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The Bolza Curve and Some Orbifold
Ball Quotient Surfaces

Vincent Koziarz, Carlos Rito, & Xavier Roulleau

Abstract. We study Deraux’s nonarithmetic orbifold ball quotient
surfaces obtained as birational transformations of a quotient X of a
particular Abelian surface A. Using the fact that A is the Jacobian of
the Bolza genus 2 curve, we identify X as the weighted projective
plane P(1,3,8). We compute the equation of the mirror M of the orb-
ifold ball quotient (X,M), and by taking the quotient by an involution
we obtain an orbifold ball quotient surface with mirror birational to
an interesting configuration of plane curves of degrees 1, 2, and 3. We
also exhibit an arrangement of four conics in the plane that provides
the above-mentioned ball quotient orbifold surfaces.

1. Introduction

Chern numbers of smooth complex surfaces of general type X satisfy the
Bogomolov–Miyaoka–Yau inequality c2

1(X) ≤ 3c2(X). Surfaces for which the
equality is reached are ball quotient surfaces: there exists a cocompact torsion-free
lattice � in the automorphism group PU(2,1) of the ball B2 such that X = B2/�.
This description of ball quotient surfaces by uniformization is of transcendental
nature, and in fact among ball-quotient surfaces, very few are constructed geo-
metrically (e.g. by taking cyclic covers of known surfaces or by explicit equations
of an embedding in a projective space).

Among lattices in PU(2,1), only 22 commensurability classes are known to
be nonarithmetic. The first examples of such lattices were given by Mostow
[22] and Deligne and Mostow [10], and recently Deraux, Parker, and Paupert
[14; 15] constructed some more, sometimes related to an earlier work of Couwen-
berg, Heckman, and Looijenga [9].

Being rare and difficult to produce, these examples are particularly interesting,
and we would like to have a geometric description of them. To this end, Deraux
[12] studied the quotient of the Abelian surface A = E × E, where E is the el-
liptic curve E = C/Z[i√2], by an order 48 automorphism group isomorphic to
GL2(F3), which we denote by G48. The ramification locus of the quotient map
A → A/G48 is the union of 12 elliptic curves and two orbits of isolated fixed
points. The images of these two orbits are singularities of type A2 and 1

8 (1,3),
respectively.
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Then Deraux proves that (on some birational transforms) the one-dimensional
branch locus M48 of the quotient map A → A/G48 and the two singularities are
the support of four ball-quotient orbifold structures, three of these corresponding
to nonarithmetic lattices in PU(2,1). Knowing the branch locus M48 is therefore
important for these ball-quotient orbifolds, since it gives an explicit geometric
description of the uniformization maps from the ball to the surface.

Deraux [12] also remarks that the invariants of A/G48 and its singularities
are the same as for the weighted projective plane P(1,3,8), and, in analogy with
cases in [11] and [13], where weighted projective planes appear in the context of
ball-quotient surfaces, he asks whether the two surfaces are isomorphic.

In fact, the quotient A/G48 can also be seen as a quotient C2/G where G

is an affine crystallographic complex reflection group. A conjecture states that if
G′ is any affine crystallographic complex reflection group acting on a complex
affine space V , then the quotient V/G′ is a weighted projective space. Using
theta functions, Bernstein and Schwarzman [2] observed that for many examples
the conjecture is true. Kaneko, Tokunaga, and Yoshida [20] worked out some
other cases, and it is believed that this analog of the Chevalley theorem always
happens (see [2], [16, p. 17]), although no general method is known (see also
the presentation of the problem given by Deraux [12], where more details can be
found).

In this paper, we prove that indeed:

Theorem A. The surface A/G48 is isomorphic to P(1,3,8).

We obtain this result by exploiting the fact that A is the Jacobian of a smooth
genus 2 curve θ , a curve that was first studied by Bolza [5]. The automorphism
group of the curve θ induces the action of G48 on the Jacobian A. The main idea
to obtain Theorem A is to understand the image of the curve θ in A by the quotient
map A → A/G48 and to prove that its strict transform in the minimal resolution
is a (−1)-curve.

We then construct birational transformations of P(1,3,8) to P1 × P1 and P2

and obtain the equations of the images MP1×P1 and MP2 of the branch curve M48
in these surfaces (and also M48 ⊂ P(1,3,8)). In particular:

Theorem B. In the projective plane the mirror MP2 is the quartic curve

(x2 + xy + y2 − xz − yz)2 − 8xy(x + y − z)2 = 0.

This curve has two smooth flex points and a singular set a1 + 2a2 (where an ak

singularity has the local equation y2 − xk+1 = 0). The line L0 through the two
residual points of the flex lines F1 and F2 contains the node (by flex line we mean
the tangent line to a flex point).

The curve MP2 with the two flex lines F1 and F2 gives rise to the four orbifold
ball-quotient surfaces (previously described by Deraux [12]) on suitable birational
transformations of the plane. We prove that the configuration of curves described
in Theorem B is unique up to projective equivalence.
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Hirzebruch [18] constructed ball-quotient surfaces using arrangements of lines
and performing Kummer coverings. It is a well-known question whether we can
construct other ball-quotient surfaces using higher-degree curves, the next case
being arrangements of conics.

