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ABSTRACT
We study a surface discovered by Stover which is the surface with minimal Euler number and max-
imal automorphism group among smooth arithmetic ball quotient surfaces. We study the natural
map∧2H1(S,C) → H2(S,C) and discuss the problem related to the so-called Lagrangian surfaces. We
obtain that this surface S hasmaximal Picard number and has no higher genus fibrations.We compute
that its Albanese variety A is isomorphic to (C/Z[α])7, for α = e2iπ/3.

1. Introduction

By the recent work of Stover [Stover 14], the number of
automorphisms of a smooth compact arithmetic ball quo-
tient surface X = #\B2 is bounded by 288 · e(X ), where
e(X ) denotes the topological Euler number of X .

Furthermore, Stover characterizes the arithmetic
ball quotient surfaces X whose automorphism groups
attain this bound, which by analogy with Hurwitz
curves, he calls Hurwitz ball quotients. All such
surfaces are finite Galois coverings of the Deligne–
Mostow orbifold $\B2 corresponding to the quintuple
(2/12, 2/12, 2/12, 7/12, 11/12) (see [Mostow 88, Stover
14]).

In [Stover 14], Stover constructs a Hurwitz ball quo-
tient S with Euler number e(S) = 63 and automorphism
group Aut(S) isomorphic to U3(3) × Z/3Z, of order
18, 144 = 25347. He shows that S is the unique Hurwitz
ball quotientwith Euler number e ≤ 63.Having this prop-
erty the surface S can be seen as the two-dimensional ana-
log of the Klein’s quartic which is the unique curve (uni-
formized by the ballB1) withminimal genus andmaximal
possible automorphism group.

The surface grew up out of the list of maximal arith-
metic lattices in PU (2, 1) studied by Prasad–Yeung and
Cartwright–Steger in connection with fake projective
planes, [Prasad and Yeung 07, Cartwright and Steger 10].
The strategy for finding fake projective planes therewas to
list all maximal arithmetic lattices of small covolume first
and then to search for subgroups of suitable index. One of
these maximal groups is the lattice $ above (denoted by
C11 in [Prasad and Yeung 07]).
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Determining an explicit presentation of $ in terms of
generators and relations, and using MAGMA algorithm
LowIndexSubgroups, Cartwright and Steger showed that
$ does not contain any lattice which is isomorphic to
the fundamental group of a fake projective plane. But
after showing that $ has the smallest covolume among
the arithmetic ball quotients, the MAGMA procedure
LowIndexNormalSubgroups is used to discover the small-
est normal and torsion-free subgroup, leading to the
surface S. There is another remarkable surface associ-
ated with $, namely the Cartwright–Steger surface X
(see [Cartwright and Steger 10]), the unique ball quo-
tient surface with e(X ) = 3 and first Betti number 2
(see [Cartwright et al.]). The surface S is a covering of
X .

Our aim is to study more closely the cohomology of
this particular surface S, which we will call the Stover
surface in the following. This surface S has the following
numerical invariants (see [Stover 14]):

e(S) H1(S,Z) q pg = h2,0 h1,1 b2(S)

 Z14    

LetV be a vector space. Let us recall that a two-vector
w ∈ ∧2V has rank 1 or is decomposable if there are vec-
tors w1, w2 ∈ V with w = w1 ∧ w2. A vector w ∈ ∧2V
has rank 2 if there exist linearly independent vectorswi ∈
V, i = 1, . . . , 4 such that w = w1 ∧ w2 + w3 ∧ w4.

Let B be an Abelian fourfold and let p : S → B be a
map such that p(S) generates the group B. We say that
S is Lagrangian with respect to p if there exists a basis
w1, . . . , w4 of p∗H0(B, %B) such that the rank-2 vector
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2 A. DŽAMBIĆ AND X. ROULLEAU

w = w1 ∧ w2 + w3 ∧ w4 is in the kernel of the natural
map φ2,0 : ∧2H0(S, %S) → H0(S,KS).

