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Abstract We construct and study curves with low H-constants on abelian and K3
surfaces. Using the Kummer (166)-configurations on Jacobian surfaces and some (1610)-
configurations of curves on (1, 3)-polarized Abelian surfaces, we obtain examples of
configurations of curves of genus > 1 on a generic Jacobian K3 surface with H-constants
< − 4.
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1 Introduction

The bounded negativity conjecture predicts that for a smooth complex projective surface X
there exists a bound bX such that for any reduced curve C on X one has

C2 ≥ bX .

That conjecture holds in some cases, for instance if X is an abelian surface, but we do not
know whether it remains true if one considers a blow-up of X . With that question in mind,
the H-constants have been introduced in [1].

For a reduced (but not necessarily irreducible) curve C on a surface X and P ⊂ X a finite
non empty set of points, let π : X̄ → X be the blowing-up of X at P and let C̄ denotes the
strict transform of C on X̄ . Let us define the number

H(C,P) = C̄2

|P| ,
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where |P| is the order ofP . We define the Harbourne constant ofC (for short the H-constant)
by the formula

H(C) = inf
P

H(C,P) ∈ R,

where P ⊂ X varies among all finite non-empty subsets of X (note that there is a slight
difference with the definition of Hadean constant of a curve given in [1, Remark 2.4], which
definition exists only for singular curves; see Remark 4 for the details). Singular curves tend
to have low H-constants. It is in general difficult to construct curves having low H-constants,
especially if one requires the curve to be irreducible. The (global) Harbourne constant of the
surface X is defined by

HX = inf
C

H(C) ∈ R ∪ {− ∞}
where the infimum is taken among all reduced curves C ⊂ X . Harbourne constants and their
variants are intensively studied (see e.g. [1,11,12,14]); note that the finiteness of HX implies
the BNC conjecture. Using some elliptic curve configurations in the plane [15], it is known
that

HP2 ≤ − 4,

and for any surface X one has HX ≤ HP2 ≤ − 4 (see [14]). However, the curves (Cn)n∈N on
X 	= P

2 with H-constant tending to − 4 used to prove that HX ≤ − 4 are not very explicit
and they all satisfy H(Cn) > − 4.

TheH-constant is an invariant of the isogeny class of an abelian surface. Using the classical
(166) configuration R1 of 16 genus 2 curves and 16 2-torsion points in a principally polarized
abelian surface and a (1610) configuration of 16 smooth genus 4 curves and 16 2-torsion points
on a (1, 3)-polarized abelian surface, plus the dynamic of the multiplication by n ∈ Z map,
we construct explicitly some curves with low H-constants on abelian surfaces:

Theorem 1 Let A be a simple abelian surface. There exists a sequence of curves (Rn)n∈N
in A such that R2

n → ∞ and H(Rn) = − 4.
If A is the Jacobian of a smooth genus 2 curve, the curve Rn can be chosen either as the
union of 16 smooth curves or as an irreducible singular curve.

It is known that on two particular abelian surfaces with CM there exists a configuration C
of elliptic curves with H(C) = − 4. Moreover for any elliptic curve configuration C in an
abelian surface A, one always has

H(C) ≥ − 4,

with equality if and only if the complement of the singularities of C is an open ball quotient
surface (for these previous results see [14]). Thus elliptic curve configurations with H(C) =
− 4 are rather special, in particular these configurations are rigid. Indeed to an algebraic
family (At ,Ct )t of such surfaces At , each containing a configuration Ct of elliptic curves
with H -constant equals to − 4, such that Ct varies algebraically with At , one can associate
a family of ball quotient surfaces. Since ball quotient surfaces are rigid, the family (At ,Ct )t
is trivial and the pairs (At ,Ct ) are isomorphic.

We observe that for our new examples of curves with H(C) = − 4 there is no such links
with ball quotient surfaces. Indeed the pairs (A,C) we give such that H(C) = − 4 have
deformations.

We then consider the images of the curves Rn in the associated Kummer surface X and
we obtain:
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Theorem 2 Let X be a Jacobian Kummer surface. For any n > 1, there are configurations
Cn of curves of genus > 1 such that H(Cn) = − 4 n4

n4−1
< − 4.

TheH-constants of curves (and some related variants such as the s-tupleHarbourne constants)
on K3 surfaces have been previously studied, by example in [8] and [12]. Laface and Pokora
[8] study transversal arrangements C of rational curves onK3 surfaces and they give examples
of configurations C with a low Harbourne constant. In their examples, one has H(C) ≥
− 3.777, with the exception of two examples on the Schur quartic and the Fermat quartic
surfaces, both reaching

H(C) = − 8.

