, we obtain the desired relation
φ ◦ �2 = �1 ◦ φ. ��
Remark 15 Because of the relation θ j (w5) = (1−2k2)w5, j ∈ {1, 2} at the end of the
proof of Lemma 14, it is not possible to extend the involution θ j to an isometry, unless
k = 1. In that case, using the proof of Lemma 17 below, the involution θ j extends to an
effective Hodge isometry (with action by multiplication by −1 on TX ). The resulting
non-symplectic involution is in fact known under the name of projection involution,
see e.g. [13].

Lemma 16 The morphism � is an Hodge isometry: its C-linear extension �C :
H2(X ,C) → H2(X ,C) preserves the Hodge decomposition.

Proof The map � is the identity on the space TX ⊗ C containing the period. ��
Lemma 17 The Hodge isometry � is effective.

Proof Since X is projective by [4, Proposition 3.11], it is enough to prove that the
image by � of one ample class is an ample class. Let m ≥ 2 be an integer. By [9,
Proposition 4.3], the divisor D = mL − 1

2

∑
i≥1 Ai is ample. The image by θ1 of D

is

θ1(D) = mL1 − 1

2

⎛

⎝A′
1 +

∑

i≥2

Ai

⎞

⎠
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where by Sect. 2we have that A′
1 is a (−2)-curve, which is disjoint from the A j , j ≥ 2,

and these 16 (−2)-curves have intersection 0with L1 = θ1(L). There exists anAbelian
surface B ′ such that X = Km(B ′) and these 16 (−2)-curves are resolution of the 16
singularities in B ′/[−1]. Moreover L1 comes from a polarization M ′ on B ′, which
clearly generates NS(B ′). Thus again by [9, Proposition 4.3], θ1(D) is ample.

The analogous proof with (θ2, A2) instead of (θ1, A1) gives us that θ2(D) is also
ample. Since θi , i = 1, 2 are involutions and � = θ2θ1, we conclude that

�(θ1(D)) = θ2(D)

is ample, and thus � is effective. ��
Wecan now apply the Torelli Theorem forK3 surfaces (see [4, Chap. VIII, Theorem

11.1]): since� is an effectiveHodge isometry there exists an automorphism ι : X → X
such that ι∗ = �. This finishes the proof of Theorem 12. ��
Remark 18 The Lefschetz formula for the fixed locus X ι of ι on X gives

χ(X ι) =
4∑

i=0

(−1)i tr(�|Hi (X ,R)) = 1 + (4k2 + 18) + 1 = 20 + 4k2,

(here ι∗ = �). If k = 1 then χ(X ι) = 24 and we can easily see that X ι contains
two rational curves. Indeed in this case as remarked before (Remark 15) θi , i = 1, 2
can be extended to a non-symplectic involution (still denoted θi ) of the whole lattice
H2(X ,Z). The fixed locus of each θi , i = 1, 2 are the curves pull-back on X of the
six lines in the branching locus of the double cover of P2 (the θi , i = 1, 2 are the
covering involutions). These curves are different except for the pull-backs �1 and �2
of two lines, which are the lines passing through the point of the branching curve
corresponding to A2 if we consider the double cover determined by the involution
θ1, respectively through the point corresponding to A1 if we consider θ2. So the
infinite order automorphism ι corresponding to� = θ2θ1 fixes the two rational curves
�1 and �2 on X . By using results of Nikulin on non-symplectic involutions [1] the
invariant sublattices H2(X ,Z) for the action of θi , i = 1, 2 are both isometric to
U ⊕ E8(−1) ⊕ 〈−2〉⊕6.

3.2 Action of the automorphism group on Nikulin configurations

The aim of this sub-section is to prove the following result

Theorem 19 Suppose that k ≥ 2. There is no automorphism f of X sending the
configuration C = ∑16

i=1 Ai to the configuration C′ = A′
1 + ∑16

i=2 Ai .