Theorem 1.
(i) The natural map

φ1,1 : H0(S, %S) ⊗ H1(S,OS) → H1(S, %S)

is surjective with a 14-dimensional kernel. The ker-
nel of the map

φ2,0 : ∧2H0(S, %S) → H0(S,KS)

is seven-dimensional and contains no decomposable
elements. The set of rank-2 vectors in Ker(φ2,0) is a
quadric hypersurface.

(ii) There exist an infinite number (up to isogeny) of
maps p : S → B (where B is an Abelian fourfold)
such that S is Lagrangian with respect to p.

(iii) The Albanese variety of S is isomorphic to
(C/Z[α])7, for α = e2iπ/3.

(iv) The surface S has maximal Picard number.

Using the Castelnuovo–De Franchis theorem, the fact
that there are no decomposable elements in the kernel of
φ2,0 means that S has no fibration f : S → C onto a curve
of genus g > 1. Moreover, Theorem 1 implies that S has
the remarkable feature that both maps

φ2,0 : ∧2H1,0(S) → H2,0(S)
φ1,1 : H1,0(S) ⊗ H0,1(S) → H1,1(S)

have a non-trivial kernel. After Schoen surfaces (see
[Ciliberto et al. 15, Remark 2.6]), this is the second exam-
ple of surfaces enjoying such properties. For a detailed
description of this subject, see [Amorós et al. 96, Barja
07, Bastianelli et al. 10, Bogomolov and Tschinkel 00,
Campana 95, Causin and Pirola 06] and beginning of
Section 4.

For the motivation and a historic account on surfaces
with maximal Picard number, we refer to [Beauville 14].

2. The second lower central quotient of the
fundamental group of S

Let ' := π1(X ) be the fundamental group of a mani-
fold X . The group H1(X,Z) is the abelianization of ':
H1(X,Z) = '/(, where( := [', '] is the derived sub-
group of ', i.e., the subgroup generated by all elements
[h, g] = h−1g−1gh, h, g ∈ '.

The second group in the lower central series [(, '] is
the group generated by commutators [h, g], with h ∈ (,
g ∈ '. It is a normal subgroup of the commutator group
(. According to [Beauville], we have the following results:

Proposition 2.
(1) (Sullivan) Let X be a compact connected Kähler

manifold. There exists an exact sequence

0 → Hom((/[(, '],R) → ∧2H1(X,R)

→ H2(X,R).

(2) (Beauville) Suppose H1(X,Z) is torsion free. Then
the group (/[(, '] is canonically isomorphic to
the cokernel of the map

µ : H2(X,Z) → Alt2(H1(X,Z))

given by µ(σ )(a, b) = σ ∩ (a ∧ b),

where Alt2(H1(X,Z)) is the group of skew-
symmetric integral bilinear forms on H1(X,Z).

In the case of the Stover surface, computer calculations
give us the following result:

Theorem 3. Let ' = π1(S) be the fundamental group of
the Stover surface and ( = [', ']. The group (/[(, ']
is isomorphic to Z/4Z × Z28.

Proof. By the construction of S [Stover 14], the fun-
damental group ' is isomorphic to the kernel ker(ϕ)

of the unique epimorphism ϕ : $ −→ G from the
Deligne–Mostow lattice $ corresponding to the quintu-
ple (2/12, 2/12, 2/12, 7/12, 11/12) onto the finite group
G = U3(3) × Z/3Z. The lattice$ is described byMostow
in [Mostow 88] as a complex reflection group, and by
generators and relation by Cartwright and Steger in
[Cartwright and Steger 10]. This lattice has the following
presentation:

$ = ⟨ j, u, v, b|u4, v8, [u, j], [v, j], j−3v2, uvuv−1uv−1,

(b j)2(vu2)−1, [b, vu2], b3, (bvu3)3⟩.

