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ON GENERALIZED KUMMER SURFACES AND THE

ORBIFOLD BOGOMOLOV-MIYAOKA-YAU INEQUALITY

XAVIER ROULLEAU

Abstract. A generalized Kummer surface X = Km(T,G) is the resolution of
a quotient of a torus T by a finite group of symplectic automorphisms G. We
complete the classification of generalized Kummer surfaces by studying the last
two groups which have not been yet studied. For these surfaces we compute
the associated Kummer lattice KG, which is the minimal primitive sub-lattice
containing the exceptional curves of the resolution X → T/G. We then prove
that a K3 surface is a generalized Kummer surface of type Km(T,G) if and
only if its Néron-Severi group contains KG.

For smooth-orbifold surfaces X of Kodaira dimension ≥ 0, Kobayashi
proved the orbifold Bogomolov-Miyaoka-Yau inequality c21(X ) ≤ 3c2(X ). For
Kodaira dimension 2, the case of equality is characterized as X being uni-
formized by the complex 2-ball B2. For smooth-orbifold K3 and Enriques
surfaces we characterize the case of equality as being uniformized by C2.

1. Introduction

A K3 surface X is called a generalized Kummer surface, and we write X =
Km(T,G) if it is the resolution of a quotient T/G where T is a torus and G is a
finite group of automorphisms of T . Let X = Km(T,G) be a generalized Kummer
surface and let FG be the sub-lattice of the Néron-Severi group NS(X) generated
by the exceptional divisors CG of the resolution X → T/G. The minimal primitive
sub-lattice KG of NS(X) containing the lattice FG is called the Kummer lattice of
G.

In [17] Nikulin computes the Kummer lattice KZ/2Z and obtains the famous
result that for a K3 surface X, it is equivalent to being a Kummer or to containing
16 disjoint (−2)-curves or that there exists a primitive embedding of the lattice
KZ/2Z in the Néron-Severi group of X.

That result linking the primitive embedding of a lattice KG contained in NS(X)
to a geometric description of X has then been extended by Bertin [2] and Garbag-
nati [7] to the 7 other symplectic automorphism groups G acting on some torus T
such that the action of G preserves the origin of T .

It turns out that there are symplectic groups G which have not yet been studied:
when G has no global fixed points on the torus T . Up to taking quotient of G by
its translation sub-group, one can suppose that G contains no translations. Fujiki
has described and classified such pairs (T,G): then G is isomorphic to Q̂8 (the

quaternion group) or T̂24 (the binary tetrahedral group of order 24). We compute
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that the singularities of the quotient T/Q̂8 are CQ̂8
= 6A3 + A1 and the ones of

T/T̂24 are CT̂24
= 4A2 + 2A3 + A5. Let G = Q̂8 or T̂24. In sub-sections 3.2 and

3.3, we describe the minimal primitive sub-lattice KG containing the lattice FG

generated by the exceptional curves CG of the minimal resolution of T/G, and we
obtain the following result.

Theorem 1. Let X be a K3 surface and let G be the group Q̂8 or T̂24. The following
conditions are equivalent:

(i) X is a generalized Kummer surface X = Km(T,G).
(ii) The Kummer lattice KG is primitively embedded in NS(X).
(iii) X contains a configuration of ADE curves CG.
Then we turn our attention to a related question, which was our initial motiva-

tion. Let C be a configuration of disjoint ADE curves on a smooth surface X and let
X → X be the contraction of the connected components of C. To the singular sur-
face X one can associate its orbifold Chern numbers, denoted by c21(X ), c2(X ) ∈ Q,
which depend on the Chern numbers c21(X), c2(X) of X and on the number and
type of the ADE singularities of X . These orbifold Chern numbers have the follow-
ing property.

Theorem 2 (Orbifold Bogomolov-Miyaoka-Yau inequality [10,13,14,16]).1 Suppose
that X is a minimal algebraic surface of Kodaira dimension ≥ 0. Then:

(A) One has

(1.1) c21(X ) ≤ 3c2(X ).

(B) Suppose X has general type. Equality holds in (1.1) if and only if there
exists a discrete cocompact lattice Γ in PU(2, 1) such that X = B2/Γ. In
other words, one has equality if and only if X is uniformizable by the unit
ball B2.

Here a discrete cocompact lattice means a sub-group which is discrete in PU(2, 1)
such that the points with non-trivial isotropy are isolated. These isotropy groups
are finite, and the quotient B2/Γ is compact. A consequence of Theorem 2 is that
in case of equality in (1.1), there always exists a finite uniformization of X , i.e., a
smooth ball quotient surface Z having a finite group of automorphisms G such that
X = Z/G.

It is now natural to ask if there is an analog of part (B) of Theorem 2 for surfaces
of Kodaira dimension 0 and 1. In this paper we study that problem for surfaces
having Kodaira dimension κ = 0, for which equality c21(X ) = 3c2(X ) is in fact
equivalent to c2(X ) = 0. Let X be a K3 surface, let C be a configuration of ADE
curves on X, and let X → X be the contraction of the curves in C. We obtain the
following result.

Theorem 3. The equality c21(X ) = 3c2(X ) holds if and only if there exists a discrete
cocompact lattice Γ in the affine linear group C2 �GL2(C) such that X = C2/Γ.

Using the now complete classification of generalized Kummer surfaces, we will in
fact see that in case of equality c21(X ) = 3c2(X ), the K3 X is a generalized Kummer
surface, which result implies Theorem 3.

1Note that there exist stronger versions of Theorem 2, in particular with other quotient sin-
gularities. But for surfaces of Kodaira dimension 0, which is the case of interest for us, the only
quotient singularities one can obtain are ADE.
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We then obtain the same result as Theorem 3 for Enriques surfaces: for an
Enriques surface X and X → X the contraction of a configuration C of ADE curves,
one has c21(X ) = 3c2(X ) if and only if C is the union of 8 disjoint (−2)-curves. We
moreover construct the Enriques surfaces containing such a configuration.

Among algebraic surfaces with Kodaira dimension 0, there remain the Abelian
and bi-elliptic surfaces, which satisfy c21 = 3c2 = 0. The universal cover of these
surfaces is C2, and they do not contain rational curves. Therefore the question is
closed for surfaces with κ = 0.