Let ϕ be the Cremona transformation of the plane centered at the three sin-
gularities of MP2 . The image by ϕ of the curves MP2 , F1, F2, L0 described in
Theorem B is a special arrangement of four plane conics. We remark that by per-
forming birational transforms of P2 and by taking the images of the four conics
we can obtain the orbifold ball-quotients of [12]. To our knowledge, that gives the
first example of orbifold ball-quotients obtained from a configuration of conics
(ball-quotient orbifolds obtained from a configuration of a conic and three tan-
gent lines are studied in [19] and [28]). However, we do not know whether we can
obtain ball-quotient surfaces by performing Kummer coverings branched at these
conics.

When preparing this paper, we observed that the mirror MP1×P1 and one re-
lated orbifold ball-quotient surface among the four might be invariant by an order
2 automorphism. Using the equation we have obtained for MP2 , we prove that
this is actually the case: there is an involution σ on P1 × P1 with fixed point set
a (1,1)-curve Di such that the quotient surface is P2; moreover, the image of Di

is a conic Co, and the image of MP2 is the unique cuspidal cubic curve Cu. In the
last section we obtain and describe the following result.

Theorem C. There is an orbifold ball-quotient structure on a surface W bira-
tional to P2 such that the strict transforms on W of Co and Cu have weights 2
and ∞, respectively.

The paper is structured as follows. In Section 2, we recall some results of Der-
aux on the quotient surface A/G48 and introduce some notation. In Section 3, we
study properties of the surface P(1,3,8). In Section 4, we introduce the Bolza
curve θ and prove that A/G48 is isomorphic to P(1,3,8). Section 5 is devoted to
the equation of the mirror MP2 . Moreover, we describe the four conics configura-
tion. Section 6 deals with Theorem C.

Some of the proofs in Sections 5 and 6 use the computational algebra system
Magma, version V2.24-5. A text file containing only the Magma code that appears
further is available as an auxiliary file on arXiv and in [25].

Along this paper, we use intersection theory on normal surfaces as defined by
Mumford [23, Section 2].

2. Quotient of A by G48 and Image of the Mirrors

2.1. Properties of A/G48 and Image of the Mirrors

In this section, we collect some facts from [12] about the action of the automor-
phism subgroup G48 on the Abelian surface

A := C2/
(
Z

[
i
√

2
])2

.
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There exists a group G48 of order 48 acting on A that is isomorphic to GL2(F3)

(see [12, Section 3.1] for generators). The action of G48 on A has no global fixed
points (in particular, some elements have a nontrivial translation part).

The group G48 contains 12 order 2 reflections, that is, their linear parts acting
on the tangent space TA � C2 are complex order 2 reflections. The fixed point set
of a reflection being usually called a mirror, we similarly call the fixed point set of
a reflection τ of G48 a mirror. The mirror of such τ is an elliptic curve on A. The
group G48 acts transitively on the set of the 12 mirrors, whose list can be found
in [12, Table 1].

We denote by M the union of the mirrors in A and by M48 the image of M in
the quotient surface A/G48. The curve M48 is also called the mirror of A/G48.

Except the points on M , there are two orbits of points in A with nontrivial
isotropy, one with isotropy group of order 3 at each point and the other with
isotropy group of order 8; see [12, Prop. 4.4]. Correspondingly, the quotient
A/G48 has two singular points, which are the images of two special orbits.

Proposition 1. The surface A/G48 is rational, and its singularities are of type
A2 + 1

8 (1,3).
The minimal resolution p : X48 → A/G48 of the surface A/G48 has invariants

K2
X48

= 5 and c2(X48) = 7.

Proof. Let us compute the invariants of X48. Let π : A → A/G48 be the quotient
map. We have

OA = KA = π∗KA/G48 + M. (2.1)

Moreover, according to [12, §4], each mirror Mi , i = 1, . . . ,12, satisfies MiM =
24; therefore M2 = 288, and

(KA/G48)
2 = 1

48
M2 = 6.

We observe that M = π∗( 1
2M48), and thus by (2.1) we get M48 = −2KA/G48 .

The singularities of the quotient surface A/G48 are computed in [12, Table 2].
Let C1, C2 be the two (−3)-curves above the singularity 1

8 (1,3); they are such
that C1C2 = 1. Since the singularity of type A2 is an ADE singularity, we obtain

KX48 = p∗KA/G48 − 1

2
(C1 + C2)

and (KX48)
2 = 5.

Let τ be a reflection in G48, and let G be the Klein group of order 4 generated
by τ and the involution [−1]A ∈ G48. We can check that the quotient surface A/G

is rational. Being dominated by the rational surface A/G, the surface A/G48 is
also rational. Thus the second Chern number is c2(X48) = 7 by Noether’s formula.

�

The mirror M48 (the image of M by the quotient map) contains no singularities
of A/G48. Moreover:
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Lemma 2. The pull-back M̃48 of the mirror M48 by the resolution map p : X48 →
A/G48 has self-intersection 24. Its singular set is

2a2 + a3 + a5,

where ak denotes a singularity with local equation y2 − xk+1 = 0.