Suppose that such an automorphism f exists. The group of translations by the 2-
torsion points on B acts on X = Km(B) and that action is transitive on the set of
curves A1, . . . , A16. Thus up to changing f by f ◦ t (where t is such a translation),
one can suppose that the image of A1 is A′

1. Then the automorphism f induces a
permutation of the curves A2, . . . , A16. The (−2)-curve A′′

1 = f 2(A1) = f (A′
1) is
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orthogonal to the 15 curves Ai , i > 1 and therefore its class is in the group generated
by L and A1. By the description of NS(X), the (−2)-class A′′

1 = aA1 + bL has
coefficients a, b ∈ Z . Moreover a, b satisfy the Pell-Fermat equation

a2 − k(k + 1)b2 = 1. (3.1)

Let us prove:

Lemma 20 Let C = aA1 + bL be an effective (−2)-class. Then there exists u, v ∈ N

such that aA1 + bL = uA1 + vA′
1, in particular the only (−2)-curves in the lattice

generated by L and A1 are A1 and A′
1.

Proof If (a, b) is a solution of Eq. (3.1), then so are (±a,±b). We say that a solution
is positive if a ≥ 0 and b ≥ 0. Let us identify Z

2 with A = Z[√N ] by sending
(a, b) to a + b

√
N , where N = k(k + 1). The solutions of (3.1) are units of the

ring A. According to the Chakravala method solving Eq. (3.1), there exists a solution
α + β

√
N (called fundamental) with α, β ∈ N

∗ such that the positive solutions are
the elements of the form

am + bm
√
N = (α + β

√
N )m, m ∈ N.

The first term of the sequence of convergents of the regular continued fraction for
√
N

is

2k + 1

2
,

and since (2k + 1, 2) is a solution of (3.1), the fundamental solution is (α, β) =
(2k + 1, 2).

An effective (−2)-class C = aA1 + bL either equals A1 or satisfies CL > 0 and
CA1 > 0, therefore b > 0 and a < 0. Thus if C �= A1, there exists m such that
C = −am A1 + bmL . Since A′

1 = 2L − (2k + 1)A1, one obtains

−am A1 + bmL = bm
2

A′
1 + ((2k + 1)

bm
2

− am)A1

and the Lemma is proved if the coefficients um = bm
2 and vm = (2k + 1) bm2 − am are

both positive and in Z. Using the relation

am+1 + bm+1
√
N = (2k + 1 + 2

√
N )(am + bm

√
N ),

that follows from an easy induction. ��

Therefore we conclude that A′′
1 = A1 i.e. f permutes A1 and A′

1. Let us finish the
proof of Theorem 19:
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Proof The class f ∗L is orthogonal to A′
1, A2, . . . , A16, thus this is a multiple of the

class L ′ = (2k + 1)L − 2k(k + 1)A1 which has the same property. Since both classes
have the same self-intersection and are effective, one gets f ∗L = L ′; by the same
reasoning, since f ∗A′

1 = A1, one gets f ∗L ′ = L . By [9, Proposition 4.3], the divisor

D = 2L − 1

2

∑

i≥1

Ai

is ample, thus f ∗D = 2L ′ − 1
2 (A

′
1 + ∑

i≥2 Ai ) is also ample and so is D + f ∗D.
Moreover D + f ∗D is preserved by f , thus by [11, Proposition 5.3.3], the automor-
phism f has finite order. Up to taking a power of it, one can suppose that f has order
2m for some m ∈ N

∗. Suppose m = 1, ie f is an involution. Then

1

2
(A1 + A′

1) = L − k A1

is fixed, there are curves Ai , i > 1 such that f (Ai ) = Ai (say s of such curves;
necessarily s is odd) and f permutes the remaining curves A j by pairs (there are
t = 1

2 (15 − s) such pairs). Let � be the lattice generated by the classes Ai fixed by
f , by A j + f (A j ) if f (A j ) �= A j and by L − k A1. It is a finite index sub-lattice of
NS(X) f , the fix sub-lattice of the Néron-Severi group. The discriminant group of �

is

Z/2kZ × (Z/2Z)s × (Z/4Z)t .

