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1. Introduction

In early 70’s, Clemens and Griffiths proved that a smooth complex cubic threefold

is non-rational, that is, not birational to P3. The cubic threefold was thus one of

the first counterexamples to the famous Lüroth problem, obtained almost at the

same time as the counterexamples of Iskovskikh–Manin and Artin–Mumford. The

main tool in the approach of Clemens–Griffiths is the following criterion.

Theorem 1 ([6, Corollary 3.26]). Let V/C be a smooth threefold with h3,0(V ) =

0. Let J(V ) be the intermediate Jacobian of V . If V is birational to P3 then J(V ) is

isomorphic (as a principally polarized abelian variety) to the Jacobian of a (possibly

reducible) non-singular curve.

Then, the core and the difficult part of [6] is the following result.
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Theorem 2 ([6, Theorem 13.12]). The intermediate Jacobian of a smooth cubic

threefold X is not isomorphic to the Jacobian of a curve.

Since then several alternative proofs of non-rationality of cubic threefolds have

appeared. Mumford (in the Appendix to [6]) and Tyurin [24] reproved Theorem 2

using Prym varieties. Murre [18] extended their approach to smooth cubic threefolds

over any field of characteristic �= 2, working with the Prym variety which is an

algebraic representative of the Chow group A2(X) in place of the intermediate

Jacobian.

Other authors produced new arguments proving the result only for generic cu-

bic threefolds. Though these approaches give a weaker result, they are still of great

interest in view of complexity of the existing proofs of the full original result, and

also in view of possible applications to other types of varieties, for which the an-

swer to the question of rationality remains unknown. Beauville [4] showed that the

structure of the automorphism group of some special smooth cubic threefolds is in-

compatible with the hypothesis that their intermediate Jacobians are Jacobians of

curves. The authors of [2, 9, 12] used the method of degeneration to a singular cubic

threefold and showed that the limit generalized intermediate Jacobian (in the sense

of Zucker) is not isomorphic to the generalized Jacobian of a stable curve. As the

Jacobian locus in the compactified moduli space of principally polarized abelian

varieties (p.p.a.v.) is closed, these results for special cubic threefolds imply the

statement of Theorem 2 and hence the non-rationality for a generic cubic threefold.

In the present paper, we give yet another approach to the proof of the statement

of Theorem 2 for a special threefold. This approach is arithmetic and uses the

reduction modulo a prime. Namely, we prove the following theorem.

Theorem 3. There exists a cubic threefold X/Z with good reduction modulo 3, such

that the reduction J(X)/F3
of the intermediate Jacobian of X is absolutely simple

and is not isomorphic to the Jacobian of a curve over any finite extension of F3.

For such X, also the intermediate Jacobian of X/C is absolutely simple and is not

isomorphic to the Jacobian of a curve.

After some preliminary material presented in Sec. 2, we provide in Sec. 3 an

explicit example of a cubic threefold for which J(X)/F3
is not isomorphic to the

Jacobian of a curve. The proof is done by verifying that if such a curve existed, it

would have too few points on the field F3r . By Murre [18], this result implies the

irrationality of the particular cubic X/F3
over F3.

This example is also interesting in the context of the following two natural

questions, asked for a given field k and a positive integer n: (1) does there exist a

p.p.a.v. A/k of dimension n which is not isogenous over k to the Jacobian J(C)

of any curve C/k defined over k? (2) Does there exist an absolutely simple abelian

variety of dimension n defined over k? The answers are affirmative when k is

uncountable and algebraically closed by trivial reasons. Chai and Oort [8] answered

the first question in affirmative for any n ≥ 4 for k = Q (see also Tsimerman [23])
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and remarked that the question remains open over the countable fields Fp. Howe

and Zhu answered the second question in affirmative for any field and any n in [14].

The intermediate Jacobian of our particular cubic is an explicit example providing

affirmative answers to both questions for n = 5 and k = F3 or F9 (Proposition 8

and Corollary 11).