The paper is organized as follows: in section 2 we recall the notation and the main
results we will need, which are mainly the results of Garbagnati [7]. In section 3, we
recall Fujiki’s beautiful classification of automorphism groups of 2-dimensional tori
and we give a more detailed account of the previous work on generalized Kummer
surfaces. Then we describe the Kummer latticesKG for G = Q̂8, T̂24 and prove that
if a Kummer surface contains a configuration CG, then it is a generalized Kummer
surface Km(T,G). In section 4, we prove Theorem 3 on K3 and Enriques surfaces.

2. Preliminaries

2.1. Notation. Zn = Z/nZ is the cyclic group of order n.
Q8 is the quaternion group (order 8, has a unique involution ι, Q8/ι � (Z2)

2).
D12 is the binary dihedral group (order 12).
T24 is the binary tetrahedral group (order 24, isomorphic to SL2(F3); Q8 is a

normal sub-group of it).
For n ∈ Z, [n] : T → T is the multiplication by n maps on a torus T .
For more on the problem of generalized Kummer surfaces, we recommend the

paper of Garbagnati [7], from which we tried to follow the notation.

2.2. Lattices, divisible sets. For a lattice L, we denote by L∨ its dual. The
length of L is the minimal number of generators of its discriminant group L∨/L.
A sub-lattice M of L is said to be primitive if L/M is torsion free.

Proposition 4 ([18, Proposition 1.6.1]). Let L be a unimodular lattice, let M be
a primitive sublattice of L, and let M⊥ be the orthogonal to M in L. The discrim-
inant group of M is isomorphic to the discriminant group of M⊥. In particular,
since the length of a lattice is at most the rank of the lattice, l(M) = l(M⊥) ≤
min(rk(M), rk(M⊥)).

A set of disjoint smooth rational curves (Ci)i∈I on a surface X is called even if
there exists an invertible sheaf L such that O(

∑
i Ci) = L⊗2. On a K3 surface, an

even set contains 8 or 16 disjoint curves.
Let Cj

i , 1 ≤ i ≤ n, j ∈ {1, 2}, be a set of n disjoint A2 configurations (so that
C1

i C
2
i = 1) on a surface. The divisor D =

∑n
i=1 C

1
i + 2C2

i is called 3-divisible if
O(D) = L⊗3 where L is an invertible sheaf. On a K3 surface, the support of a
3-divisible divisor contains 6 or 9 disjoint A2 configurations.

We will use repeatedly the following consequence of Proposition 4.

Lemma 5. Let X be a K3 surface containing 12 disjoint (−2)-curves. Then there
exists an even set supported on 8 of these curves.

Let X be a K3 surface containing 13 disjoint (−2)-curves. Then there exist two
linearly independent even sets of curves, supported on 12 of these curves.
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Proof. This is well known; see e.g. [8, Remark 8.10]. The discriminant group of the
lattice generated by the 12 curves is (Z2)

12, and it has length 12 > min(12, 22−12).
Thus there exists at least one non-trivial divisible class.

The second part follows e.g. from the first: there is an even set, then remove one
curve from that even set, there exists still a set of 12 disjoint curves, thus another
even set, with a different support. �

In the present paper an ADE configuration C on a surface will have a polysemic
meaning. It could mean a set of ADE singularities on a surface X or the set of the
exceptional curves of its minimal resolution X → X .

For numbers αn, δn, εn ∈ N∗ with δi = 0 for i ≤ 3 and εi = 0 for i /∈ {6, 7, 8}, we
write symbolically C =

∑
n≥1 αnAn + δnDn + εnEn if for any n ≥ 1, C contains αn

(resp. δn, εn) configurations of type An (resp. Dn, En).
Let C be an ADE configuration. We are looking for obstructions or criteria

for some sub-configurations of C to be part of an even set or a 3-divisible set. In
Remark 6 below, when we speak of a configuration An or Dn, we implicitly assume
it is maximal in C; i.e., it is not contained in an Am or Dm contained in C for some
m > n.

Remark 6.
(A) An irreducible component C of a configuration An in C can be part of an

even set E if and only if n is odd, the n+1
2 disjoint curves in that An configuration

are in E, and C is among these curves, since otherwise there always exists a curve
C ′ supported on An such that C ′E = 1, and therefore E cannot be even.

(B) The discriminant group of Dn is (Z2)
2 if n ≥ 4 is even and is Z4 if n is odd

(see [9, Theorem 2.3.5]). Accordingly, k disjoint curves and the 2 extremal disjoint
closest curves on a D2k can possibly be part of an even set; the two closest extremal
disjoint curves on a D2k+1 can possibly be part of an even set.

(C) The discriminant group of An is Zn+1. Since Z4 does not contain the group
Z3, a sub-configuration A2 of a configuration A3 in C cannot be part of a 3-divisible
set. There is no such a obstruction for the two disjoint A2 in a configuration A5.

2.3. Double, bi-double, and triple covers, lifts of automorphisms. To an
even set E (resp. a 3-divisible divisor E =

∑n
i=1 C

1
i +2C2

i ) on a K3 surface X, one
can associate a double (resp. triple) cyclic cover of X branched on the support of
E. The minimal desingularisation Y of that cyclic cover has an involution (resp.
an automorphism of order 3) τ such that Y/τ is (isomorphic to) X , the surface
obtained by contracting the curves on the support of E. We call Y the surface
associated to E.

Lemma 7. Let E be an even set on a K3 surface X and let Y be the surface
associated to E.

(A) An automorphism σ of order n of the K3 surface X lifts to Y if and only if
E = σ∗E.

(B) Suppose that σ lifts to an automorphism σ′ ∈ Aut(Y ). Let τ be an element
of the transformation group of the cover Y (thus Y/τ is bi-rational to X). There
is an exact sequence

0 → 〈τ 〉 → 〈τ, σ′〉 → 〈σ〉 → 1.