Since in NS(X) there is at most a coefficient 1
2 on L , the discriminant of NS(X) f

containsZ/kZ. If f was non-symplectic, thenM = NS(X) f would be a 2-elementary
lattice (see [2]; it means that the discriminant group M∗/M � (Z/2Z)a for some
integer positive a). But for k > 2 this is impossible, therefore f has to be symplectic.

For k = 2, we use the model Y ↪→ P
3 of degree 4 with 15 nodes of X determined

by the divisor L − 2A1. Since f preserves L − k A1, the involution on X induces an
involution (still denoted f ) on P3 = |L − k A1| preserving Y . Up to conjugation, f is
x → (−x1 : x2 : x3 : x4) or x → (−x1 : −x2 : x3 : x4).

Suppose that f is f : x → (−x1 : x2 : x3 : x4). The hyperplane x1 = 0 cuts
the quartic Y into a quartic plane curve C0 ↪→ Y . The surface Y is a double cover
of P(2, 1, 1, 1) branched over C0 ↪→ P(2, 1, 1, 1). The quartic C0 is irreducible and
reduced, since otherwise X would have Picard number > 17. The singularities on C0
are at most nodes and the corresponding nodes on Y are fixed by f . Let us recall that
the number s of fixed nodes is odd.

Suppose that C0 contains 3 nodes. Its pull back C ′
0 on X is a smooth rational curve.

The rank of the sub-lattice NS(X) f is 1 + s + t = 10. By [2, Figure 1], the genus of
the fixed curve C ′

0 must be strictly positive, which is a contradiction.
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Suppose that C0 contains 2 nodes, then the isolated fixed point (1 : 0 : 0 : 0) is
also a node; the rank of NS(X) f is still 10. One has

[NS(X) f : �]2 = det�

detNS(X) f
= 22+1+2t

2a
= 217−a,

thus a is odd. However by [2, Figure 1], when NS(X) f has rank 10, the integer a is
always even, this is a contradiction.

Suppose that C0 contains 1 node. Its pull back on X is a smooth genus 2 curve.
One has rkNS(X) f = 9. By [2, Figure 1], since the fixed curve has genus 2, one has
a = 9, therefore

[NS(X) f : �]2 = 217−a = 28,

and there are at most 4-classes which are 2-divisible in the discriminant group

Z/4Z × Z/2Z × (Z/4Z)7

of �. But then the discriminant group of NS(X) f would contain a sub-group Z/4Z,
which is a contradiction.

Suppose that f is f : x → (−x1 : −x2 : x3 : x4) (observe that we can not exclude
immediately this case since Y is singular. If Y would be smooth then such an f would
correspond to a symplectic automorphism). The line x1 = x2 = 0 or x3 = x4 = 0
cannot be included in Y , otherwise Y would be singular along that line (this is seen
using the equation of Y ). The number of fixed nodes being odd, there are 1 or 3 fixed
nodes of Y on these two lines (the intersection number of each lines with Y being 4).

Suppose that one node is fixed. The corresponding (−2)-curve on X must be stable,
moreover rkNS(X) f = 9. But by [2, Figure 1], there is no non-symplectic involution
on a K3 surface such that rkNS(X) f = 9 and the fix-locus is a (−2)-curve or is empty.
By the same reasoning, one can discard the case of 3 stable rational curves.

We therefore proved that for any k > 1, f must be symplectic.
A symplectic automorphism acts trivially on the transcendental lattice TX , which

in our situation has rank 5. Therefore the trace of f on H2(X ,Z) equals 6 + s > 6.
But the trace of a symplectic involution equals 6 (see e.g. [28, Section 1.2]). This is a
contradiction, thus f cannot have order 2 and m is larger than 1.