In Sec. 4, we explain how the result of Theorem 3 over F3 implies the one over

Q and C. The proof passes through semistable reduction and Néron models.

In Sec. 5, we give one more application of our approach: we obtain new results on

the maximal number of points on 5-dimensional Prym varieties that give a partial

answer to a question raised in [1].

2. Preliminaries

In this section, we introduce notation and recall some known results and tools that

will be used later.

2.1. Zeta functions and Weil polynomials

Let k = Fq be the finite field with q elements, and k its algebraic closure. For a

variety X defined over Fq, let X = X ⊗k k. Let r ∈ N∗; we denote by Nr(X) the

number of Fqr -points on X . The zeta function of X is defined by

Z(X,T ) = exp


∑

r≥1

Nr(X)

r
T r


.

The jth Weil polynomial

Qj(X,T ) = det(T − F ∗|Hj(X,Q�))

is the characteristic polynomial of the Frobenius F acting on the jth étale coho-

mology group Hj(X,Q�). The Weil Conjectures proved by Dwork, Grothendieck

and Deligne (see historical comments in [13, Appendix C]) tell us that, if X is

smooth and projective, then the Weil polynomial Qj has integer coefficients, does

not depend on the prime �, provided � �= p = char(Fq), and the zeta function of X

satisfies the equality

Z(X,T ) =

2 dimX∏
i=0

Pj(X,T )(−1)j+1

,

where Pi(X,T ) = T degQiQi(X, 1
T ). Moreover, the roots of Qi are algebraic integers

of absolute value qi/2.

2.2. Cubic threefolds

Let X be a smooth cubic 3-fold over Fq containing a line defined over Fq. For

r ∈ N∗, let us define Mr(X) by

Mr(X) :=
1

qr
(
Nr(X)− (

1 + qr + q2r + q3r
))
. (1)
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One has Mr(X) = −∑10
j=1 ω

r
j , where the numbers qωj, j = 1, . . . , 10 are the roots

of Q3(X,T ) (see e.g., [10, Sec. 4]). Let F (X) be the Fano surface of lines on X .

Then we have (see e.g., [10, Theorem 4.1]):

Q1(F (X), T ) =

10∏
i=1

(T − ωi).

Therefore, −M1(X) equals the trace of the Frobenius action on H1(F (X),Q�).

The Albanese variety Alb(F (X)) of F (X) is 5-dimensional. Under our assumption

that F (X) contains a Fq-rational point, say z0, we have the Abel–Jacobi map

αz0 : F (X) → Alb(F (X)) defined over k = Fq. According to Beauville [3], αz0 is

an embedding and S−S is a theta-divisor of a principal polarization of Alb(F (X)),

where S = αz0(F (X)), so that Alb(F (X)) possesses a principal polarization Θ

defined over k.

Though classically the intermediate Jacobian of a smooth projective threefold

X is defined via the Hodge theory over C, in the case when X is a smooth cubic

3-fold, one can obtain its intermediate Jacobian by a purely algebraic construction

valid over any field. As Murre proves in [19], one can choose the Albanese vari-

ety (Alb(F (X)),Θ) as such a construction. In the sense of [20], Alb(F (X)) is an

algebraic representative of the Chow group A2(X) in the same way as J(X) over

C. We will denote Alb(F (X)) by J(X) and call it the intermediate Jacobian of X

whatever the base field is. If X is the reduction mod p of a cubic threefold X ′
/Z,

then F (X ′), J(X ′) are viewed as schemes over Z and F (X), respectively J(X) are

their reductions mod p.

2.3. Some results on curves, Jacobians and abelian varieties

We recall the formulas for the numbers of points on an abelian variety and a

curve which are consequences of the Lefschetz trace formula [17] for the Frobenius

endomorphism.

Lemma 4. For an abelian variety A/Fq
, one has

N1(A/Fq
) = Q1(A/Fq

, 1).