Proof. The singularities of M̃48 = p∗M48 are the same as the singularities of
M48 since M48 is in the smooth locus of A/G48. For the computation of the
singularities of M48, we refer to [12, Table 3], and for the self-intersection of M̃48
(which is the same as the one of M48), to [12, §6.2]. �

3. The Weighted Projective Space P(1,3,8)

Since we aim to prove that the quotient surface A/G48 is isomorphic to P(1,3,8),
we first have to study that weighted projective space; this is the goal of this (tech-
nical) section. The reader might at first browse through the main results and nota-
tion and proceed to the next section.

3.1. The Surface P(1,3,8) and Its Minimal Resolution

The weighted projective space P(1,3,8) is the quotient of P2 by the group Z3 ×
Z8 generated by

σ =
⎛
⎝1 0 0

0 j 0
0 0 ζ

⎞
⎠ ∈ PGL3(C),

where j2 + j + 1 = 0, and ζ is a primitive 8th root of unity. The fixed point set of
the order 24 element σ is

p1 = [1 : 0 : 0], p2 = [0 : 1 : 0], p3 = [0 : 0 : 1].
For i, j ∈ {1,2,3} with i �= j , let L′

ij be the line through pi and pj . The fixed

point set of an order 3 element (e.g., σ 8) is p2 and the line L′
13. The fixed point

set of an order 8 element (e.g., σ 3) and its nontrivial powers is p3 and the line L′
12.

Let π : P2 → P(1,3,8) be the quotient map: π is ramified with order 3 over L′
13

and with order 8 over L′
12. The surface P(1,3,8) has two singularities, images of

p2 and p3, which are respectively a cusp A2 and a singularity of type 1
8 (1,3). We

denote by p : Z → P(1,3,8) the minimal desingularization map. The singularity
of type 1

8 (1,3) is resolved by two rational curves C1 and C2 with C1C2 = 1 and
C2

1 = C2
2 = −3, and the singularity A2 is resolved by two rational curves C3 and

C4 with C3C4 = 1 and C2
3 = C2

4 = −2 (see, e.g., [1, Chap. III]).

Lemma 3. The invariants of the resolution Z are

K2
Z = 5, c2(Z) = 7, pq = q = 0.

Proof. We have:
KP2 ≡ π∗KP(1,3,8) + 2L′

13 + 7L′
12.
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Therefore, since KP2 ≡ −3L, we obtain π∗KP(1,3,8) ≡ −12L and

(KP(1,3,8))
2 = (−12L)2

24
= 6.

We have

KZ ≡ p∗KP(1,3,8) −
4∑

i=1

aiCi,

where ai are rational numbers. The divisor KZ must satisfy the adjunction for-
mula, that is, we must have CiKZ = −2 − C2

i for i ∈ {1,2,3,4}, which gives

KZ = p∗KP(1,3,8) − 1

2
(C1 + C2),

and therefore K2
Z = 5. For the Euler number, we may use the formula in [26,

Lemma 3]:

e(P(1,3,8)) = 1

24
(3 + 2(2 − 2) + 7(2 − 2) + 23 · 3) = 3.

Thus e(Z) = e(P(1,3,8)) − 2 + 3 + 3 = 7. Since P(1,3,8) is dominated by P2,
the surface Z is rational, so that q = pg = 0. �

3.2. The Branch Curves in P(1,3,8) and Their Pullback in the Resolution

Let Lij be the image of the line L′
ij on P(1,3,8), and let L̄ij be the strict trans-

form of Lij in Z.

Proposition 4. We have:

L̄2
23 = −1, L̄23C1 = L̄23C3 = 1, L̄23C2 = L̄23C4 = 0,

L̄2
13 = 0, L̄13C2 = 1, L̄13C1 = L̄13C3 = L̄13C4 = 0,

L̄2
12 = 2, L̄12C4 = 1, L̄12C1 = L̄12C2 = L̄12C3 = 0.

Figure 1 Image of the lines L′
ij

in the desingularization of P(1,3,8).
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Proof. On P(1,3,8), we have L2
23 = 1

24L′2
23 = 1

24 . Recall that the resolution map
is p : Z → P(1,3,8). Let a1, . . . , a4 ∈Q be such that

L̄23 = p∗L23 −
4∑

i=1

aiCi.

Then Cip
∗L23 = 0 for i ∈ {1,2,3,4}. Let ui ∈ N be such that CiL̄23 = ui . We

get that (
a1
a2

)
= 1

8

(
3 1
1 3

)(
u1
u2

)
,

(
a3
a4

)
= 1

3

(
2 1
1 2

)(
u3
u4

)
.

We have π∗KP(1,3,8) = −12L′
23, and thus

KP(1,3,8)L23 = 1

24
(−12L′

23 · L′
23) = −1

2
.