Proof. A K3 surface satisfies NS(X) = Pic(X). Then part (A) is [20, Proposition
4.2]. Part (B) follows from the fact that σ′τσ′−1 is a lift of the identity, thus a
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power of τ , and 〈τ 〉 is normal in 〈τ, σ′〉. The map 〈τ, σ′〉 → 〈σ〉 maps a lift μ′ of
μ ∈ Aut(X) to μ. �

A bi-double cover Y → X of a surface X is a Galois cover of group (Z2)
2. It is

determined by divisors D1, D2, D3 and invertible sheaves L1, L2, L3 such that for
{i, j, k} = {1, 2, 3}, one has

(2.1) 2Li ≡ Dj +Dk

(see [3]). The surface Y is embedded in the total space of the vector bundle L =
L1 ⊕ L2 ⊕ L3 as the variety with equation

rk

⎛
⎝

x1 w3 w2

w3 x2 w1

w2 w1 x3

⎞
⎠ = 1,

where Di = div(xi) and w1, w2, w3 are coordinates of the Li.

Example 8. Let E =
∑12

i=1 Ci be a 12A1 configuration on a K3 surface such that
E has 2 linearly independent even sets 	1, 	2. Up to reordering, one can suppose
that

	1 =
12∑
i=5

Ci, 	2 =
4∑

i=1

Ci +
12∑
i=9

Ci.

Then 	3 =
∑8

i=1 Ci is also even. Let Li := 1
2	i and let Dj = E − 	j . The data

Di, Lj satisfy the relations (2.1) and determine a bi-double cover Y → X; Y is a
smooth K3.

Let σ be an automorphism of a smooth surface X admitting a bi-double cover
determined by divisors Di, i ∈ {1, 2, 3}, and invertible sheaves Li, i ∈ {1, 2, 3}, as
above. Suppose that there is an action of σ on {1, 2, 3} such that σ∗Li = Lσi and
σ∗Di = Dσi. Then we have the following.

Lemma 9. The automorphism σ lifts to an automorphism of Y .

Proof. One can choose coordinates wi so that σ∗wi = wσi and equations xi of Di

such that σ∗xi = xσi. Then the automorphism σ lifts to an automorphism of L, and
the equations of Y are preserved; thus it restricts to an automorphism of Y . �

2.4. Roots of a lattice and (−2)-curves. Let X be an algebraic K3 surface. Let
h be a pseudoample divisor on X (i.e., h2 > 0 and hD ≥ 0 for all effective divisors
D) and let

L = h⊥ := {l ∈ NS(X) such that lh = 0}
be the orthogonal of h in NS(X). We will use the following result proved by
Garbagnati [7, Proposition 3.2] (see also [2, Lemma 3.1] of Bertin).

Proposition 10. Let us assume that there exists a root lattice R such that:

(1) L is an overlattice of finite index of R,
(2) the roots of R and of L coincide.

Then there exists a basis of R which is supported on smooth irreducible rational
curves.

Remark 11. According to a recent preprint of Schütt [22], hypothesis (2) is always
satisfied.
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Let X be a K3 surface and let F ⊂ NS(X) be a sub-lattice. A minimal primitive
sub-lattice of H2(X,Z) containing F is a lattice KF containing F such that KF /F
is finite and H2(X,Z)/KF is free. That lattice KF is unique and is equal to the
lattice NS(X) ∩ F ⊗Q.

Let X be a non-algebraic K3 surface. By Grauert’s ampleness criterion for
complex surfaces, since X is not algebraic any divisor on X has self-intersection
≤ 0. Therefore the irreducible curves are −2-curves or of arithmetic genus 1. By
Riemann-Roch, if there is a curve of arithmetic genus 1, then it is a fiber of a
fibration X → P1. That fibration is then unique and contracts every (−2)-curve on
X (this is still because the divisors have self-intersection ≤ 0). The class of a fiber
generates the kernel of the natural map NS(X) → Num(X); in particular NS(X)
is degenerate. Therefore since the signature of the intersection form on H1,1 is
(1, 19), if NS(X) contains a negative definite sub-group of rank 19, then there are
no curves of arithmetic genus 1 on the non-algebraic K3 surface X.

Remark 12. Let X be a non-algebraic K3 surface containing no curves of arithmetic
genus 1. The negative definite lattice NS(X) has rank ρ ≤ 19, and ρ is equal to
the number of (−2)-curves on X. In particular the minimal primitive sub-lattice
containing the (−2)-curves on X is NS(X) itself.

Let δ be a (−2)-class on X, i.e., an element of NS(X) such that δ ∈ NS(X)
satisfies δ2 = −2. By Riemann-Roch −δ or δ is effective; say δ ≥ 0: there exist
(−2)-curves Ci such that δ =

∑
miCi, with mi ≥ 1. Therefore the (−2)-classes on

X form a root system of the lattice F generated by the (−2)-curves on X, and the
(−2)-curves form a simple base B of F . One can then apply [2, Lemma 3.2] (see
also [7, Remark 4.5]) and conclude that if one has a direct sum decomposition as
root lattice F =

∑
n≥1 A

⊕αn
n , then for each of the factors An there is a simple base

constituted of (−2)-curves.

2.5. Orbifold settings. Let C =
∑

n≥1 αnAn + δnDn + εnEn be an ADE config-
uration of curves on a smooth surface X. Let us define the quantity

m(C) :=
∑
n≥1

(αn + δn + εn)(n+ 1)−
∑
n≥1

αn

n+ 1
−

∑
n≥4

δn
4(n− 2)

− ε6
24

− ε7
48

− ε8
120

.

Let X → X be the contraction map of the curves contained in C. Since X contains
only ADE singularities, the orbifold Chern numbers of X are

c21(X ) = K2
X and c2(X ) = c2(X)−m(C)

(see e.g. [21]). Let X be a K3 surface. The orbifold Miyaoka-Yau inequality (1.1)
tells us that

m(C) ≤ 24.

Moreover, since each configuration An, Dn, or En contributes for an n-dimensional
sub-space in the negative definite part (of rank at most 19) of the Néron-Severi
group, one has the restriction

∑
n≥1

n(αn + δn + εn) ≤ 19.

Suppose that the K3 orbifold X has a finite uniformization Y → X ; i.e., Y is a
smooth surface with an action by a finite group G of order n such that X = Y/G
and Y → Y/G is ramified in codimension 2. Then we have the following.
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Lemma 13. The Chern numbers of Y are K2
Y = nc21(X ) and c2(Y ) = nc2(X ).

The surface Y is Abelian or a K3.