In the last section, we then turn our attention to irreducible curves with low H-constants in
abelian and Kummer surfaces, which are more difficult to obtain, some of which have been
recently constructed in [16].

2 Smooth hyperelliptic curves in abelian surfaces and H-constants

2.1 Preliminaries, Notations

By [4], an abelian surface A contains a smooth hyperelliptic curve C0 of genus g if and only
if it is a generic (1, g − 1)-polarized abelian surface and g ∈ {2, 3, 4, 5}.

In this section, we study the configurations of curves obtained by translation of these
hyperelliptic curves C0 (of genus 2, 3, 4 or 5) by 2-torsion points and by taking pull-backs
by endomorphisms of A. In the present sub-section, we recall some facts on the computation
of the H-constants and some notations.

Let C1, . . . ,Ct be smooth curves in a smooth surface X such that the singularities of
C = ∑

j C j are ordinary (i.e. resolved after one blow-up). Let Sing(C) be the singularity

set of C ; we suppose that it is non-empty. Let f : X̄ → X be the blow-up of X at Sing(C).
For each p in Sing(C), let mp be the multiplicity of C (we say that such a singularity p is
a mp-point) and let Ep be the exceptional divisor in X̄ above p. Let us recall the following
notation:

H(C,P) = C̄2

|P| ,

where C̄ is the strict transform of a curveC in the blowing-up surface atP 	= ∅. The following
formula is well known:

Lemma 3 Let s be the cardinal of Sing(C). One has

H(C,Sing(C)) = C2 − ∑
p∈P m2

p

s
=

∑t
j=1 C

2
j − ∑

p∈P mp

s
.

Proof One can compute C̄2 in two ways, indeed

C̄ = f ∗C −
∑

mpEp,

thus C̄2 = C2−∑
p∈P m2

p (that formula is valid for any configurations). But C̄ = ∑t
i=1 C̄i =

∑t
i=1( f

∗Ci −∑
p∈Ci

Ep), and since the singularities are ordinary, the curves C̄i are disjoint,
thus
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C̄2 =
t∑

i=1

C̄i
2 =

t∑

i=1

C2
i −

∑

p∈Sing(C)

mp,

where we just use the fact that
∑t

i=1
∑

p∈Ci
1 = ∑

p∈Sing(C) mp . �

Recall that we define the H-constant of a curve C by the formula

H(C) := inf
P

H(C,P) ∈ R,

where P ⊂ X varies among all finite non-empty subsets of X .

Remark 4 (a) If C is smooth one has H(C) = min(− 1,C2 − 1).
(b) In [1, Remark 2.4] the Hadean constant of a singular curve C on a surface X is defined

by the formula

Had(C) := min
P⊂Sing(C),P 	=∅ H(C,P).

Let C be an arrangement of n ≥ 2 smooth curves intersecting transversally (with at least
one intersection point). In [7] is defined and studied the quantity H(X,C) := H(C,Sing(C)).
An advantage of our definition of H-constant is that it is defined for any curves. Moreover
with our definition, it is immediate that the global H-constant of the surface X satisfies
H(X) = inf H(C), where the infimum is taken over reduced curves C in X .

Let m ∈ N
∗ and let C ↪→ X be a singular curve having singularities of multiplicity m only

(this will be the case for most of the curves in this paper). Let s be the order of Sing(C).

Lemma 5 One has H(C,Sing(C)) = C2

s − m2.
The H-constant of C is

H(C) = min(− 1, C2 − m2, H(C,Sing(C))).

Proof For integers 0 ≤ a ≤ s, b ≥ 0, c ≥ 0 such that a + b + c > 0, let Pa,b,c be a set of a
m-points, b smooth points of C and c points in X \ C . Let

Ha,b,c = H(C,Pa,b,c) = C2 − am2 − b

a + b + c
.

The border cases are H1,0,0 = C2 − m2, H0,1,0 = C2 − 1 and H0,0,1 = C2. If a < c+C2

m2−1
(case which occurs when c is large) the function b → Ha,b,c is decreasing and converging
to − 1 when b → ∞.