Since KZ = p∗KP(1,3,8) − 1
2 (C1 + C2), we get

KZL̄23 =
(

p∗KP(1,3,8) − 1

2
(C1 + C2)

)(
p∗L −

4∑
i=1

aiCi

)

= −1

2
− a1 − a2 = −1

2
(1 + u1 + u2),

which is in Z, with u1, u2 ∈ N. We compute that

L̄2
23 = 1

24
− 1

8
(3u2

1 + 3u2
2 + 2u1u2) − 2

3
(u2

3 + u3u4 + u2
4) ∈ Z≤0.

Since KZL̄23 + L̄2
23 = −2, the only possibility is

{u1, u2} = {0,1}, {u3, u4} = {0,1},
which gives the intersection numbers with L̄23.

For the curve L13, we have L13KP(1,3,8) = − 3
2 and L2

13 = 3
8 . Let u := L̄13C1 ∈

N, v := L̄13C2 ∈N. Then we similarly compute that

L̄13KZ = −1

2
(3 + u + v) ≤ −3

2
and

L̄2
13 = 1

8
(3 − 3u2 − 3v2 − 2uv) ≤ 3

8
.

Therefore L̄2
13 + KZL̄13 ≤ − 9

8 , and since L̄2
13 + KZL̄13 ≥ −2, the only solution

is {u,v} = {0,1}, and thus L̄2
13 = 0 and L̄13KZ = −2.

For the curve L12, which does not go through the 1
8 (1,3) singularity, we have

L̄12KZ = L12KP(1,3,8) = −4

and L2
12 = 8

3 . Let w := L̄12C3, t := L̄12C4. Then

L̄2
12 = 1

3
(8 − 2w2 − 2t2 − 2wt) ≤ 8

3
.
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Therefore L̄2
12 + KZL̄12 ≤ − 4

3 , and the only solution is {w, t} = {0,1}; thus
L̄2

12 = 2. �

3.3. From P(1,3,8) to the Hirzebruch Surface F3 and Back

By contracting the (−1)-curve C0 := L̄23 and then the other (−1)-curves appear-
ing from the configuration C1, . . . ,C4, L̄, we get a rational surface with

K2 = 2c2 = 8,

containing (depending on the choice of the (−1)-curves we contract) a curve,
which is either a (−2)-curve or a (−3)-curve. Thus that surface is one of the
Hirzebruch surfaces F2 or F3. Conversely, we can reverse the process and obtain
the surface P(1,3,8) by performing a sequence of blow-ups and blow-downs.
This process is unique: this follows from the fact that the automorphism group of
a Hirzebruch surface Fn, n ≥ 1, has two orbits, which are the unique (−n)-curve
and its open complement (see, e.g., [4]). We further will use only the connection
between P(1,3,8) and F3.

4. The Bolza Genus 2 Curve in A and Its Image by the Quotient Map

In this section, we prove that A/G48 is isomorphic to P(1,3,8).
Let us consider the genus 2 curve θ whose affine model is

y2 = x5 − x. (4.1)

It was proved by Bolza [5] that the automorphism group of θ is GL2(F3) � G48
and θ is the unique genus 2 curve with such an automorphism group.

The automorphisms of θ are generated by the hyperelliptic involution λ and
the lift of the automorphism group G of P1 that preserves the set of six branch
points 0, ∞, ±1, ±i of the canonical map θ → P1 (i.e., the set of points which are
fixed by λ). Note that in fact any map of degree 2 from θ to P1 is the composition
of this map with an automorphism of P1. This is a consequence of the two follow-
ing facts: on the one hand, the six ramification points (by the Riemann–Hurwitz
formula) of such a map are Weierstrass points, and, on the other hand, the genus
2 curve θ has exactly six Weierstrass points.

By the universal property of the Abel–Jacobi map the group GL2(F3) acts
naturally on the Jacobian variety J (θ) of θ , the action on θ and J (θ) being equi-
variant.

There is only one Abelian surface with an action of GL2(F3), which is A =
E ×E, where E = C/Z[i√2] as before (see Fujiki [17] or [3]). We identify J (θ)

with A. There are up to conjugation only two possible actions of GL2(F3) on A

(see [24]):

(a) The action of G48 � GL2(F3) described in Section 2.1; it has no global fixed
points.

(b) The one obtained by forgetting the translation part of that action. That second
action globally fixes the 0 point in A.
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Let α : θ ↪→ J (θ) = A be the embedding of θ sending the point at infinity of
the affine model (4.1) to 0; we identify θ with its image.

Note that the morphism θ × θ → A, (x, y) �→ [y] − [x] ∈ Div0(θ) � A is onto
since θ × θ and A are both two-dimensional. In fact, this map has generic degree
2 and contracts the diagonal. Indeed, assume that [y] − [x] = [y′] − [x′], that is,
[y] + [x′] − [x] − [y′] = 0 ∈ Div0(θ). If y′ = y, then x′ = x (and conversely)
because there is no degree 1 map from θ to P1. In the same way, y = x iff y′ = x′.
In the remaining cases, there exists a function of degree 2 from θ to P1 whose
zeroes are y and x′ and poles are x and y′. But by the previous remark we must
have x′ = λ(y) and y′ = λ(x). Conversely, by the same argument it is clear that
for all x and y in θ , [λ(y)] − [λ(x)] = [x] − [y].