Proof. The first part follows by the definition of the orbifold Chern numbers; see
e.g. [13, 21]. Since Y → X is ramified in codimension 2, the canonical divisor KY

is the pull-back of KX , which is trivial. Thus KY is trivial, and Y is a K3 or is an
Abelian surface. �

The double cover of an even set of 8 (resp. 16) A1 is a K3 (resp. a torus). The
triple cover of a 3-divisible set of 6 (resp. 9) A2 is a K3 (resp. a torus).

3. Classification of symplectic groups and generalized Kummer

surfaces

3.1. Fujiki’s constructions of Abelian tori with symplectic action of a
group. In [6], Fujiki constructs and classifies pairs (T,G) of complex tori T with a
faithful action by a group G containing no translations. Let us describe his results
when G acts symplectically and is not cyclic.

Let H = R[1, i, j, k] be the quaternion field, so that

i2 = j2 = k2 = −1, ij = −ji = k.

Let

a = Z[1, i, j, t]

be the ring of Hurwitz quaternions, where t = 1
2 (1 + i+ j + k). This is a maximal

order of F = Q[1, i, j, k], and its group of invertible elements is

a
× = {1,±i,±j,±k,

1

2
(±1± i± j ± k)},

which is the binary tetrahedral group T24. Let

a0 = Z[1, i, j, k];

the sub-group a
×
0 = {1,±i,±j,±k} is the quaternion group Q8. Let

F ′ = Q[1, i,
√
3j,

√
3k],

and let b = Z[1, i, h, l], where

h =
1

2
(i+

√
3j), l =

1

2
(1 +

√
3k).

The sub-group

b
× = {±1,±i,±h,±l,±ih,±il}

is the binary dihedral group D12 of order 12.
Let us define the following lattices in H:

ΛQ8
= a0, ΛD12

= b, ΛT24
= a.

The set X of pure quaternions,

X = {q ∈ H | q2 = −1} = {ai+ bj + ck | a2 + b2 + c2 = 1},
is isomorphic to P1

C
. For q ∈ X , one can identify R + qR with C by sending q

to
√
−1. By multiplication on the right, X parametrizes complex structures of

H = F ⊗ R = R4.
For G = Q8, D12, or T24, such a complex structure induces a complex structure

on the real torus Tq := H/ΛG. The left multiplication on H induces a left action of
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G = Λ×
G on Tq = H/ΛG, which is compatible with the complex structure induced

by q; in other words, that action is holomorphic. In that way we get a holomorphic
family of pairs

(Tq, G)q∈X
of a complex tori Tq with an action of the group automorphism G (preserving
0 ∈ Tq), parametrized by q ∈ XG = X � P1.

We say that a group acts symplectically on a torus (or is symplectic) if its an-
alytic representation is in SL2(C) ⊂ GL2(C). According to [6], the three groups
G =Q8, D12, and T24 act symplectically on the torus Tq = H/ΛG.

Definition. We say that two pairs (T1, G1) and (T2, G2) of tori T1, T2 with action
by groups G1, G2 are isomorphic if there is an isomorphism of T1 with T2 such
that the action of G1 on T2 (induced by transport of structure) is G2 (in particular
G1 � G2). We say that a symplectic group G acting on a torus T is reduced if it
contains no translations.

Let G be a symplectic group of automorphisms of a torus T and let G0 be its
sub-group of translations.

Lemma 14. The group G0 is normal in G and G/G0 is a reduced symplectic group
of automorphisms of the torus T/G0.

Proof. It is easy to check that G0 is normal (the translation sub-group of a torus
is normal). The quotient T/G0 is of course a torus; the group G/G0 acts on T/G0

symplectically since the analytic representations of an element in G or its image in
G/G0 are the same. �

We say that a finite reduced group G is maximal if G is not a strict sub-group of
another reduced finite symplectic group. Let G be a non-cyclic group of symplectic
automorphisms of a torus T , fixing one point globally (which we can suppose to
be the origin; that hypothesis implies that G is reduced). We have the following
theorem.

Theorem 15 (Fujiki [6, Proposition 3.5 and Theorem 3.11]). The group G is
isomorphic to one of the groups Q8, D12, or T24.

If G is maximal, then there exists q ∈ X such that (T,G) is isomorphic to (Tq, G),
where Tq = H/ΛG with complex structure given by q.

If G is not maximal, then G = Q8 and there exists q ∈ X such that (T,G) is
isomorphic to (Tq, Q8), where Tq = H/ΛT24

and Q8 ⊂ T24 is the unique quaternion
group of order 8 contained in T24.

For q ∈ X and Tq = H/ΛT24
, let us now denote by A(Tq) and A0(Tq) respectively

the group of real affine automorphisms and the group of translations of Tq. Then
A(Tq) is naturally a semi-direct product A(Tq) = AutZ ΛT24

�A0(Tq). Let λ ∈ Λ×
T24

(acting by left multiplication) and r ∈ Tq. Then the action (λ; r) x → λx+ r is bi-
holomorphic on Tq so that we have the natural embedding Λ×

T24
�A0(Tq) ⊂ A(Tq).

Let us define the sub-groups Q̂8 and T̂24 of A(Tq) as follows:

Q̂8 = {1,±i,±j′,±k′}
for j′ = (j;α), k′ = (k;α) where α = 1

2 (1 + i), and

T̂24 = 〈Q̂8, (t;
1

2
s)〉, for s =

1

2
(1 + i− j + k)
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(we recall that t = 1
2 (1 + i+ j + k)). Thus by definition Q̂8 ⊂ T̂24. For q ∈ X , the

group T̂24 acts symplectically on the torus Tq = H/ΛT̂24
. That action is without

global fixed points, and so is the action of the sub-group Q̂8 ⊂ T̂24. One has
Q̂8 � Q8 and T̂24 � T24 as abstract groups.

Theorem 16 (Fujiki [6, Theorem 3.17]). Let G be a reduced finite group acting
symplectically on a torus T such that there is no global fixed point.

The group G is isomorphic to Q8 or T24. If G � Q8 (resp. T24), then there

exists q ∈ X such that (T,G) is isomorphic to (Tq, Q̂8) (resp. (Tq, T̂24)), where in
both cases Tq = H/Λ24.

Remark 17.
(A) Any action of Q8 on the torus H/ΛQ8

has a global fixed point.
(B) By [6, Proposition 5.7, p. 62], the complex torus Tq is algebraic if and only

if ∃μ ∈ R, μq ∈ ΛG. There are an infinite number of such q ∈ X. Moreover if Tq is
algebraic, it has maximal Picard number.