MAGMA command LowIndexSubgroups is used to
identify the unique subgroup #▹$ of index 3, which is
# = ⟨u, jb, b j⟩. Using the primitive permutation repre-
sentation ofU3(3) of degree 28, MAGMA is able to iden-
tify an homomorphism ϕ from # onto U3(3) induced
from the assignment:

u ,→ (3, 8, 23, 20)(4, 24, 6, 12)(7, 9, 14, 22)

×(10, 19, 11, 13)(15, 16, 21, 18)(17, 26, 27, 25)

jb ,→ (1, 9, 20, 12, 19, 23, 6, 16)(2, 27, 14, 17, 13, 26,

15, 25)(3, 24)(4, 5, 10, 21, 7, 11, 28, 8)

b j ,→ (1, 13, 20, 15, 19, 2, 6, 14)(4, 9, 10, 12, 7, 23,

28, 16)(5, 27, 21, 17, 11, 26, 8, 25)(22, 24).

This homomorphism extends to an homomorphism ϕ

from $ onto G such that ' = ker(ϕ) is a torsion-free
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EXPERIMENTAL MATHEMATICS 3

normal subgroup in $; it is the fundamental group of S
(see [Stover 14]). Let ( = [', '] and (2 = [(, ']. It is
easy to check that (2 is a distinguished subgroup in '.
The image of ( under the quotient map ' −→ '/(2 is
(/(2, but we observe that it is also equal the commuta-
tor subgroup ['/(2, '/(2], and therefore, the compu-
tation of (/(2 is reduced to one of the derived groups
['/(2, '/(2].

The MAGMA command g:=Rewrite(G,g) is
used to obtain generators and relations of both sub-
groups # < $ and ' < #. The command Nilpoten-
tQuotient(.,2) applied to ' describes '/(2 in
terms of a polycyclic presentation. The derived subgroup
['/(2, '/(2] is obtained with DerivedGroup(.)
applied to'/(2. Finally, applying theMAGMA function
AQInvariants to ['/(2, '/(2], MAGMA com-
putes that the structure of (/(2 is Z/4Z × Z28. "
Corollary 4. The dimension of the kernel of
∧2H1(S,R) → H2(S,R) is 28.

3. Computation of themap
∧2H1(S,C) → H2(S,C)

Let A be the Albanese variety of the Stover surface S. The
invariants are as follows:

H1(A,Z) = H1(S,Z) = Z14,

H2(A,Z) = ∧2H1(A,Z), H2,0(A) = ∧2H1,0(S)

H1,1(A) = H1,0(S) ⊗ H0,1(S), H0,2(A) = ∧2H0,1(S),

and

H1(A,Z) q h2,0(A) h1,1(A) b2(A)

Z14    

We have a map respecting Hodge decompositions

H2,0(A) ⊕ H1,1(A) ⊕ H0,2(A)

↓ ↓ ↓
H2,0(S) ⊕ H1,1(S) ⊕ H0,2(S)

which is an equivariant map of Aut(S)-modules. By
Corollary 4, the kernel of that map is 28-dimensional; it
is an Aut(S)-module.

In order to state Theorem 5, one needs to recall
some properties of the group U3(3) and state some
notations. According to the Atlas tables [Conway
et al. 85], the group U3(3) has 14 irreducible rep-
resentations χi, 1 ≤ i ≤ 14 of respective dimension
1,6,7,7,7,14,21,21,21,27,28,28,32,32.

The irreducible representations of Aut(S) = U3(3) ×
Z/3Z are the χ t

i , i = 1, ..., 14, t = 0, 1, 2 where (g, s) ∈
U3(3) × Z/3Z acts on the same space as χi with action

(g, s) · v = αsg(v ) with α = e2iπ/3 a primitive third root
of unity.

Theorem 5.
(1) The image of S by the Albanese map ϑ : S → A is

two-dimensional.
(2) The map H1,1(A) → H1,1(S) is surjective, with

a 14-dimensional kernel isomorphic to χ0
6 as an

Aut(S)-module.
(3) We have H1(S,Z) = χ1

3 ⊕ χ2
3 and H1,1(S) =

χ0
1 ⊕ χ0

3 ⊕ χ0
10, as Aut(S)-modules.