Lemma 5. The number of Fq-rational points on a smooth curve C/Fq
is

N1(C) = q + 1− τ,

where τ is the trace of the Frobenius endomorphism acting on H1(C,Q�).

Remark 6. Since H1(C,Q�) is isomorphic to H1(J(C),Q�) as a Galois module,

the number τ is also the trace of Frobenius on H1(J(C),Q�). Therefore, if the

intermediate Jacobian of a cubic threefold X/Fq
is isomorphic to the Jacobian of a

curve C, one has

N1(C) = q + 1 +M1(X),

where M1(X) is the degree 9 coefficient of Q1(F (X), T ) = Q1(J(X), T ).

1750078-4

C
om

m
un

. C
on

te
m

p.
 M

at
h.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

N
E

W
 E

N
G

L
A

N
D

 o
n 

11
/2

0/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

October 26, 2017 19:35 WSPC/S0219-1997 152-CCM 1750078

Irrationality of generic cubic threefold via Weil’s conjectures

Recall that an abelian variety A over a field k is said to be absolutely simple

if A = A ×k k is simple, that is, has no proper abelian subvarieties. As a proper

abelian subvariety is always a factor of a decomposition into a direct sum modulo

isogeny, a non-simple abelian variety has a pair of orthogonal idempotents in its

endomorphism ring tensored with Q. Thus, an absolutely simple abelian variety

can be characterized by the property that the ring End(A) has no zero divisors.

We will use the following criterion for absolute simplicity, which is a consequence

of [14, Proposition 3(1)] and was also used in [10, Proposition 4.17].

Proposition 7. Let A be a d-dimensional abelian variety over Fq. Suppose that

the polynomials Q1(A/Fqr
, T ) are irreducible and that they are not elements of the

ring Z[T k] for any k ≥ 2 and any integer r such that ϕ(r)|2d, where ϕ denotes the

Euler totient function. Then A is absolutely simple.

Proof. By [14, Proposition 3], in order to prove that A is absolutely simple it is

sufficient to prove that

(a) there is no d > 1 such that the characteristic polynomial of the Frobenius is in

Z[T d], and

(b) there is no d > 1 and no primitive dth root of unity ζ such that Q(πd) is a

proper sub-field of Q(π) and Q(π) = Q(πd, ζ).

If (b) does not hold and Q(π) = Q(πd, ζ), then the degree ϕ(d) of the extension

Q(ζ)/Q must divide degQ(π) = 2 dimA. Thus, to verify the absolute simplicity, it

is sufficient to check that Q(πd) = Q(π) for all d such that ϕ(d) divides 2 dimA.

The latter equality is true if the degree of the minimal polynomial of πd is 2 dimA,

i.e. if Q1(AFqr
, T ) is irreducible.

3. Example of a Cubic Over Z

Let us consider the smooth complex cubic threefold defined by the following equa-

tion with integer coefficients:

X/Z = {x3
1 + 2x2

1x2 + 2x1x
2
2 + x2

1x3 + 2x1x2x3 + 2x1x
2
3 + 2x2x

2
3 + x3

3 + x2
1x4

+2x1x2x4 + x2
2x4 + x2x3x4 + x1x

2
4 + 2x3x

2
4 + x3

4 + x2
2x5 + 2x2x3x5

+2x2
3x5 + x1x4x5 + x2x4x5 + x2

4x5 + x2x
2
5 + 2x4x

2
5 + x3

5 = 0}. (2)

We denote byX/F3
its reduction mod 3. Using the computer algebra system [16], one

can easily verify that X is smooth over F3, that #X(F3) = 22, and that exactly one

quadruple of the F3-points of X is aligned, so that X/F3
contains one line defined

over F3. We denote by J(X)/F3
the reduction of J(X), naturally isomorphic to

J(X/F3
).