In the following table we summarize the 10 ADE configurations on generalized
Kummer surfaces:

Configuration Groups References for KG ρ
16A1 Z/2Z [15, 17] 16
9A2 Z/3Z [2] 18

6A1 + 4A3 Z/4Z [2] 18
5A1 + 4A2 +A5 Z/6Z [2] 18
2A1 + 3A3 + 2D4 Q8 [7, §4.2.2], [23, Prop. 2.1] 19

3A1 + 4D4 Q8 ⊂ T24 [7, §4.2.3] 19

A1 + 6A3 Q̂8 19
A1 + 2A2 + 3A3 +D5 Q12 [7, §4.2.5] 19
A1 + 4A2 +D4 + E6 T24 [7, §4.2.4], [23, Prop. 2.1] 19

4A2 + 2A3 +A5 T̂24 19

The column ρ gives the contribution of the given configuration of (−2)-curves to
the Picard number of the K3 surface.

About generalized Kummer surfaces, one must cite the work of Enriques and
Severi [5], who were the first to study generalized Kummer surfaces obtained as
quotients of Jacobians of curves more than one century ago. They saw the 10 cases
of the above table. They also described the resulting singularities (with errors for
some non-cyclic groups).

In [4] Çinkir and Önsiper study generalized Kummer surfaces and describe the

quotient singularities (but some cases are missing). In [19] Önsiper and Sertöz give
a generalization of Shioda-Inose structures to these generalized Kummer surfaces.
In [2], Bertin describes the primitive sub-lattices containing the configurations for
cyclic groups Zn, n ∈ {3, 4, 6}, after the work of Nikulin [17] (and Morrison [15])
for n = 2. In [23], Wendland studies that problem for some non-cyclic groups
preserving globally a point, a work which was later corrected and completed by
Garbagnati in [7].

To be more exhaustive, one must also mention that Fujiki studied the possible
ADE singularities in [6], and Katsura [11] worked out the possible symplectic groups
in characteristic > 0, illustrating each case by examples.
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3.2. The configuration Q̂8 : A1 +6A3. Let X be the K3 surface obtained as the
desingularization of the quotient Tq/Q̂8 of a torus Tq = H/ΛT24

by the action of

Q̂8 ⊂ T̂24 described in section 3.1.

Lemma 18. The singularities of the quotient surface Tq/Q̂8 are A1 + 6A3.

Proof. Since the square of any order 4 elements in Q8 is the multiplication by −1
map [−1]T , the fixed point sets of these elements are included in the fixed point set
of [−1]T , i.e., the set of 2-torsion points of Tq. For a, b, c, d ∈ {0, 1}, let us denote by
abcd the 2-torsion point a

2 + b
2 i+

c
2j +

d
2 t ∈ Tq. One has i(0011) = 0101, i(1001) =

1111, i(0001) = 1011, i(0111) = 1101, j′(0000) = 1100, j′(1010) = 0110, etc., and
we obtain that the fixed point sets of the order 4 elements i, j′ = (j;α), k′ = (k;α)

(where α = 1
2 (1 + i)) of Q̂8 are

Fix( i) = {0000, 1100, 1010, 0110},
Fix( j′) = {0011, 0101, 1001, 1111},
Fix( k′) = {0001, 1011, 0111, 1101}.

Using that k′ = ij′, j′ = −ik′, etc., we compute that on the quotient surface there
are 2A3 which are the images of Fix( i), 2A3 images of Fix( j′), and 2A3 images of
Fix( k′). The image of the 4 remaining 2-torsion points in Tq (the orbit of 1000) is
an A1. �

Now let X be any K3 surface containing a configuration A1+6A3. For 1 ≤ r ≤ 6,
we denote by

Cs
r , 1 ≤ s ≤ 3,

the resolution of the 6A3, where C1
rC

2
r = C2

rC
3
r = 1 and the other intersection

numbers among the curves Cs
r are 0 or −2. Let C0 be the resolution of the A1.

The discriminant group of the lattice FQ̂8
generated by the curves Cs

r , 1 ≤ r ≤ 6,

s ∈ {1, 2, 3}, and C0 is Z2 × (Z4)
6; it is generated by t0 = 1

2C0 and

tr =
1

4
(C1

r + 2C2
r + 3C3

r ), r ∈ {1, . . . , 6}.

Let KQ̂8
be the Kummer lattice of Q̂8, the minimal primitive sub-lattice of NS(X)

containing the lattice FQ̂8
.

Proposition 19. The lattice KQ̂8
is generated by FQ̂8

and by the divisors

δ1 = (1, 1, 1, 1, 2, 0), δ2 = (1, 3, 2, 0, 1, 3)

in the base t1, . . . , t6 (up to reorder of the tr and Ci
r).

The lattice KQ̂8
has discriminant group Z2 × (Z4)

2; the index of FQ̂8
in KQ̂8

equals 16.

Proof. The curves C1
r , C

3
r , r ∈ {1, . . . , 6}, and C0 form a configuration of 13 disjoint

A1. Therefore there exist two linearly independent even sets supported on 12 of
these curves. The curve C0 cannot be part of such an even set (see Remark 6).
Therefore, up to permuting the indices, the three even sets are

v1 = C1
1 + C3

1 + C1
2 + C3

2 + C1
3 + C3

3 + C1
4 + C3

4 ,
v2 = C1

3 + C3
3 + C1

4 + C3
4 + C1

5 + C3
5 + C1

6 + C3
6 ,

v3 = C1
1 + C3

1 + C1
2 + C3

2 + C1
5 + C3

5 + C1
6 + C3

6 ,
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and 1
2v1,

1
2v2,

1
2v3 are in fact elements of NS(X). In the discriminant group of

FQ̂8
, one has 1

2v1 +
1
2v2 = 1

2v3. Let us denote by L8 the lattice spanned by FQ̂8

and 1
2v1,

1
2v2,

1
2v3. The discriminant group of L8 is (Z/2Z)5 × (Z/4Z)2, of length

7 > rk(L⊥
8 ) = 3; thus there exist other divisibilities.