The automorphism g = f 2
m−1

has order 2 and g(A1) = A1, g(A′
1) = A′

1, thus
g(L) = L . There are curves Ai , i > 1 such that f (Ai ) = Ai (say s of such, s is
odd since A1 is fixed) and the remaining curves A j are permuted 2 by 2 (there are
t = 1

2 (15 − s) such pairs). Let similarly as above �′ be the sub-lattice generated by
L, A1 and the fix classes Ai , A j + g(A j ). It is a finite index sub-lattice of NS(X)g

and its discriminant group is

Z/2k(k + 1)Z × (Z/2Z)s+1 × (Z/4Z)t .
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By the same reasoning as before, the automorphism g must be symplectic as soon as
k > 1. But the trace of g is 8 + s > 6, thus g cannot be symplectic either. Therefore
we conclude that such an automorphism f does not exist. ��

3.3 Consequences on the Kummer structures on X

A Kummer structure on a K3 surface X is an isomorphism class of Abelian surfaces
B such that X � Km(B). The following Proposition is stated in [12]; we give here a
proof for completeness:

Proposition 21 The Kummer structures on X are in one-to-one correspondence with
the orbits of Nikulin configurations under the automorphism group Aut(X) of X.

Proof Let C be a Nikulin configuration on the K3 surface X . By [19, Theorem 1] of
Nikulin, there exists a unique (up to isomorphism) double cover B̃ → X branched
over C. Moreover the minimal model B of B̃ is an Abelian surface, and X is the
Kummer surface associated to B, C being the union of the exceptional curves of the
resolution X = Km(B) → B/[−1].

Let μ : X → X be an automorphism sending a Nikulin configuration C to C′. Let
B, B ′ be the abelian surfaces such that C (resp. C′) is the configuration associated to
Km(B) = X (resp. Km(B ′) = X ).

Let B̃ → B and B̃ ′ → B ′ be the blow-up at the sixteen 2-torsion points of B (resp.

B ′). Consider the natural map B̃ → X
μ→ X : it is a double cover of X branched over

C′ and ramified over the exceptional locus of B̃ → B, thus by the results of Nikulin
we just recalled, B̃ is isomorphic to B̃ ′ and B � B ′.

Reciprocally, suppose that there is an isomorphism φ : B → B ′. It induces an
isomorphism φ̃ : B̃ → B̃ ′ that induces an isomorphism X = Km(B) → Km(B ′) =
X which sends theNikulin configurationC corresponding to B to theKummer structure
C′ corresponding to B ′. ��
According to [12], the number of Kummer structures is finite. If X = Km(B) and B∗
is the dual of B, by result of Gritsenko and Hulek [10] one has also X � Km(B∗),
thus if B is not principally polarized, the number of Kummer structures is at least 2.

When NS(B) = ZM , by results of Orlov [20] on derived categories, the number
of Kummer structures equals 2s where s is the number of prime divisor of 1

2M
2. In

our situation one has M2 = k(k + 1). By Sect. 3.2 as soon as k > 2, there is no
automorphism sending the configuration C = ∑16

i=1 Ai to C′ = A′
1 + ∑16

i=2 Ai , thus

Corollary 22 Suppose k ≥ 2. The two Nikulin configurations C = ∑16
i=1 Ai and

C′ = A′
1 + ∑16

i=2 Ai represent two distinct Kummer structures on X.

Remark 23 When k = 2 then k(k+1)
2 = 3 is divisible by one prime, thus the con-

figurations C and C′ are the two representatives of the set of Kummer structures on
X = Km(B). Observe that X is also isomorphic to Km(B∗), where B∗ is the dual of
B. Since B is not isomorphic to B∗, the double cover of X branched over C′ is (the
blow-up of) B∗.
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4 bi-double covers associated to Nikulin configurations

4.1 A hyperelliptic curve with genus≤ 2k and a point of multiplicity 2(2k + 1) on
the Abelian surface B

We keep the notations as above: (B, M) is a polarized Abelian variety with M2 =
k(k + 1) and Pic(B) = ZM . The associated K3 surface X = Km(B) contains the 17
smooth rational curves

A1, A
′
1, A2, . . . , A16

such that A1, . . . , A16 are the 16 disjoint (−2)-curves arising from the Kummer struc-
ture, A′

1 is a (−2)-curve such that A′
1, A2, . . . , A16 is a Nikulin configuration and

A1A
′
1 = 4k + 2.