Theorem 8. The abelian variety J(X)/F3
is absolutely simple and is not isomor-

phic to the Jacobian of a curve over any finite extension of F3.
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We start by checking the absolute simplicity. A computation by the algorithm

described in [10, Sec. 4.3] yields

Q1(J(X/F3
), T ) = 243− 486T + 405T 2 − 90T 3 − 123T 4 + 125T 5

− 41T 6 − 10T 7 + 15T 8 − 6T 9 + T 10.

Consistently with earlier computations, the Weil conjectures tell us that X/F3

contains 22 points and 1 line defined over F3. To obtain the Weil polynomial

Q1(J(X)/F3r
, T ) over F3r , one can use the formula

Q1(J(X)/F3r
, T ) =

10∏
j=1

(T − ωr
j ),

where the ωj ’s are the roots of Q1(J(X)/F3
, T ). A computation shows that the Weil

polynomials

Q1(J(X)/F3r
, T ), r ∈ {2, 3, 4, 6, 11, 22}

are irreducible and are not in the ring Z[T n] for any n ≥ 2. So, by Proposition 7,

the abelian variety J(X)/F3
is absolutely simple.

Now we will prove that J(X)/F3
cannot be the Jacobian of a curve over any

finite extension F3r of F3. We will use the following result.

Theorem 9 ([15, Théorème 9]). Let (A,Θ) be a p.p.a.v over a finite field Fq.

Let C be a curve defined over Fqr and let J(C) be its Jacobian, endowed with its

principal polarization. Suppose that the p.p.a.v. (A,Θ)/Fqr
and J(C) are isomorphic

over Fqr . Then there exists a curve C′ defined over Fq such that C′
/Fqr

= C′⊗Fq Fqr

is isomorphic to C, and either:

(a) J(C′) � (A,Θ) over Fq or,

(b) J(C′) is a quadratic twist of (A,Θ) and J(C′)/Fq2
� (A,Θ)/Fq2

.

Therefore, in order to prove that the intermediate Jacobian J(X)/F3
is not

isomorphic to the Jacobian of a curve over any finite extension of F3, it suffices

to prove this for curves defined over F3 and F9. So, let us assume that J(X)/F3

is isomorphic over F3r to a product of Jacobians of curves. Then, since we know

that J(X)/F3
is absolutely simple, J(X)/F3r

is isomorphic to J(C)/F3r
for just one

smooth irreducible curve C/F3
of genus 5, and we may assume that r = 1 or 2.

By Remark 6, we have

Nr(C) = 1 + qr +Mr(X),

and therefore Mr(X) ≥ −1− qr for all r ≥ 1. Furthermore, by (1) with q = 3, we

have

M1(X) =
(22− (1 + 3 + 9 + 27))

3
= −6 < −1− 3,

hence r > 1, that is we are not in the case (a) of Theorem 9.
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Thus, it remains to consider the case (b): we are assuming now that there exists

a curve C′
/F3

such that J(X) is a quadratic twist of J(C′). Then by [15, Théorème 9],

Q1(C
′, T ) = Q1(J(X),−T ) and the curve C′ has

N1(C
′) = 1 + 3 + 6 = 10

points over F3. Let ω1, . . . , ω10 be the roots of Q1(J(X)/F3
, T ). Using the relation

Q1(J(X)/F9
, T ) =

10∏
i=1

(T − ω2
i ).

we compute

Q1(J(X)/F9
, T ) = T 10 − 6T 9 + 23T 8 − 76T 7 + 221T 6 − 535T 5

+1989T 4 − 6156T 3 + 16767T 2 − 39366T + 59049.

By our assumption, Q1(C/F9
, T ) = Q1(J(X)/F9

, T ). Therefore, since M2(X) = −6,

we get

N2(C
′) = 1 + 32 − 6 = 4.

This is absurd since the number of points over F9 should be larger than the number

of points over F3: N2(C
′) ≥ N1(C

′). Therefore, J(X) is not isomorphic to the

Jacobian of a curve over any finite extension of F3, and this finishes the proof of

Theorem 8.

Corollary 10. The cubic X/F3
is irrational.

Proof. This follows from [18, Theorem 3.1.1], which is the analog of Theorem 1

for cubic threefolds valid over finite fields.