This also implies that the points of the type [y] − [x] with x and y being
distinct Weierstrass points are exactly the 2-torsion points of A. Indeed, since
there are six Weierstrass points on θ , we have 15 points of that type in A satisfying
[y] − [x] = [λ(x)] − [λ(y)] = [x] − [y], that is, they are 2-torsion points.

The induced linear action b) is given by g([y] − [x]) = [g(y)] − [g(x)], for
which 0 ∈ Div0(θ) is a fixed point.

If we fix the base point ∞ ∈ θ , then for each y ∈ θ , α(x) = [x] − [∞]. The
induced action of g ∈ Aut(θ) on A is then given by g([y] − [x]) = [g(y)] −
[g(x)]+[g(∞)]−[∞]. This is indeed the only action of Aut(θ) on A commuting
with α.

Lemma 5. The action of GL2(F3) on A inducing the action of Aut(θ) on the curve
θ ↪→ A has no global fixed points.

Proof. The fixed points on A for the action of the hyperelliptic involution λ are
its points of 2-torsion (and 0). Indeed, λ([y] − [x]) = [λ(y)] − [λ(x)] ∈ Div0(θ)

since ∞ ∈ θ is fixed by λ, and, as a consequence of the previous discussion, if
[y] − [x] = [λ(y)] − [λ(x)], then either y = x or y = λ(x), that is, [y] − [x] =
[x] − [y], and we saw that this implies that x and y are Weierstrass points.

However, for any pair (x, y) of distinct Weierstrass points, it is easy to find
g ∈ Aut(θ) (lifting an automorphism of P1) such that g(∞) = ∞ but [g(y)] −
[g(x)] �= [y] − [x]. �

For t ∈ A, let θt be the curve θt = t + θ . The previous result does not depend on
the choice of the embedding θ ↪→ A: indeed, the group of automorphisms acting
on A and preserving θt is conjugated by the translation x �→ x + t to the group of
automorphisms acting on A and preserving θ .

We denote by H48 the order 48 group acting on A and inducing the automor-
phism group of the curve θ ↪→ A by restriction. As a consequence of Lemma 5,
we get the following:

Corollary 6. There exists an isomorphism between H48 and G48. It is induced
by an automorphism g of the surface A such that H48 = gG48g

−1.
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By [6, Thm. (0.3)] the embedding α : θ ↪→ A is such that the torsion points of A

contained in θ are 16 torsion points of order 6, 5 torsion points of order 2 and the
origin; moreover, the x-coordinates of the 22 torsion points on θ satisfy

x4 − 4ix2 − 1 = 0, x4 + 4ix2 − 1 = 0,

x5 − x = 0, x = ∞.

Proposition 7. (a) These 22 torsion points of θ are not in the mirror of any of
the 12 complex reflections of H48;

(b) Each of these 22 points has a nontrivial stabilizer.

Proof. Let us prove part (a).
The hyperelliptic involution is given by (x, y) → (x,−y). By [8] the rational

map

v : (x, y) �→
(

− x + i

ix + 1
,
√

2
i − 1

(ix + 1)3
y

)

defines a nonhyperelliptic involution v on θ . The x-coordinates of the fixed
point set of v are x± = i(1 ± √

2). These coordinates x± are not among the x-
coordinates of the 22 torsion points in θ . Let v be the automorphism of A induced
by v. The fixed point set of v is a smooth genus 1 curve Ev (a mirror), and we
have just proved that Ev contains no torsion points of θ . By the transitivity of
the group H48 on its set of 12 nonhyperelliptic involutions we get that no mirror
contains any of the 22 torsion points.

Let us prove part (b).
The six 2-torsion points are the Weierstrass points of the curve θ , and they are

fixed by the hyperelliptic involution (whose action on A has only 16 fixed points).
The transformation

w : (x, y) �→
(

(1 + i)x − (1 + i)

(1 − i)x + (1 − i)
,− 1

((1 − i)x + (1 − i))3
y

)

defines an order 3 automorphism of θ , which acts symplectically on A, and we
compute that it fixes a torsion point p0 = (x0, y0) on θ with x0 such that x4

0 +
4ix2

0 − 1 = 0, that is, it is an order 6 torsion point. This torsion point is an isolated
fixed point for each nontrivial element of its stabilizer (since by part (a) it is not
on a mirror).

Recall that by [12, Table 2] there are exactly two orbits of points of respective
orders 6 and 16 with nontrivial stabilizer under G48 that are isolated fixed points
of the nontrivial elements of their stabilizer (by a direct computation we can check
that these two orbits are 16 points of order 6 and 6 points of order 2). Since H48 is
conjugate to G48, the 15 other 6-torsion points on θ are also isolated fixed points
for each nontrivial element of their stabilizer. �

Since we can change the embedding θ ↪→ A by composing with the automor-
phism g such that H48 = gG48g

−1, let us identify H48 with G48.
By Section 2.1 (or [12]) the images of the 22 torsion points of θ on the quotient

surface A/G48 give the singularities A2 and 1
8 (1,3).
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Let m be the mirror of one of the 12 complex reflections in G48.