(4) The kernel of the natural map ∧2H0(S, %S) →
H0(S,KS) is seven-dimensional, isomorphic to χ0

3
as a Aut(S)-module.

Proof. Suppose that the image of S in A is one-
dimensional. Then there exists a smooth curve
C of genus 7 and a fibration f : S → C; the map
∧2H0(S, %S) → H0(S,KS) is the zero map and the
kernel of ∧2H1(S,C) → H2(S,C) would be at least
42-dimensional, which is impossible.

According to the Atlas character table [Conway et al.
85], the possibilities for the U3(3)-module H1(S,Z) =
H1(A,Z) = Z14 are as follows:

χ⊕2
3 ,RZ(χ4) = RZ(χ5) = χ4 ⊕ χ5, χ⊕2

4 , χ⊕2
5 orχ6

where RZ(χ j) is the restriction to Z of the seven-
dimensional complex representationχ j defined overZ[i].
It cannot be χ⊕2

4 nor χ⊕2
5 because these are not defined

over Z (some traces of elements are in Z[i] \ Z). We can-
not haveH1(S,Z) = χ6 since χ6 remains irreducible, but
H1(S,Z) ⊗ C = H1,0 ⊕ H0,1 is a Hodge decomposition
on which the representation ofU3(3) splits.

By duality, the kernel of H2,0(A) → H2,0(S) has the
same dimension d as the kernel of H0,2(A) → H0,2(S).
Let k be the dimension of the kernel of the U3(3)-
equivariant map H1,1(A) → H1,1(S). We have 28 = k +
2d. Moreover, since h1,1(S) = 35 and h1,1(A) = 49, we
obtain 28 ≥ k ≥ 14.

Let us suppose thatH1(S,Z) = χ4 ⊕ χ5. Then the rep-
resentation H1,1(A) equals χ4 ⊗ χ5 = χ1 + χ7 + χ10 (of
dimension 1 + 21 + 27). An Abelian variety on which a
finite group G acts possesses a G-invariant polarization
(for example

∑
g∈G g∗L, where L is some polarization).

Therefore, the one-dimensional Aut(S)-invariant space of
H1,1(A) is generated by the class of an ample divisor and
the natural map ϑ∗ : H1,1(A) → H1,1(S) is injective on
that subspace. Thus, the map ϑ∗ has a kernel of dimen-
sion k = 21, 27 or 48. This is impossible because k + 2d
equals 28.

We conclude that H1(S,Z) = χ⊕2
3 . Thus, we have

H2,0(A) = ∧2χ3 = χ3 ⊕ χ6
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4 A. DŽAMBIĆ AND X. ROULLEAU

(the dimensions are 21 = 7 + 14) and

H1,1(A) = χ⊗2
3 = χ1 ⊕ χ3 ⊕ χ6 ⊕ χ10

(49 = 1 + 7 + 14 + 27). By checking the possibilities, we
obtain k = 14, H1,1(S) = χ1 ⊕ χ3 ⊕ χ10, and the map
H1,1(A) → H1,1(S) is surjective. The kernel of the map
H2,0(A) → H2,0(S) is isomorphic to χ3, of dimension 7;
the action ofU3(3) onH2,0(S) is thenH2,0(S) = χ6 ⊕ χ ,

where χ is a 13-dimensional representation. "

Proposition 6.
a) The Albanese variety A of S is isomorphic to

(C/Z[α])7, for α = e2iπ/3.
b) The surface S has maximal Picard number.

Remark 7. Since A is CM, it follows that S is Albanese
standard [Schoen 06], i.e., the class of its image inside its
Albanese variety A sits in the subring of H∗(A,Q) gen-
erated by the divisor classes. This is in contrast with the
above-mentioned Schoen surfaces (see [Ciliberto et al.
15]).