Our argument indeed proves a slightly stronger result.

Corollary 11. The intermediate Jacobian J(X)/F3
of X/F3

is not isogenous over

F3 to the Jacobian of any curve defined over F3 or F9.

Proof. By Honda–Tate Theorem [22], isogenous abelian varieties have the same

Weil polynomials, and we proved that the first Weil polynomial of J(X)/F3
cannot

be the Weil polynomial of the Jacobian of a curve defined over F3 or F9.

4. From J(X)F3 to J(X)C

Let X be the smooth complex cubic threefold defined by Eq. (2). We have seen

that J(X)F3 is absolutely simple and is not isomorphic to the Jacobian of a curve

over F3. We will show how one deduces from this the same properties for J(X)C
over C.
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The following result holds.

Proposition 12. Let U ⊂ SpecZ be an open subscheme and A/U an abelian

scheme of relative dimension g > 0. Assume that for some prime p ∈ Z with (p) ∈ U,

the fiber A(p) = A/Fp
is absolutely simple. Then the generic fiber A0 = A/Q and the

complex abelian variety A/C = A0 ⊗Q C are also absolutely simple.

Proof. The statement for A/Q follows from [7, Lemma 6]. If we now assume that

A/C is non-simple, then A/C is isogenous to the product of two abelian varieties of

smaller dimension. By Weil descent, the isogeny specializes to that defined over a

number field, which is impossible by what we have proved for A/Q.

Proposition 13. As in Proposition 12, let U ⊂ SpecZ be an open subscheme and

A/U an abelian scheme of relative dimension g > 0 carrying a principal polarization.

Assume that for some prime p ∈ Z with (p) ∈ U, the fiber A(p) = A/Fp
is an

absolutely simple abelian variety which is not isomorphic to the Jacobian of a smooth

curve as a p.p.a.v. over Fp. Then the generic fiber A0 = A/Q (respectively A/C =

A0⊗QC) is also absolutely simple and is not isomorphic to the Jacobian of a smooth

curve over Q (respectively over C).

Proof. The assertion over C is reduced to that over Q by the standard argument

using Weil descent, so let us prove the assertion over Q. Thus, we are assuming that

AQ is isomorphic to a product of Jacobians of smooth curves. By Proposition 12,

AQ is absolutely simple, hence there is just one smooth irreducible curve C, defined

over some number field K, such that A/K � J(C/K).

By [11, Theorem 2.4], the existence of a semistable reduction for J(C/K) implies

that C/K has a semistable reduction at p, therefore C has a regular model whose

fiber at p is a semi-stable curve Cp defined over some finite extension of Fp. The

connectedness of the special fiber of the semistable reduction for J(C/K) implies

that the relative Jacobian J(C) is a Néron model. Moreover, J(C/K) even has a

good, or abelian reduction at p. According to [5, Example 9.2.8 and Theorem 9.4.4],

the curve Cp has smooth components with normal crossings such that

(a) the graph of the intersection matrix of the components is a tree;

(b) the sum of the genera of the irreducible components equals the genus of the

generic fiber;

(c) the special fiber of the Jacobian is isomorphic to the product of the Jacobians

of the components.

Since the special fiber of J(C), isomorphic to A/Fp
, is actually absolutely simple,

the special fiber of C is a smooth genus g component with possibly some trees of

smooth rational components attached to it. The trees of rational components do not

influence the Jacobian, and we conclude that J(X)/Fp
is the Jacobian of a curve,

which contradicts our hypotheses. This ends the proof.
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From Theorem 8 and Propositions 12 and 13, we deduce the following corollary.

Corollary 14. For the cubic threefold X defined by Eq. (2), the intermediate Ja-

cobian J(X)C is not isomorphic to a product of Jacobians of curves.