If a ≥ c+C2

m2−1
, the function b → Ha,b,c is increasing, thus if a 	= 0, one has

inf
b≥0

Ha,b,c = Ha,0,c = C2 − am2

a + c
,

(note that even if a < C2

m2− 1
, one still has C2−am2

a+c ≥ −1). If C2 − am2 > 0, Ha,0,c is a
decreasing function of c, with limit 0, otherwise this is an increasing function and the infimum

is attained for c = 0, which gives C2−am2

a (if a = 0, one gets C2). Then taking the minimum
over a, one obtains the result. �


Let us recall (see [6]) that for a, b, n,m ∈ N
∗, a (an, bm)-configuration is the data of

two sets A, B of order a and b, respectively, and a relation R ⊂ A × B, such that ∀α ∈
A, #{(α, x) ∈ R} = n and ∀β ∈ B, #{(y, β) ∈ R} = m. One has an = bm = #R. If
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a = b and n = m, it is called a (an)-configuration. If for α 	= α′ in A the cardinality λ of
{(α, x) ∈ R} ∩ {(α′, x) ∈ R} does not depend on α 	= α′, this is called a (an, bm)-design and
m(n − 1) = λ(a − 1); λ is called the type of the design.

2.2 Construction of configuration from genus 2 curves

Let A be a principally polarized abelian surface such that the principal polarization C0 is a
smooth genus 2 curve. One can choose an immersion such that 0 ∈ A is a Weierstrass point
of C0. The configuration of the 16 translates

Ct = t + C0, t ∈ A[2]
of C0 by the 2 torsion points of A is the famous (166) Kummer configuration: there are 6
curves through each point in A[2], and each curve contains 6 points in A[2] (since CtCt ′ = 2
for t 	= t ′ in A[2], it is even a (166)-design of type 2).

Let now n > 0 be an integer and let [n] : A → A be the multiplication by n map on A.
For t ∈ A[2], let us define Dt = [n]∗Ct , in other words

Dt = {x | nx ∈ Ct } = {x | nx + t ∈ C0}.
Since [n] is étale, the curve Dt is a smooth curve, thus it is irreducible since its components
are the pull back of an ample divisor. By [9, Proposition 2.3.5], since Ct is symmetric (i.e.
[− 1]∗Ct = Ct ), one has Dt ∼ n2Ct (in particular D2

t = 2n4). The curve

Wn = [n]∗
∑

t∈A[2]
Ct =

∑

t∈A[2]
Dt

has 16 irreducible components and 16n4 ordinary singularities of multiplicity 6 (6-points),
which are the torsion points A[2n] := Ker [2n]. Each curve Dt contains 6n4 6-points; the
configuration of curves Dt and singular points ofWn is a (166n4 , 16n

4
6)-configuration. Using

Lemma 3, we get:

Lemma 6 One has H(Wn,Sing(Wn)) = − 4.

The Harbourne constant HA of a surface A is an invariant of the isogeny class of A (see [14]).
Thus if A is generic, it is isogeneous to the Jacobian of a smooth genus 2 curve, and we thus
obtain the following:

Proposition 7 On a generic abelian surface A, one has:

HA ≤ − 4.

Note that when A is isogeneous to the product of 2 elliptic curves E, E ′ (thus non generic
in our situation), the H-constant of A verifies that HA ≤ − 2, and HA ≤ − 3 if E and E ′
are isogeneous (see [14]). Moreover, there are two examples of surfaces with CM for which
HA ≤ − 4.

Remark 8 (1) Suppose that n is odd, then

Dt = {x | n(x + t) ∈ C0} = D0 + t.

Moreover, if u is a 2-torsion point one has 2u = 0 ⇔ 2nu = 0, thus D0 and each curve
Dt contains 6 points of 2-torsion.

(2) Suppose that n is even. Let u ∈ A[2] be a 2-torsion point. One has u ∈ Dt ⇔ nu + t ∈
C0 ⇔ t ∈ C0. Therefore the 6 curves Dt with t in A[2] ∩ C0 contain A[2], and the
remaining curves do not contain any points from A[2].
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2.3 Genus 3 curves

Let A be an abelian surface containing a hyperelliptic genus 3 curve C0 such that 0 is a
Weierstrass point. Then the 8 Weierstrass points of C0 are contained in the set of 2-torsion
points of A. Let O be the orbit of C0 under the action of A[2] by translation and let a be
the cardinal of O. The stabilizer St of C0 acts as a fix-point free automorphism group of C0.
Thus considering the possibilities for the genus of C0/St it is either trivial or an involution,
therefore a = 16 or 8. By [5, Remark 1], the curve C0 is stable by translation by a 2-torsion
point, therefore a = 8. Let m be the number of curves inO through one point in A[2] (this is
well defined because A[2] acts transitively on itself). The sets of 8 genus 3 curves and A[2]
form a (88, 16m)-configuration, thus m = 4. Moreover, since they are translates, two curves
C,C ′ ∈ O satisfy CC ′ = C2 = 4, thus

C
∑

C ′∈O,C ′ 	=C

C ′ = 7 · 4.