Since a set of 12 disjoint A1 contains at most two linearly independent even sets,
these are divisibilities by 4. Comparing the length, one obtains that there are two
linearly independent 4-divisible classes. In A1 + 6A3 there is no sub-configuration
4A3+6A1 that could come from the quotient of a torus by an order 4 automorphism.
A quotient of a K3 by an order 4 automorphism has singularities 4A3 + 2A1, and
the 4 × 2 disjoint configurations A1 supported on the sub-configuration 4A3 of
4A3 + 2A1 must be divisible by 2. Thus in our configuration 6A3 + A1, these 4A3

are (supported 4 times on the following elements)

t1, t2, t3, t4 or t1, t2, t5, t6 or t3, t4, t5, t6.

Once the 4A3 are chosen, there are two choices for the 2A1 such that 4A3 + 2A1

becomes 4-divisible: one can take two disjoint curves in the resolution of the 5th
or of the 6th A3’s. Up to permuting the tj , and also since one has some freeness to
permute C1

r with C3
r , one can suppose that

δ1 = (1, 1, 1, 1, 2, 0)

(written in the canonical base of the sub-group Z6 ⊂ F∨
Q̂8

generated by the ti, i ∈
{1, . . . , 6}), is integral. The relations δ1δ2 ∈ Z, δ22 ∈ 2Z forces the other generator
δ2 supported on t1, t2, t5, t6 to be δ2 = (1, 3, 2, 0, 1, 3) (or (3, 1, 2, 0, 3, 1), but both
generate the same group in the discriminant group). Then δ3 = (2, 0, 3, 1, 3, 3) is
supported on t3, t4, t5, t6 and equals δ1 + δ2 in the discriminant group.

The lattice generated by FQ̂8
and the δi, i ∈ {1, 2, 3}, has discriminant group

Z2 × (Z4)
2 (of length 3). Another divisibility by 2 is not possible because a set of

13 disjoint A1 supports at most two linearly independent even sets. If there were
another independent 4-divisible set, it would create other even sets. Therefore that
lattice is primitive and equals KQ̂8

. �

Remark 20. Let Y be the K3 associated to the Z4-cover defined by δ1. There exists
on Y a configuration 4A3 +6A1; therefore Y = Km(T ′,Z4) for some torus T ′. The
order 4 automorphism τ such that Y/τ is birational to X lifts to an automorphism
of T ′. The group generated by the lifts and the automorphism σ ∈ Aut(T ′) such
that Y is birational to T ′/σ has order 16. Thus by the classification of Fujiki, it
contains a translation.

Let us now prove the following result.

Proposition 21. Let X be a K3 surface containing a configuration A1 + 6A3.
Then there exists q ∈ X such that X = Km(Tq, Q̂8) where Tq = H/a.

Proof. By the proof of Proposition 19, there exist two linearly independent even
sets which are supported on the 12 disjoint rational curves of the sub-configuration
6A3 in A1 + 6A3.

Taking the associated bi-double cover and its minimal model, the pull-back of the
A1 and central curves in the six A3 comprise a set of 16 disjoint A1 curves Ci; this is
therefore a Kummer surface Km(T ). Since the automorphisms in the group (Z/2Z)2

preserve the branch locus
∑16

1 Ci, these automorphisms lift to automorphisms of
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T . By the classification of Fujiki that group must be isomorphic to Q8, and the
result follows from Fujiki’s classification, Theorem 16. �

Now let X be a K3 surface such that there exists a primitive embedding of KQ̂8

into NS(X).

Theorem 22. There exists a complex torus T and a group of automorphism G �
Q8 such that X = Km(T,G).

Proof. Using Magma, one computes that the number of roots in KQ̂8
(37 of such)

equals the number of roots of FQ̂8
. Thus by Proposition 10, there exists a configu-

ration A1 + 6A3 of smooth irreducible rational curves. We then apply Proposition
21 and Remark 12. �

3.3. The configuration T̂24 : 4A2 + 2A3 + A5. Let X = Km(T, T̂24) be a K3
surface obtained as the desingularization of the quotient of a complex torus T = Tq

by the action of T̂24.
One computes that the order 3 automorphism w = (t; 1

2s)
2 fixes a unique 2-

torsion point on the torus Tq = H/ΛT̂24
; that point is not in the fixed point sets of

the automorphisms i, j′ = (j, α), k′ = (k, α). The K3 surface Tq/T̂24 is a quotient

of Tq/Q̂8 (where Q̂8 ⊂ T̂24 is the unique normal sub-group of order 8) by the order
3 automorphism w′ induced by w.

An order 3 automorphism on a smooth K3 has 6 isolated fixed points. In our
situation, two of these fixed points are on the isolated A1 in 6A3 +A1; thus taking
the resolution one gets an A5. The configurations 6A3 on Tq/Q̂8 are permuted by
3, creating 2A3 on the quotient surface. There are moreover 4A2 coming from the
4 other fixed points of w′. We thus obtain the following lemma.

Lemma 23. The K3 surface X = Km(T, T̂24) contains a configuration 4A2 +
2A3 +A5.

Now let X be any K3 surface containing a configuration 4A2 + 2A3 +A5.

Proposition 24. There exists a torus T with an action of the group T̂24 such that
X = Km(T, T̂24).

Proof. The configuration 4A2+2A3+A5 contains 8 disjoint A2 sub-configurations.
The discriminant group of 8A2 is (Z3)

8. It has length 8 > min(16, 22 − 16) = 6;
therefore there exists a non-trivial 3-divisible class D with support on 6 of the 8A2.
By Remark 6, the support of D is the sub-configuration 6A2 contained in 4A2+A5.

The surface associated to the triple cover branched on the support of D is a K3
surface Y with a configuration 6A3 + A1 and having an order 3 automorphism σ.
We proved in Proposition 21 that the surface Y is of type Y = Km(T, Q̂8). The
automorphism σ must preserve the 2 linearly independent even sets on Y supported
on the 6A3; otherwise there would be other divisibility relations. Therefore by
Lemma 9, the automorphism σ lifts to the (Z2)

2-cover of Y , which contains a
16A1 configuration. These 16A1 are pull-backs of curves in X. Thus σ lifts to
an automorphism σ̃ of T , and X is the Kummer surface associated to the group
generated by Q̂8 and σ̃, which has order divisible by 3. By Theorem 16, that group
is T̂24. �
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Again let X be a K3 surface containing a configuration 4A2 + 2A3 + A5. The
discriminant group of the lattice FT̂24

generated by the curves in 4A2+2A3+A5 is

(Z3)
4 × (Z4)

2 × Z6.