Proof. Let σ ∈ Z/3Z be a generator of the center of
Aut(S) = U3(3) × Z/3Z. It corresponds to an element
σ ′ ∈ $ normalizing ' in $, such that the larger group
'′ generated by ' and σ ′ contains' with index 3. Using
MAGMA, one finds that we can choose σ ′ = j4, where j
is the order 12 element described in the proof of Theorem
3.

The quotient surface S/σ of S by σ is equal to B2/'
′.

The fundamental group of S′ is '′/'′
tors, where '′

tors is
the subgroup of '′ generated by torsion elements. Using
MAGMA, onefinds that'′ has a set of eight generators, in
which seven are considered to be torsion elements. Using
these elements, we readily compute that'′/'′

tors is trivial.
Therefore, the space of one-forms on S that are invariant
by σ is 0.

Using the symmetries ofU3(3), we see that the action
of σ on the tangent space H0(S, %S)

∗ is the multiplica-
tion by α or α2. After possible permutation of σ and
σ 2, we can suppose it is α and we see that the repre-
sentation of Aut(S) on H1(S,Z) is χ1

3 ⊕ χ2
3 . The lattice

H1(S,Z) ⊂ H0(S, %S)
∗ is a Z[α]-module. The ring Z[α]

is a principal ideal domain. Therefore, H1(S,Z) = Z[α]7
(for the choice of a certain basis) and A is isomorphic to
(C/Z[α])7.

Therefore, A has maximal Picard number and all the
classes of H1,1(A) are algebraic. These classes remain
of course algebraic under the map H1,1(A) → H1,1(S),
which is surjective. Thus, S is a surface with maximal
Picard number. "

4. Lagrangian surfaces and the Stover surface

Let X be a smooth projective surface. The cohomology
group H1(X,Q) and the homomorphism

φ2 : ∧2H1(X,C) → H2(X,C)

determine important properties of the fundamental group
of X (its nilpotent completion, see [Amorós et al. 96]).
One is interested to understand the (2, 0)-part

φ2,0 : ∧2H0(X, %X ) → H0(X,KX )

of the map φ2, and specifically by the kernel of φ2,0.
Let us recall that a vector w ∈ ∧2H0(X, %X ) has rank

n if the minimal number k of 1-forms wi, i = 1 . . . k such
thatw = w1 ∧ w2 + · · · + wk−1 ∧ wk equals 2n. The the-
orem of Castelnuovo–De Franchis is the following result
: a rank-1 form w = w1 ∧ w2 is in the kernel of φ2,0 if
and only if there exists a fibration f : X → C, where C is
a smooth curve of genus > 1 such that the forms w1, w2
are the pull-back of two 1-forms onC.

In the case of the existence of a rank-1 vector in
kerφ2,0, one thus has a geometric interpretation of it.
Moreover, in that case, the fundamental group of X sur-
jects onto the fundamental group of the base curve of the
fibration. Hence, π1(X ) has an infinite nilpotent tower.

In general, the non-triviality of kerφ2,0 implies that the
fundamental group is either nilpotent of class ≥ 2 or has
an infinite nilpotent tower. Construction of surfaces with
no fibrations onto curves of genus ≥ 2 and a non trivial
kernel kerφ2 is usually difficult (see [Bastianelli et al. 10]),
and we do not know if there exists a surface with a nilpo-
tent fundamental group of class ≥ 3 (see [Campana 95]).

Let B be an Abelian fourfold and let p : S → X be a
map such that p(X ) generatesB (as anAbelian group). Let
us recall that according to [Bastianelli et al. 10], the surface
X is called Lagrangian (with respect to p) if there exists
a basis w1, . . . , w4 of p∗H0(B, %B) such that the rank-2
vectorw = w1 ∧ w2 + w3 ∧ w4 is in the kernel of the nat-
uralmapφ2,0 : ∧2H0(X, %X ) → H0(X,KX ). In that case,
the image of X in B is a Lagrangian subvariety of B.