Since the Jacobians and their products form a closed subvariety of the moduli

space of p.p.a.v., this implies that J(X)C is not isomorphic to a product of Jacobians

of curves for a generic cubic threefold X and, by Theorem 1, the generic cubic

threefold is irrational. We have thus finished the proof of Theorem 3.

5. Examples of Five-Dimensional Prym Varieties with Maximal

Number of Points

For an abelian variety A/Fq
, we denote by M1(A), as in Sec. 3, the trace of the

Frobenius endomorphism of H1(A,Q�) taken with opposite sign.

Let C be a smooth curve of genus g and let C′ → C be an étale double cover.

Let Pr(C′/C) be the (g − 1)-dimensional Prym variety associated to C′ → C. For

Prym varieties, M1

(
Pr(C′/C)

)
has the following interpretation:

M1(Pr(C
′/C)) = N1(C

′)−N1(C).

In [21, Theorem 2(ii)], Perret gives upper bounds on the number of points on a

Prym variety.

Theorem 15. One has

N1(Pr(C
′/C)) ≤

(
q + 1 +

M1(Pr(C
′/C))

g − 1

)g−1

. (3)

Let A be a (g − 1)-dimensional abelian variety. The Weil’s bound gives us

(
q + 1 +

M1(A)

g − 1

)g−1

≤ (q + 1 + [2
√
q])g−1. (4)

In [1], Y. Aubry and S. Haloui defined the following quantities

Definition 16. For any integer g > 1, set

Pr q(g) = max
(C′,C)

N1(Pr(C
′/C))

where the maximum is taken over all smooth curves C of genus g over Fq and their

double étale covers C′.

In [1, Corollary 17], they computed Pr q(3). We are giving here the value of

Pr q(6) for some powers of primes q.

Let X/Fq
be a smooth cubic threefold. The intermediate Jacobian J(X) of X

is a Prym variety associated to a plane quintic curve (thus a curve of genus 6), see
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e.g., [6]. Consider the Fermat cubic threefold X = {x3
1+ · · ·+x3

5 = 0}. We have the

following proposition.

Proposition 17 ([10, Proposition 4.12]). If p ≡ 2 (mod 3), then

Q1(J(X)Fp , T ) = (T 2 + p)5.

If p ≡ 1 (mod 3), one can write uniquely 4p = a2 + 27b2 with a ≡ 1 (mod 3) and

b > 0, and

Q1(J(X)Fp , T ) = (T 2 + aT + p)5.

Suppose that p ≡ 2 (mod 3) and let q be an even power of p. Then

Q1(J(X)Fq , T ) = (T 2 + 2
√
qT + q)5

and

N1(J(X)) = (q + 1 + 2
√
q)5,

thus the equality in both inequalities 3 and 4 is attained. The example of the Fermat

cubic threefold implies the following theorem.

Theorem 18. Let p be a prime such that p ≡ 2 (mod 3). For q an even power of

p, one has

Prq(6) = (q + 1 + [2
√
q])5.

The Klein cubic threefold XKl ⊂ P4
Z is defined by the equation:

x2
1x2 + x2

2x3 + x2
3x4 + x2

4x5 + x2
5x1 = 0. (5)

It has good reduction at every prime p �= 11. By [10, Proposition 4.15], if −11 is

not a square modulo the prime p, then J(XKl/Fp
) is isogenous to E5 where E is a

supersingular elliptic curve. Thus, using Gauss quadratic reciprocity law, we obtain

the following theorem.

Theorem 19. Let p be a prime such that p ≡ 1, 3, 4, 5, 9 (mod 11). For any even

power q of p, one has

Prq(6) = (q + 1 + [2
√
q])5.

Remark 20. The method in Secs. 3 and 4 cannot be applied to the Klein or Fermat

cubic threefolds, since their intermediate Jacobians are isogenous to a product of

elliptic curves. However, using Hurwitz bound on the number of automorphisms

of a curve, Beauville proves in [4, 3.3, Theorem 3] that the intermediate Jacobian

of XKl cannot be isomorphic to the Jacobian of a curve as a p.p.a.v.
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