It has length 5. There exists an integral class γ = 1
3D, where D is supported on

the 6 disjoint A2 on the sub-configuration 4A2 + A5 (see proof of Proposition 24).
The discriminant group of the lattice generated by γ and FT̂24

is

(Z3)
2 × (Z4)

2 × Z6 � (Z12)
2 × Z6,

which has length 3 = 22 − 19. By Remark 6, there are no other sets of 6 disjoint
A2 which are 3-divisible, nor are there even sets. Therefore we get the following
result.

Proposition 25. The lattice generated by FT̂24
and δ is the minimal primitive

sub-lattice KT̂24
⊂ NS(X) containing FT̂24

. The discriminant group of KT̂24
is

(Z12)
2 × Z6.

Thus if X = Km(T, T̂24), then there is a primitive embedding of KT̂24
into

NS(X). Conversely, let X be any K3 surface.

Theorem 26. Suppose that there is a primitive embedding of KT̂24
into NS(X).

Then X = Km(T, T̂24).

Proof. Using MAGMA, it turns out that KT̂24
has the same roots as FT̂24

. We then
apply Proposition 10 and Remark 12. �

4. The case of equality in the orbifold Bogomolov-Miyaoka-Yau

inequality

4.1. K3 surfaces. For an orbifold X with only ADE singularities such that X
has Kodaira dimension 0 or 1, one has c21(X ) = 0, and the second orbifold Chern
number is defined by c2(X ) = c2(X)−m(C), where the rational number m(C) ≥ 0
depends only on the type and number of the singularities of X (see section 2). For
a K3 surface, part (A) of Theorem 2 is thus equivalent to m(C) ≤ c2(X) = 24. Our
aim is to characterize configurations C for which equality

c2(X ) = 0

holds, i.e., when m(C) = c2(X). For any configuration C among the 10 configura-
tions

16A1, 9A2, 6A1 + 4A3, 5A1 + 4A2 +A5,
3A1 + 4D4, 2A1 + 3A3 + 2D4, A1 + 2A2 + 3A3 +D5,
A1 + 4A2 +D4 + E6, 4A2 + 2A3 +A5, A1 + 6A3,

one has m(C) = 24. Moreover:

Theorem 27. Suppose that a K3 X contains the configuration C and let X → X
be the contraction of the curves in C. There exists a finite group of automorphisms
G acting on a torus T such that X = Km(T,G) and X = T/G.

This is a result of Nikulin [17] for 16A1, Bertin [2] for the cases 9A2, 6A1 +
4A3, 5A1+4A2+A5 of Propositions 21 and 24 for the two last cases, and Garbagnati
[7] for the remaining cases. A direct consequence follows.
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Theorem 28. For each of the 10 above cases, there exists a lattice Γ in the affine
automorphism group of C2 such that X = C2/Γ.

In other words, each of the orbifold surfaces X is uniformizable by C2.
It is easy to compute that there are 8 other possible configurations C with Milnor

number ρ ≤ 19 (since H2(X,Z) has signature (3, 19)) and m(C) = 24. These
configurations are

C1 = 11A1 + 2A3, C5 = 5A1 +A2 +D4 +D8,
C2 = 7A1 +A3 + 2D4, C6 = 5A1 +A3 +A4 +D7,
C3 = 5A1 +A3 +A7 +D4, C7 = 2A1 + 2A2 + 2D4 +D5,
C4 = 6A1 + 2A2 +A3 +D5, C8 = A1 + 4A2 + 2D5.

The aim of this section is to prove the following result, which with Theorem 28
implies Theorem 3.

Proposition 29. For any i ∈ {1, . . . , 8} there is no complex K3 surface containing
a configuration Ci.

Remark 30. Some of these configurations Ci may exist in characteristic p > 0.
Indeed by [11, Corollary 3.17 and Remark 7.3], the cyclic groups Z5,Z8,Z10, Z12,
the binary dihedral groups Dn−2 (of order 4n − 8, creating singularity Dn) with
n ∈ {4, . . . , 8}, and the binary octahedral and icosahedral groups act symplectically
on some Abelian surfaces in characteristic p > 0.

4.1.1. Configuration C1 = 11A1+2A3. The 11A1 plus one curve from each A3 form
a set of 13 disjoint curves. By Remark 6 there are two linearly independent even
sets supported on 12 curves. This is impossible since a unique curve on an A3

cannot be part of an even set. Such a configuration C1 = 11A1+2A3 does not exist
on a complex K3.

4.1.2. Configuration C2 = 7A1 + A3 + 2D4. There are 14 disjoint rational curves:
7A1, one curve in A3, plus 3 curves for each D4. If there are 14 disjoint rational
curves on a K3 surface, then there are three independent even sets, supported on all
the curves. But one curve in A3 cannot be in the support of an even set. Therefore
that configuration does not exist on a complex K3 surface.

4.1.3. Configuration C3 = 5A1 + A3 + A7 + D4. Let us consider the following set
of 12 disjoint rational curves supported on C3: 5A1, plus the two disjoint curves in
A3, plus two disjoint curves in A7 (at the extrema), and three disjoint curves in
D4. It contains an even set of curves E. The two curves on the A7 cannot be on
the support of E. One must take 0 or 2 curves in the D4; thus the even set is made
of 4A1 plus the two disjoint curves on the A3 and two disjoint curves on the D4.
The K3 double cover will have a configuration

2A1 +A1 + 2A7 +A3,

but it would have Picard number > 20, a contradiction.

4.1.4. Configuration C4 = 6A1+2A2+A3+D5. There is a set of 13 disjoint rational
curves on C. There must be two linearly independent even sets supported on 12 of
these curves. But an even set cannot contain the curves in an A2.
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4.1.5. Configuration C5 = 5A1 + A2 + D4 + D8. Let us consider the following 14
curves: 5A1, plus one curve in A2, plus the 3 disjoint curves in D4 and the 5
disjoint curves in D8. As for configuration C2, there are three independent even
sets, supported on all the curves. But the curve in A2 cannot be in the support of
a 2-divisible even set.