If the singularities of the union of the curves inOwere only at the points in A[2] and ordinary,
one would have

C
∑

C ′∈O,C ′ 	=C

C ′ = 8 · 3.

The configuration C = ∑
C∈O C contains therefore other singularities than the points in

A[2] or the singularities are non ordinary. It seems less interesting from the point of view of
H-constants. Observe that if the singularities at A[2] are ordinary, one has H(C, A[2]) = − 2.
If there are other singularities, since the configuration is stable by translations by A[2], there
are at least 16 more singularities.

2.4 Construction of configurations from genus 4 curves

Traynard in [17], almost one century later Barth, Nieto in [3], and Naruki in [10] constructed
(1610) configurations of lines lying on a 3-dimensional family of quartic K3 surfaces X in
P
3: there exist two sets C, C′ of 16 disjoint lines in X such that each line in C meets exactly

10 ten lines in C′, and vice versa.
By the famous results of Nikulin characterizing Kummer surfaces, there exists a double

cover π : Ã → X branched over C. That cover contains 16 (− 1)-curve over π−1C. The
contraction μ : Ã → A of these 16 exceptional divisors is an abelian surface and the image
of these 16 curves is the set A[2] of two torsion points of A.

We denote by C1, . . . ,C16 the 16 smooth curves images by μ∗π∗ of the 16 disjoint lines
in C′. By [3, Section 6], the 16 curvesC1, . . . ,C16 are translates of each other by the action by
the group A[2] of 2-torsion points; the argument is that ifC ′

i is a translate ofCi by a 2-torsion
point, then π∗μ∗C ′

i is a line in the quartic X , but a such a generic quartic has exactly 32 lines.

Proposition 9 The curves C1, . . . ,C16 in A are smooth of genus 4. The 16 2-torsion points
A[2] and these 16 curves form a (1610)-design of type 6: 10 curves though one point in A[2],
a curve contains 10 points in A[2] and two curves meet at 6 points in A[2].
The H-constant of that configuration

∑
Ci is H = − 4.

Proof The 10 intersection points between the lines in C and C′ are transverse, therefore by
the Riemann–Hurwitz Theorem, the genus of the 16 irreducible components of π∗C′ is 4.
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The intersections of the 16 components in μ∗π∗C′ are transverse (since π∗C′ is a union of
disjoint curves) and that intersection holds over points in A[2] (which is the image of the
exceptional divisors of Ã).

Since the curves in C and C′ form a (1610) configuration, the 16 curves C1, . . . ,C16 and
the 2 torsion points in A have the described (1610) configuration.

Since the strict transform in Ã of the curves Ci 	= C j are two disjoint curves, the 6
intersection points of Ci 	= C j are 2-torsion points, the configuration is therefore a (1610)-
design of type 6.

It is then immediate to compute the H-constant of C = C1 + · · · + C16. �

Remark 10 Since the 16 curves are the orbit of a curve by the group A[2] of torsion points,
one can change the notations and define Ct = C0 + t for t ∈ A[2], for a chosen curve C0

containing 0. As in Sect. 2.2, let us define Dt = [n]∗Ct ; this is a smooth curve. It is then
immediate to check that the H -constant of the curve Wn = ∑

Dt equals − 4. We will use
these configurations of curves in Sect. 3.

2.5 Genus 5 curves

By [4], a generic (1, 4)-polarized abelian surface contains a smooth genus 5 curve C which
is hyperelliptic, the set of Weierstrass points in C is 12 2-torsion points, and C is stable
by a sub-group of A[2] isomorphic to (Z/2Z)2. Thus the orbit of C by the translations by
elements of A[2] is the union of 4 genus 5 curves.

The intersection of two of these curves equals C2 = 2g − 2 = 8. Since each of these two
curves contains 12 points in A[2], the intersections are transverse and are on 8 points in A[2].
The 4 curves and the 16 2-torsion points form a (412, 163) configuration. The H -constant of
that configuration is H = 4·8−16·3

16 = − 1.