Let π : B̃ → B be the blow-up of B at the 16 points of 2-torsion, so that there is a
natural double cover B̃ → X = Km(B) branched over the 16 exceptional divisors.

Let �̃ be the pull-back of A′
1 on B̃ and let � be the image of �̃ on B. We denote by

E ↪→ B̃ the (−1)-curve above A1. Let us prove the following result

Proposition 24 The curve � ↪→ B is hyperelliptic, it has geometric genus ≤ 2k and
has a unique singularity, which is a point of multiplicity 2(2k + 1). The curve � is in
the linear system |4M |, in particular �2 = 16k(k + 1).

Proof The singularities on a curve that is the union of two smooth curves on a smooth
surface are of type

a2m−1, m ≥ 1,

where an equation of an a2m−1 singularity is {x2m − y2 = 0}. This is well-known
by experts but we couldn’t find a reference and we therefore sketch a proof. At a
singularity p, there are local parameters x, y such that C1 is given by y = 0. By the
implicit function theorem, we reduce to the case where the curve C2 has equation
y = xm for some m > 0. Then the singularity has equation {y(y − xm) = 0}, which
after a variable change becomes {x2m − y2 = 0}.

Let us denote by αm the number of a2m−1 singularities on the union A1+ A′
1. Since

a a2m−1 singularity contributes to m in the intersection of A1 and A′
1, one has

∑

m≥0

mαm = 4k + 2.

By [4, Table 1, Page 109], the curve �̃ ↪→ B̃ has a singularity am−1 above a singularity
a2m−1 of A1 + A′

1 (by abuse of language a a0-singularity means a smooth point). Let
�′ be de normalization of �̃; a a2m−1-singularity contributes in the ramification locus
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of the double cover �′ → A1 (induced by �̃ → A1) by 1 if m is odd and 0 if m is
even. Therefore the geometric genus of � is

2g(�) − 2 = 2 · (−2) +
∑

m odd

αm ≤ 4k + 2,

which gives g(�) ≤ 2k. The singularities of �̃ are at its intersection with E , and since

�̃E = 1

2
π∗
1 A1π

∗
1 A

′
1 = A1A

′
1,

we obtain �̃E = 4k + 2. Since E is contracted by the map B̃ → B, the curve �

(image of �̃) has a unique singular point of multiplicity 4k + 2.
Since A′

1 = 2L − (2k + 1)A1, its pull back on B̃1 is 4M̃ − 2(2k + 1)�̃ and its
image � has class 4M , thus �2 = 16k(k + 1). ��
Remark 25 Let us choose the point of multiplicity 2(2k + 1) of � as the origin 0 of
the group B. By construction the curve � does not contain any non-trivial 2-torsion
point of B1.

The problem of the intersection of A1 and A′
1

It is a difficult question to understand how the curves A1 and A′
1 intersect on the

Kummer surface X = Km(B). For k = 1 and 2 we know that these curves intersects
transversally in 4k + 2 points, and thus g(�) = 2k. For k = 1, it follows from the
geometric description of the Jacobian Kummer surface as a double cover of the plane
branched over 6 line. For k = 2 it is a by-product of [24].

In [6, Section 5, pp. 54–56] Bryan, Oberdieck, Pandharipande and Yin, quoting
results of Graber, discuss on a related problem which is about hyperelliptic curves on
Abelian surfaces. Let f : C → B be a degree 1 morphism from a hyperelliptic curve
C to an Abelian surface B with image C̄ , such that the polarization [C̄] is generic. Let
ι : C → C be the hyperelliptic involution.

Conjecture 26 (see [6]) Suppose B generic among polarized Abelian surfaces. The
differential of f is injective at the Weierstrass points of C, and no non-Weierstrass
points p is such that f (p) = f (ι(p)).