Let us prove

Theorem 8.
(1) The seven-dimensional space Ker(φ2,0) contains

rank-1 element. The algebraic set of rank-2 vectors
in Ker(φ2,0) is a quadric Q̃ ⊂ Ker(φ2,0).

(2) There exists an infinite number (up to isogeny) of
maps p : S → Bwhere B is an Abelian fourfold such
that S is Lagrangian with respect to p.

(3) There exists an infinite number (up to isogeny) of
maps p : S → B, where B is an Abelian fourfold
such that

Q̃ ∩ p∗H0(B, ∧2%B) = {0},
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EXPERIMENTAL MATHEMATICS 5

and for some of them we even have Ker(φ2,0) ∩
p∗H0(B, ∧2%B) = {0}.

(4) The generic rank-2 element w in Q̃ ⊂ Ker(φ2,0)

does not correspond to any morphism to an Abelian
fourfold.

Proof. We proved in Theorem 5 that

H2,0(A) = ∧2χ3 = χ3 ⊕ χ6

and the kernel of φ2,0 : H2,0(A) → H2,0(S) is the seven-
dimensional subspace with representation χ3. In a basis
γ = (e1, . . . , e7) of χ3 = H0(S, %S) = H1,0(S), the fol-
lowing two matrices A,B are generators of the group
U3(3):

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 1 0 0 0 1 0

−1 0 0 0 0 0 1
0 0 0 0 1 0 0
0 1 1 0 0 0 0

−1 0 0 1 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0 0 0 −1 0
0 1 1 0 0 0 0
0 −1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 −1
0 0 0 −1 0 0 1
0 0 0 0 1 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Using the basis β = (ei j)1≤i< j≤7 of ∧2χ3 (ei j = ei ∧ e j)
with order ei j ≤ est if i < s or i = s and j ≤ t , one com-
putes that the subspace Ker(φ2,0) = χ3 ⊂ ∧2χ3 is gen-
erated by the columns of the matrix M ∈ M21,7, where
tM = (N, 2I7), for

N =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 2 −2 −2 −2 0 2 2 −2 2 2 2 2
−1 0 0 2 4 0 1 −3 −3 1 −3 −4 −2 −4
0 −2 0 −2 −2 0 −2 2 2 0 0 2 2 2

−1 −2 2 0 −2 0 −1 1 3 1 1 0 0 2
−1 1 −1 3 1 3 0 −4 −2 2 0 −4 −2 −2
0 3 −3 1 −1 1 1 −3 −3 −1 1 0 −2 −2
1 1 1 3 3 1 2 −2 0 0 0 −2 0 −2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ M7,14

and I7 the 7 × 7 identity matrix. Thus, we obtain the ideal
IV of the algebraic setV of pairs (w1, w2) ∈ χ3 ⊕ χ3 such
that w1 ∧ w2 ∈ Ker(φ2,0) ⊂ ∧2χ3. That ideal is gener-
ated by 14 homogeneous quadratic polynomials in the
variables x1, . . . , x14. LetW be the algebraic set of pairs
(w1, w2) ∈ χ3 ⊕ χ3 such that w1 ∧ w2 = 0 ∈ ∧2χ3. The

ideal IW of W is generated by the 2 × 2 minors of the
matrix

L =
(
x1 . . . x7
x8 . . . x14

)

.

Since W ⊂ V , we have Rad(IV ) ⊂ Rad(IW ), where
Rad(I) is the radical of an ideal I. On the other hand,
using Maple, one can check that the 21 minors of L are
inRad(IV ). Hence,Rad(IW ) ⊂ Rad(IV ), andV = W .We
therefore conclude that the kernel of φ2,0 contains no
decomposable elements.