3 Configurations of curves with low H-constant in Kummer surfaces

In this Section, we study the images in the Kummer surface Km(A) of the various curve
configurations studied in Sect. 2 in abelian surfaces A.

3.1 The genus 2 case

We keep the notations and hypothesis of Sect. 2.2. In particular, A is the Jacobian of a genus
2 curve. Let μ : Ã → A be the blow-up of A at the 16 2-torsion points. We denote by D̄
the strict transform in Ã of a curve D ↪→ A. Let π : Ã → X be the quotient map by the
automorphism [− 1]. Since on A one has [− 1]∗Ct = [− 1]∗(t + C0) = Ct , one obtains

[− 1]∗Dt = Dt

and the map D̄t → D′
t = π(D̄t ) has degree 2, thus D′2

t = 1
2 (D̄t )

2.

Proposition 11 Let be n > 1. The configuration D of the 16 curves D′
t with t ∈ A[2] in the

Kummer surface X has Harbourne constant

H

⎛

⎝
∑

t∈A[2]
D′
t

⎞

⎠ = − 4
n4

n4 − 1
.
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Proof If n is even, a curve Dt contains 16 or 0 points of 2 torsion depending if t ∈ C0 or not
(thus there are 10 curves without points of 2 torsion, and 6 with). If n is odd, each curve Dt

contains 6 points of 2-torsion and then one has:

D′2
t = 1

2
(2n4 − 6) = n4 − 3.

If n is even, one has:

D′2
t = 1

2
(2n4 − 16) = n4 − 8 or D′2

t = n4,

according if t ∈ A[2] is in C0 or not. The configuration D contains

1

2
(16n4 − 16) = 8(n4 − 1)

6-points and no other singularities. If n is even, then the configuration has 10 curves with
self-intersection n4 and 6 curves with self-intersection n4 − 8. Thus if n is even one has

H(D) = 10n4 + 6(n4 − 8) − 8(n4 − 1)6

8(n4 − 1)
= − 4

n4

n4 − 1
∼ − 4,

which for n = 2 gives H = − 64/15 � − 4.26̄.
If n is odd, one has 16 curves with self-intersection n4 − 3, and we get the same formula:

H(D) =
∑

D′2
t − 8(n4 − 1)6

8(n4 − 1)
= 16(n4 − 3) − 8(n4 − 1)6

8(n4 − 1)
= − 4

n4

n4 − 1
.

�

Remark 12 (a) The H-constants of the various configurations are < − 4.
(b) For n = 1, the H-constant is − 2.

3.2 The genus 4 case

Let us consider the configuration (1610) considered in Sect. 2.4 of 16 genus 4 curves Ct , t ∈
A[2] in a generic (1, 3)-polarized abelian surface A. Let X = Km(A) be the Kummer surface
associated to A. Let μ : Ã → A the blow-up at the points in A[2], and π : Ã → X be the
quotient map. Let us consider as in Remark 10 the 16 curves Dt = [n]∗Ct , t ∈ A[2] in A.
Let be D̄t the strict transform in Ã of Dt and D′

t = π(D̄t ).

Proposition 13 For n > 1, the configuration C = ∑
t∈A[2] D′

t in the Kummer surface X has
Harbourne constant

H(C) = − 4
n4

n4 − 1
.

Proof The involution [− 1] : A → A fixes the set A[2] and stabilizes the configuration
C = ∑

t∈A[2] Ct , since a curve Ct in C is determined by the 2-torsion points it contains, [− 1]
stabilizes each curveCt , t ∈ A[2], and thus also one has [− 1]∗Dt = Dt . Thus the restriction
D̄t → D′

t of π has degree 2. Numerically, one has Dt = n2Ct and C2
t = 6.

Since Dt as a set is {x ∈ A | nx+t ∈ C0}, a point t ′ ∈ A[2] is in Dt if and only if nt ′+t ∈ C0.
Thus if n is even, the curve Dt contains 16 or 0 points of 2 torsion depending if t ∈ C0 or
not (thus there are 6 curves without points of 2 torsion, and 10 with), moreover one has:

D′2
t = 1

2
(D̄t )

2 = 1

2
(6n4 − 16) = 3n4 − 8 or D′2

t = 3n4,
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according if t ∈ A[2] is inC0 or not. If n is odd, each curve Dt contains 10 points of 2-torsion
and

D′2
t = 1

2
(6n4 − 10) = 3n4 − 5.