In our situation, that Conjecture means that the rational curves A1 and A′
1 meet

transversally. Indeed if they meet at a point tangentially with order m ≥ 2, then
the curve above A′

1 has a am−1 singularity. If m is even, there is no branch points
above that singular point, and thus there are points p, ι(p) (with p non-Weierstrass)
which are mapped to the same point by f . Ifm is odd and> 1, then the curveC above
A′
1 has a singularity am−1 of type “cusp”, the differential of its normalization is 0.
Construction of (nodal or smooth) rational curves on K3 surfaces is an important

problem, see e.g. [11, Chapter 13] for a discussion. The existence of two smooth
rational curves C1,C2 intersecting transversely and such that C1 + C2 is a multiple
nH of a polarization H is also a key point for obtaining the existence of an integer n
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such that there exists an integral rational curve in |nH |, see [11, Chapter 13, Theorem
1.1] and its proof.

4.2 Invariants of the bidouble covers associated to the special configuration

Let us define

D1 = A′
1, D2 = A1, D3 =

16∑

i=2

A j .

By Nikulin results, the divisors
∑16

i=2 A j + A1 and
∑16

i=2 A j + A′
1 are 2-divisible and

therefore there exists L1, L2, L3 such that

2Li = Dj + Dk

for {i, j, k} = {1, 2, 3}. Each Li defines a double cover

πi : B̃i → X

branched over Dj + Dk (here B̃1 = B̃). For i = 1, 2, above the 16 (−2)-curves of
the branch locus of πi : B̃i → X there are 16 (−1)-curves. Let B̃i → Bi be the
contraction map, so that the surface Bi (i = 1, 2) is an Abelian surface.

The divisors Di , Li , i ∈ {1, 2, 3} are the data of a bi-double cover

π : V → X

which is a (Z/2Z)2-Galois cover of X branched over the curves A′
1, Ai , i ≥ 1. By

classical formulas, the surface V has invariants

χ(OV ) = 4 · 2 + 1
2

∑
L2
i = k

K 2
V = (

∑
Li )

2 = 8k − 30.

The surface V contains 30 (−1)-curves, which are above the 15 curves Ai , i > 1.
The surface V is smooth if and only if the intersection of A1 and A′

1 is transverse,
i.e. if Conjecture 26 holds. Let us suppose that this is indeed the case, then one has
moreover the formula

pg(V ) = pg(X) +
∑

h0(X , Li ).

The space H0(X , Li ) is 0 for i = 1, 2 because the double covers branched over
D2 + D3 or D1 + D3 are Abelian surfaces Bi (i = 1, 2) and 1 = pg(Bi ) = pg(X) +
h0(X , Li ) ≥ 1. It remains to compute h0(X , L3). The divisor L3 = A1 + A′

1 is big
and nef (see Sect. 2). By Riemann-Roch, one has

χ(L3) = 1

2
L2
3 + 2 = k + 2.
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BySerre duality andMumford vanishingTheorem,h1(L3) = h1(L−1
3 ) = 0.Moreover

h2(L3) = h0(−L3) = 0, thus h0(L3) = k + 2 and therefore pg(V ) = k + 3. Let
V → Z be the blow-down map of the 30 (−1)-curves on V which are above the 15
(−2)-curves Ai , i > 1 in X . We thus obtain:

Proposition 27 Suppose that A1 and A′
1 intersect transversally. The surface Z has

general type and its invariants are

χ = k, K 2
Z = 8k, pg(Z) = k + 3, and q = 4.

The surface Z is minimal as we see by using the rational map of Z onto the Abelian
surface B1.

Remark 28 The surface Z satisfies

c21 = 2c2 = 8k.

Among surfaces with c21 = 2c2 there are surfaces whose universal covers is the bi-disk
H × H. For k = 1, it turns out that Z is the product of two genus 2 curves, thus its
universal cover is H×H. For k = 2, we obtain the so-called Schoen surfaces, whose
universal cover is not H × H (see [7], [24]).

Let (W , ω) be a smooth projective algebraic variety of dimension 2n overC equipped
with a holomorphic (2, 0)-form of maximal rank 2n. Let us recall that a n dimensional
subvariety Z ⊂ W is called Lagrangian if the restriction ofω to Z is trivial.We remark
that

Proposition 29 The surface Z is a Lagrangian surface in B1 × B2.