Lemma 8. We have θ · m = 2.

Proof. The intersection number θ · m is the number of fixed points of the invo-
lution ιm with mirror m restricted to θ . Since ιm fixes exactly one holomorphic
form, the quotient of θ by ιm is an elliptic curve, and thus by the Hurwitz formula
θ · m = 2. �

Let θ48 be the image of θ in A/G48. We have the following:

Proposition 9. The strict transform C0 of θ48 by the resolution X48 → A/G48

is a (−1)-curve, and we have M̃48C0 = 1.

Proof. We have

θ2
48 = 1

48
θ2 = 1

24
.

Let π : A → A/G48 be the quotient map; it is ramified with order 2 on the union
M of the 12 mirrors. We have π∗(KA/G48 + 1

2M48) = KA = 0, and thus

KA/G48θ48 = − 1

48
(Mθ) = − 1

48
12 · 2 = −1

2
.

The curve θ48 contains the singularities 1
8 (1,3) and A2 (image respectively of the

2-torsion points and the 6-torsion points of θ ). We are then left with the same
combinatorial situation as in the computation of L̄2

23 in Proposition 4, and thus
we conclude that C2

0 = −1.
The two intersection points of m and θ in Lemma 8 are permuted by the hy-

perelliptic involution of θ , and thus M48θ48 = 1, which implies M̃48C0 = 1. �

We obtain the following:

Theorem 10. The surface A/G48 is isomorphic to P(1,3,8).

Proof. Let us denote the resolution map by p : X48 → A/G48. Let C1, C2 be the
resolution curves of the singularity 1

8 (1,3), and let C3, C4 be the resolution of
A2. Let a ∈ A be an isolated fixed point of an automorphism τ of order 3 or 8.
The tangent space Tθ,a ⊂ TA,a is stable by the action of τ . Since the local setup is
the same, we can reason as in Proposition 4 and obtain that the curve C0 is such
that

C0C1 = C0C3 = 1, C0C2 = C0C4 = 0.

Contracting the curves C0, C1, C2, we get a rational surface with a (−3)-curve and
with invariants K2 = 2c2 = 8. This is therefore the Hirzebruch surface F3. From
Section 3 we know that reversing the contraction process, we get the weighted
projective plane P(1,3,8) (contracting the curves C0, C1, C3, we would obtain
the Hirzebruch surface F2). �
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Figure 2 Configuration of curves M̃48, L̄12, L̄13, and so on in X48
and their intersection numbers.

Remark 11. Now we identify P(1,3,8) with A/G48 and use the notation in Sec-
tion 3. In particular, Z = X48 is the minimal resolution of P(1,3,8), the curves
C1, . . . ,C4 are exceptional divisors of the resolution map Z → P(1,3,8), and
C0 = L̄23 is a (−1)-curve in Z.

Let us observe that the divisor F̃ = C1 + 3C0 + 2C3 + C4 satisfies

F̃C1 = F̃C0 = F̃C3 = F̃C4 = 0,

and thus F̃ 2 = 0; moreover, F̃C2 = L̄13F̃ = 1, F̃ L̄13 = 0, and L̄2
13 = 0. This

implies that the curves F̃ and L̄13 are fibers of the same fibration onto P1 and C2
is a section of that fibration.

The curves C0, . . . ,C4 are exceptional divisors or strict transform of generators
of the Néron–Severi group of a minimal rational surface. Thus the Néron–Severi
group of the rational surface X48 is generated by these curves. Knowing the inter-
section of curves L̄12, L̄13, M̃48 with these curves (see Propositions 4 and 9), it is
easy to obtain their classes in the Néron–Severi group; in particular, we get that
L̄12M̃48 = 8 and L̄13M̃48 = 3.

5. A Model of the Mirror

5.1. A Birational Map from P(1,3,8) to P1 × P1; Images of the Mirror

5.1.1. A Rational Map P(1,3,8) ��� P1 × P1. As before, we identify P(1,3,8)

with A/G48; we use the notation of Sections 3 and 4.
Take a point p in the Hirzebruch surface Fn that is not in the negative sec-

tion. By blowing-up at p and then by blowing-down the strict transform of the
fiber through p we get the Hirzebruch surface Fn−1. This process is called an
elementary transformation.

Recall from Sections 3 and 4 that there is a map ψ : P(1,3,8) ��� F3 that
contracts the curves C0, C3, C4 to a smooth point.

Performing any sequence of three elementary transformations as before, we get
a map ρ : F3 ��� F0 = P1 ×P1. This can be seen as a birational transform that, by



The Bolza Curve and Some Orbifold Ball Quotient Surfaces 435

Figure 3 From X48 to P1 × P1 and back.

blowing-up three times at a point q not contained in the negative section, takes the
fiber Fq through q to a chain of curves with self-intersections (−1), (−2), (−2),
(−1), then followed by the contraction of the (−1), (−2), (−2) chain (which
contains the strict transform of Fq ). For our purpose, we choose the three points
to blow up in a specific way; see Section 5.1.2.