4.1.6. Configuration C6 = 5A1 +A3 +A4 +D7. The sub-configuration 4A1 +A3 +
A4+D7 contains 13 disjoint rational curves (the 5A1 plus 2 disjoint curves in A3, 2
in A4, and 4 curves in D7). Thus there exist two independent even sets supported
on 12 curves. However the 2 disjoint curves in A4 cannot be part of an even set.

4.1.7. Configuration C7 = 2A1 + 2A2 + 2D4 + D5. There are 13 disjoint rational
curves on C7. Thus there exist two linearly independent even sets, and we obtain a
contradiction as before by looking at the possible supports for these two even sets.

4.1.8. Configuration C8 = A1 + 4A2 + 2D5. The discriminant group of C8 is

Z2 × (Z3)
2 × (Z12)

2.

It has length 5, but the lattice has rank 19, and a minimal primitive sub-lattice of
rank 19 has a discriminant with length at most 3. Thus there exist some divisibilities
by 2 or 3. But it is easy to check using Remark 6 that no such even set can exist,
nor does there exist a 3-divisible set of 6A2.

4.2. Enriques surfaces. An Enriques surface Z has invariants K2
Z = 0, c2 = 12

with 2KZ = 0. It is the quotient of a K3 by a fix-point free involution. Let C be
a configuration of ADE curves on an Enriques surface Z such that the associated
orbifold Z has Chern numbers c21(Z) = 3c2(Z).

Proposition 31. The configuration C is C = 8A1. There exist an Abelian sur-
face A isogeneous to the product of two elliptic curves, a group of automorphisms
G � (Z2)

2 of the surface A generated by the involution [−1], and a fix-point free
involution such that Z is the minimal resolution of A/G.

Proof. For an Enriques surface the condition c21(Z) = 3c2(Z) is equivalent to
c2(Z) = 0, i.e., m(C) = 12.

Let X → Z be the étale double cover of Z. The K3 surface X contains the
configuration 2C, which verifies m(2C) = 24; thus the only possibilities are C = 8A1

and C = 3A1 + 2A2.
Let σ be the Enriques involution on X so that Z = X/σ. The involution σ

preserves the 16A1 (resp. 6A1 + 4A2) on X; thus it lifts to an automorphism σ′ on
the Abelian surface A such that X = Km(A) (resp. X = Km(A,Z4)). Since σ has
no fixed points on X, σ′ has no fixed points on A either.

Let us study the case C = 8A1. Suppose that a lift σ′ of σ has order 4; then
σ′2 is the transformation of the double cover A → X, i.e., σ′2 = [−1]. Since
H0(Z,KZ) = 0, σ′ must not preserve the space H0(A,KA). Thus (up to replacing
σ′ by σ′3) the eigenvalues of the analytic representation of σ′ are i, i, and A is
the surface (C/Z[i])2; σ′ is the multiplication by an i map composed by some
translation. But such an morphism always has fixed points.

Therefore σ′ has order 2, commutes with [−1], and the eigenvalues of its analytic
representation are (1,−1). Then there exist coordinates of TA � C2 such that
σ′ : A → A is given by

σ′(z1, z2) = (−z1, z2) + v
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where v ∈ A. Thus there exist a product E1 ×E2 of elliptic curves and an isogeny
E1 ×E2 → A. Moreover since σ′ commutes with [−1], one must have v = −v; i.e.,
v is a 2-torsion point. Since σ′ has no fixed points v is non-trivial.

Let us study the case 3A1 + 2A3. Suppose there exist an Abelian surface A and
a group G of order 8 such that A/G is an Enriques surface with a configuration
2A3 + 3A1. For an automorphism τ let τ0 be the linear part of τ , and let G0 be
the group {τ0 | τ ∈ G}. An element τ in the kernel K of G → G0 is a translation,
but then A/G is the surface A′/G0 where A′ = A/K and G0 has order 4, which
leads to a contradiction. The group G is therefore isomorphic to G0, and since it
contains an order 4 element, it is among the following groups:

Z8, Z4 × Z2, D4, or Q8.

There are no order 8 automorphisms acting on an Abelian surface [6]; thus G �= Z8.
The group G is generated by a fix-point free involution σ and an automorphism μ of
order 4 such that A/μ is a K3 with 4A3 +6A1 (in particular μ2 = [−1]). Moreover
the involution σ induces a fix-point free non-symplectic involution on A/μ. The
group G is not Q8 since that group has a unique involution.

Suppose that this is Z4 ×Z2 = 〈μ〉 × 〈σ〉. Then σ0 is σ0(z1, z2) = (−z1, z2), and

σ(z1, z2) = (−z1, z2) + v,

where v is a non-trivial 2-torsion point. Moreover since μ0σ0 = σ0μ0, the element
μ must act diagonally; thus

μ(z1, z2) = (iz1,−iz2).

Therefore A = C × C, where C is the elliptic curve C/Z[i]. One has

σμ(z1, z2) = (−iz1,−iz2) + v,

which always has some fixed points, creating 1
4 (1, 1) singularities, but there are no

such singularities on Enriques surfaces.
The dihedral group D4 of order 8 remains. There is only one faithful 2-dimensional

representation of D4, which is generated by

σ0(z1, z2) = (−z1, z2), μ(z1, z2) = (−z2, z1).

Taking σ(z1, z2) = (−z1, z2) + v where v is a 2-torsion point, the involution σμ has
a one-dimensional fixed point set; thus the quotient of A by D4 is a rational surface
(see e.g. [11]). We have thus proved that there is no Enriques surface containing a
configuration 3A1 + 2A3. �

Example 32 (Lieberman, [12]). Let A be the product of two elliptic curves A =
E1 × E2 and let (e1, e2) be a 2-torsion point on A, with e1 �= 0, e2 �= 0. Then the
endomorphism τ : A → A given by

τ (z1, z2) = (−z1 + e1, z2 + e2)

induces a fix-point free involution on the Kummer surface Km(A). The associated
Enriques surface contains an 8A1 configuration.

Let T0 be a sub-group of torsion points on A = E1 × E2 as above such that
τ (T0) = T0 and (e1, 0), (0, e2) are not elements of T0. Then τ induces a fix-point
free involution τ ′ on the quotient A/T0, and A/〈T0, [−1], τ 〉 is an Enriques surface
containing 8A1. Reciprocally, from the proof of Proposition 31, every Enriques
surface containing 8A1 is obtained by that construction.
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