Proof In [5], Bogomolov and Tschinkel associate a Lagrangian surface to the data of
Kummer surfaces S1 = Km(A1), S2 = Km(A2) and a K3 surface S such that there
is a rational map S → Si , i = 1, 2.

In our situation, we take S1 = S2 = S = Km(B), we consider the Kummer
structure Km(B1) for S1 and the Kummer structure Km(B2) (see also Remark 9) for
S2, and the identity map for S → Si .

According to [5, Section 3], the bi-double cover Z is a sub-variety of B1×B2 which
is Lagrangian. ��

Let us now discuss what is happens if we do not make assumption on the transver-
sality of the intersection of A1 and A′

1. Let us denote by Am a surface singularity with
germ

{xm+1 = y2 + z2}

and by am a curve singularity with germ {xm+1 = y2}.
Since A1, A′

1 are smooth, the singularities of A1 + A′
1 are of type a2m−1, m > 0.

Let s be a a2m−1-singularity of A1 + A′
1. Recall that B̃1 is the cover of X branched
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over
∑16

i=1 Ai . The curve singularity above s in π∗
1 A

′
1 ⊂ B̃1 is a am−1 singularity (see

e.g. [4, Table 1, P. 109]).
Thus above the singularity s of typea2m−1 of A1+A′

1, the surfaceV has a singularity
of type Am−1, (where in fact a A0 (resp. a0) point is a smooth point).

The singularities Am are ADE singularities and by the Theorem of Brieskorn on
simultaneous resolution of singularities, they do not change the values of K 2 ,χ and pg
of the surface Ṽ which is the minimal resolution of V (we consider the two successive
double covers V → B̃1 and B̃1 → X ).

Thus the surface Z obtained by taking the minimal desingularisation of V and the
contraction of the 30 exceptional curves has the same invariants χ(Z), K 2

Z and pg(Z)

as if the intersection of A1 and A′
1 was transverse. We observe that the image of the

natural map Z → B1 × B2 is also a Lagrangian surface by [5, Section 3].
Let αm be the number of a2m−1 singularities on A1 + A′

1. Using Miyaoka’s bound
on the number of quotient singularities on a surface of general type (here to be the
surface B3, the double cover of X branched over A1 + A′

1), one gets:

∑(

n − 1

n

)

αn ≤ 4

3
k.

For k = 1, a configuration of 6a1 singularities on A1 + A′
1 is the only possibility. For

k = 2, the possibilities are

10a1, 8a1 + a3, 7a1 + a5,

but we know from explicit computations in [24] that for a generic Abelian surface
polarized by M with M2 = 6, the singularities of A1 + A′

1 are 10a1. For k = 3 the
possibilities are

14a1, 12a1 + a3, 10a1 + 2a3, 11a1 + a5, 10a1 + a7.

4.3 The H-constant of the curve 0

Let X be a surface, P be a non-empty finite set points on X and let X̄ → X be the
blow-up of X at P . For a curve C let C̄P be the strict transform of C on X̄ . The
H -constant of C is defined by

H(C) = inf
P

(C̄P )2

#P
and the H -constant of X is H(X) = infC H(C), where the infimum is taken over
reduced curves. The H -constants have been introduced for studying the bounded
negativity Conjecture, which predicts that there exists a bound bX such that for any
reduced curve C on X , one has C2 ≥ bX .

Let A be the generic Abelian surface polarized by M with M2 = k(k + 1) and let
� be the curve with a unique singularity which is of multiplicity 4k + 2 and is in the
numerical equivalence class of 4M . One computes immediately
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H(�) = �2 − (4k + 2)2 = −4.

For the moment, one do not know curves on Abelian surfaces which have H -constants
lower than −4. We use these curves in a more thorough study of curves with low H -
constants in [26].

Acknowledgements The authors thank the anonymous referee for useful remarks improving the exposition
of the paper.
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