Consider

φ := ρ ◦ ψ : P(1,3,8) ��� P1 × P1.

We observe that given any two points t, t ′ ∈ P1 × P1 not in a common fiber,
the map φ can be chosen such that the inverse φ−1 is not defined at t , t ′ and
φ−1(P1 × P1) = P(1,3,8).

5.1.2. Image of the Mirror M48 in P1 ×P1. Let us describe how to choose φ such
that the image MP1×P1 of the mirror curve M48 is a (3,3)-curve with singularities
a3 + 2a2 and two special fibers tangent to it with multiplicity 3.

The map P(1,3,8) ��� F3 factors through a morphism ϕ : X48 → F3. Con-
sider the point t0 := ϕ(C0). Since M48C0 = 1, ϕ(M48) is a curve that is smooth
at t0, and its intersection number with the curve ϕ(C1) at t0 is 3. The curve
C′

1 := ρ ◦ ϕ(C1) is a fiber of P1 × P1.
Then we choose q to be the a5-singularity of M48. The fiber Fq through q

cuts M48 at q with multiplicity 2 or 3. Suppose that the multiplicity is 3. Then by
taking the blowup at that point and computing the strict transform of the curves
Fq and M48 we can check that FqM48 ≥ 4. However, FqM48 = L̄13M48 = 3 by
Remark 11. Therefore the fiber Fq through q cuts M48 at q with multiplicity 2
and at another point.

Remark 12. An analogous reasoning gives that the fiber through the a3-
singularity has the same property: it is transverse to the tangent of the a3-
singularity.

The three successive blowups above q are chosen such that they resolve the singu-
larity a5. The three blowdowns we described create a multiplicity 3 tangent point
between MP1×P1 (the image of M48 in P1 × P1) and the curve C′

2 (the image of
C2), thus C′

2MP1×P1 = 3. Moreover, C′2
2 = 0 and C′

1C
′
2 = 1 (see Figure 3).

The mirror M48 does not cut the curves C1 and C2. The transforms of these
curves in P1 ×P1 are fibers C′

1 and C′
2 such that C′

i cuts MP1×P1 at one point only
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Figure 4 From P1 × P1 to P2.

with multiplicity 3. In particular, the class of MP1×P1 in the Néron–Severi group
of P1 × P1 is 3C′

1 + 3C′
2. The singularities of MP1×P1 are a3 + 2a2.

5.1.3. From P1 ×P1 to P2 and Back. Let us recall that the blowup of P1 ×P1 at a
point, followed by the blowdown of the strict transform of the two fibers through
that point, gives a birational map P1 × P1 ��� P2.

We choose to blow up the point at the a3-singularity s0, so that the strict trans-
form of MP1×P1 has a node above s0. The two fibers F1, F2 of P1 × P1 passing
through s0 cut MP1×P1 in two other points respectively s1, s2 (see Remark 12;
the result is preserved through the birational process). The fibers F1, F2 are con-
tracted into points in P2 by the rational map P1 × P1 ��� P2, and the images of
s1, s2 by that map are on the image of the exceptional divisor, which is a line
L0 through the node. This implies that the strict transform of MP1×P1 is a plane
quartic curve MP2 . The process in illustrated in Figure 4.

The total transform of MP1×P1 in P2 is the union of 2L0 with MP2 . This quartic
MP2 has the following properties, which follow from its description and the choice
of the transformation from P1 × P1 to P2:

Proposition 13. The singular set of the quartic curve MP2 is a1 + 2a2, and the
nodal point is contained in the line L0. The curve MP2 contains two flex points
such that each corresponding tangent line meets the quartic at a second point that
is contained in the line L0.

5.2. The Yoga Between the Mirrors MP2 and M48

Using the previous description, the reader can follow the transformations between
the surfaces P(1,3,8) and the plane. The link between Deraux’s ball-quotient
orbifolds described in [12, Thm. 5] and the quartic MP2 is as follows.

The singularities a1 +2a2 of MP2 correspond respectively to singularities a3 +
2a2 of M48, so that to get the curves F , G, H in [12, Figure 1], we have to blow up
and contract at these three points as it is done in [12]. To obtain the curve E in [12,
Figure 1], we have to blow up the two flexes three times to separate MP2 and the
flex lines. We obtain two chains of (−1)-, (−2)-, (−2)-curves. Contracting one
of the two (−2), (−2) chains, we get an A2-singularity. The curve E is the image
by the contraction map of the remaining (−1)-curve of the chain. The resolution
of the singularity A2 on P(1,3,8) corresponds to the two (−2)-curves on the
other chain of (−1)-, (−2)-, (−2)-curves. After taking the blowup at the residual
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intersection of the quartic and the flex lines and after separating the flex lines and
the mirror MP2 , we get two (−3)-curves intersecting transversally at one point. In
that way the resolution of the singularity 1

8 (1,3) on P(1,3,8) by two (−3)-curves
corresponds to the two flex lines.

5.3. A Particular Quartic Curve in P2

The aim of this subsection is to prove the following result.