The configuration C = ∑
D′
t has

1
2 (16n

4 − 16) = 8(n4 − 1) 10-points and no other singu-
larities. If n is even, then the configuration contains 6 curves with self-intersection 3n4 and
10 curves with self-intersection 3n4 − 8, thus

H(C) = 6 · 3n4 + 10(3 · n4 − 8) − 8(n4 − 1)10

8(n4 − 1)
= − 4

n4

n4 − 1
∼ − 4.

If n is odd, one has 16 curves with self-intersection 3n4 − 5, and one gets the same
formula. �

Remark 14 The multiplication by n map [n] on A induces a rational map [n] : X ��� X .
The configurations

∑
Dt we are describing are the pull back by [n] of a configuration in

X = Km(A) of 16 disjoint rational curves.

4 Irreducible curves with low H-constant in abelian and Kummer surfaces

Obtaining irreducible curves with low Harbourne constant is in general a difficult problem.
Let k > 0 be an integer. In [16], we prove that in a generic abelian surface polarized by M
with M2 = k(k + 1) there exists a hyperelliptic curve �k numerically equivalent to 4M such
that �k has a unique singularity of multiplicity 4k + 2. Thus:

Proposition 15 The H-constant of �k is

H(�k) = �2
k − (4k + 2)2 = − 4.

Let us study the case k = 1 and define T1 = �1. This is a curve of geometric genus 2 in an
abelian surface A with one 6-point singularity, which we can suppose in 0. In [13] such a
curve T1 is constructed: A is the Jacobian of a genus 2 curve C0 and T1 is the image by the
multiplication by 2 map of C0 in A = J (C0). The self-intersection of T1 is T 2

1 = 32 and
the singularity of T1 is a 6-point. Let n ∈ N be odd. The curve Tn = [n]∗T1 ∼ n2T1 has
6-points singularities at each points of A[n], the set of n-torsion points of A. Let [n] be the
multiplication by nmap. The following diagram of curve configurations in A is commutative

∑
t∈A[2] Dt

[2]→ Tn
↓ [n] ↓ [n]
∑

t∈A[2] Ct
[2]→ T1

Since the multiplication by 2 map [2] has degree 16 and the curves Dt are permuted by

translations by elements of A[2], the map Dt
[2]→ Tn is birational, thus Tn is irreducible. Its

singularities are 6-points over each n-torsion points.

Theorem 16 Let n ∈ N be odd. The Harbourne constant of the irreducible curve Tn ↪→ A
is:

H(Tn) = 32n4 − 36n4

n4
= − 4.
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Let T̄n be the strict transform of Tn under the blowing-up map Ã → A at the points from

A[2]. Since n is odd, among points in A[2], Tn contains only 0, thus T̄n
2 = 32n4 − 36.

Moreover [− 1]∗Tn = Tn (it can be seen using the map C (2) → A that [− 1]∗T1 = T1,
and therefore [− 1]∗Tn = Tn). The image of T̄n on the Kummer surface X = Ã/[− 1] is an
irreducible curve Wn with 1

2 (n
4 − 1) 6-points if n is odd. The map

T̄n → Wn

has degree 2 and

W 2
n = 16n4 − 18,

thus

Proposition 17 Let n ∈ N be odd. TheH-constant of the irreducible curveWn in theKummer
surface X is

H(Wn) = − 4n4

n4 − 1
.

In particular, for n = 3 one has H(W3) = − 81
20 .

5 Some remarks on H-constants of abelian surfaces

Let φ : C ↪→ A be an irreducible curve of geometric genus g in an abelian surface A. Let
mp = mp(C) be the multiplicity of C at a point p. One has

C2 = 2g − 2 + 2γ,

where

γ ≥
∑

p

1

2
mp(mp − 1),

with equality if all singularities are ordinary. Thus

H(C,Sing(C)) = 1

#Sing(C)

⎛

⎝C2 −
∑

p∈Sing(C)

m2
p

⎞

⎠ ≥ 1

#Sing(C)

⎛

⎝2g − 2 −
∑

p∈Sing(C)

mp

⎞

⎠

with equality if all singularities are ordinary. From the previous construction in Sect. 2, one
can ask the following

Problem 18 Does there exists an abelian surface containing a curve C of geometric genus
g such that

− 4 >
1

#Sing(C)

⎛

⎝2g − 2 −
∑

p∈Sing(C)

mp

⎞

⎠ ?

We were not able to find any example of such a curve. If the answer is no, it would imply
that the bounded negativity conjecture holds true for surfaces which are blow-ups of abelian
surfaces.
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