A two-vector w over a characteristic 0 field can be
expressed uniquely as w =

∑
i, j ai jei ∧ e j, where ai j =

−a ji. The rank of the vector w is half the rank of the
(skew-symmetric) coefficientmatrixAw := (ai j)1≤i, j≤7 of
w [Bryant et al. 91, Thm 1.7 & Remark p. 13]. Thus, the
two-vector w = a1v1 + . . . + a7v7 in Ker(φ2,0) (where
the vi, i = 1...7 are the vectors corresponding to the
columns of the matrixM) is a rank-2 vector if and only if
the 49 6 × 6 minors of the matrix Aw are 0. The radical of
the ideal generated by theseminors is principal, generated
by a homogeneous quadric in a1, . . . , a7 whose associated
symmetric matrix is

Q =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

7 3 3 1 −3 −3 −5
3 7 3 3 1 −3 −3
3 3 7 3 3 1 −3
1 3 3 7 3 3 1

−3 1 3 3 7 3 3
−3 −3 1 3 3 7 3
−5 −3 −3 1 3 3 7

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore, w ∈ Ker(φ2,0) has rank 2 if and only if
(a1, . . . , a7)Qt (a1, . . . , a7) = 0.

The point (10 + 8α, −7, 0, 0, 7, 0, 0) lies on the
associated smooth quadric Q̃, and therefore Q̃(Q[α])
is infinite. Let be w be a two-vector in Q̃(Q[α]).

The decomposable vector ∧2w ̸= 0 has coordinates in
Q[α] in the basis (ei1 ∧ . . . . ∧ ei4) of ∧4H0(S, %S). The
corresponding four-dimensional vector spaceW is there-
fore generated by 4 vectors w1, . . . , w4 with coordinates
overQ[α] in the basis γ = (e1, . . . , e7) of H0(S, %S).
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One computes that the image of Q[U3(3) × Z/3Z] in
M7(Q[α]) is 49-dimensional overQ[α]. Thus,

Q[U3(3) × Z/3Z] = M7(Q(α)) (= End(A) ⊗ Q)

in the basis γ (H1(S,Q[α])∗ ⊂ H0(S, %S), is the Q[α]-
vector space generated by e1, . . . , e7) and therefore there
exists a morphism p : S → E4 = B (where E = C/Z[α])
such thatW = p∗H0(B, %B). By the hypothesis the image
p(S) generates B. By construction,

∧2p∗H0(B, %B) ∩ Ker(φ2,0)

is at least one-dimensional since it contains w, and there-
fore S is Lagrangian for p.

Conversely, the trace of an order 2 automorphism σ ∈
Aut(S) ⊂ Aut(A) acting on the tangent space of A at 0
equals to −1. Therefore, the image B′ of the endomor-
phism p : σ − 1A, where 1A is the identity of A as an
Abelian fourfold. Using Maple, one computes that

∧2p∗H0(B, %B) ∩ Ker( f ) = {0}.

Let ϑ : S → A be the Albanese map of S, and let q : A →
A be an endomorphism with a four-dimensional image
and a representation inM7(Q) ⊂ M7(Q(α)) in the basis
γ . Since the matrix Q is positive definite, we have

∧2p∗H0(B, %B) ∩ Q̃ = {0},

where p is the map p = q ◦ ϑ : S → B. Therefore, S is not
Lagrangian with respect to p. "
Remark 9. Let X be a surface and let φ2,0 :
∧2H0(X, %X ) → H0(X,KX ) be the natural map. Let
d = dimKer(φ2,0) and q = dimH0(X, %X ). In the proof
of Theorem 8, we saw that the set of rank-k vectors in
Ker(φ2,0) is a determinantal variety: the intersection of
minors of size ≥ 2k + 1 of some anti-symmetric matrix
of size q × q with linear entries in d variables. It is quite
remarkable that for Stover’s surface the set of rank-2
vectors (obtained as the zero set of 49 6 × 6 minors of a
size q = 7 matrix) is a hypersurface in Ker(φ2,0). This
hypersurface is the unique U3(3)-invariant quadric in
Ker(φ2,0).
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