Theorem 14. Up to projective equivalence, there is a unique quartic curve Q in
P2 with distinct points p1, . . . , p7 such that:

(1) Q has a node at p1 and ordinary cusps at p2, p3;
(2) the points p4 and p5 are flex points of Q;
(3) the tangent lines to Q at p4 and p5 contain p6 and p7, respectively;
(4) the line through p6 and p7 contains p1.

We can assume that

p1 = [0 : 0 : 1], p2 = [0 : 1 : 1], p3 = [1 : 0 : 1].
Then the equation of Q is

(x2 + xy + y2 − xz − yz)2 − 8xy(x + y − z)2 = 0,

and the points p4, p5 and p6, p7 are, respectively,[±2
√−2 + 8 : ∓2

√−2 + 8 : 25
]
,

[±2
√−2 : ∓2

√−2 : 1
]
.

Corollary 15. The mirror MP2 described in Section 5.1.3 satisfies the hypothe-
sis of Theorem 14, and thus MP2 is projectively equivalent to the quartic Q.

To prove Theorem 14, let us first give a criterion for the existence of roots of
multiplicity at least 3 on homogeneous quartic polynomials of two variables. We
use the computational algebra system Magma; see [25] for a copy–paste ready
version of the Magma code.

Figure 5 The quartic Q.
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Lemma 16. The polynomial

P(x, z) = ax4 + bx3z + cx2z2 + dxz3 + ez4

has a root of multiplicity at least 3 if and only if

12ae − 3bd + c2 = 27ad2 + 27b2e − 27bcd + 8c3 = 0.

Proof. The computation below is self-explanatory.

R<u,v,m,n,a,b,c,d,e>:=PolynomialRing(Rationals(),9);
P<x,z>:=PolynomialRing(R,2);
f:=(u*x+v*z)^3*(m*x+n*z);
s:=Coefficients(f);
I:=ideal<R|a-s[5],b-s[4],c-s[3],d-s[2],e-s[1]>;
EliminationIdeal(I,4); �

Let us now prove Theorem 14.

Proof. We have already chosen three points p1, p2, p3 in P2. Instead of choosing
a fourth point for having a projective base, we can fix two infinitely near points
over p2 and p3. Indeed, the projective transformations that fix points p1, p2, p3
are of the form

φ : [x : y : z] �−→ [ax : by : (a − 1)x + (b − 1)y + z],
and these transformations act transitively on the lines through p2 and p3. Thus up
to projective equivalence, we can fix the tangent cones (which are double lines) of
the curve Q at the cusps p2 and p3. Let us choose for these cones the lines with
equations y = z and x = z, respectively.

The linear system of quartic curves in P2 is 14-dimensional. The imposition
of a node and two ordinary cusps (with given tangent cones) corresponds to 13
conditions, and thus we get a pencil of curves. We compute that this pencil is
generated by the following quartics:

(x2 + xy + y2 − xz − yz)2 = 0, xy(x + y − z)2 = 0.

Notice that at the points p2 and p3 the first generator is of multiplicity 2, and the
second generator is of multiplicity 3, and thus a generic element in the pencil has
a cusp singularity at p2 and p3.

Let us compute the quartic curves Q satisfying conditions (1)–(4) of Theo-
rem 14. The method is to define a scheme by imposing the vanishing of certain
polynomials Pi = 0 and the nonvanishing of other ones Di �= 0, which is achieved
by using an auxiliary parameter n and imposing 1 + nDi = 0.

K:=Rationals();
R<a,q1,q2,m,d1,d2,n>:=PolynomialRing(K,7);
P<x,y,z>:=ProjectiveSpace(R,2);

The defining polynomial of Q, depending on one parameter:

F:=(x^2 + x*y + y^2 - x*z - y*z)^2 + a*x*y*(x + y - z)^2;
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The points p6 and p7 are in a line y = mx, and hence they are of the form

p6:=[q1,m*q1,1];
p7:=[q2,m*q2,1];

and we must have the vanishing of

P1:=Evaluate(F,[q1,m*q1,1]);
P2:=Evaluate(F,[q2,m*q2,1]);

The defining polynomials of lines through that points are:

L1:=-y+d1*x+(m*q1-d1*q1)*z;
L2:=-y+d2*x+(m*q2-d2*q2)*z;

We need to impose that these lines are not tangent to Q at p6 and p7, and thus the
following matrices must be of rank 2:

M1:=Matrix([JacobianSequence(F),JacobianSequence(L1)]);
M1:=Evaluate(M1,[q1,m*q1,1]);
M2:=Matrix([JacobianSequence(F),JacobianSequence(L2)]);
M2:=Evaluate(M2,[q2,m*q2,1]);

The matrix Mi is of rank 2 if one of its minors is nonzero. Here we make a choice
for these minors, but to cover all cases, the computations must be repeated for all
other choices.

D1:=Minors(M1,2)[1];
D2:=Minors(M2,2)[1];

Now we intersect the quartic Q with the lines L1, L2:

R1:=Evaluate(F,y,d1*x+(m*q1-d1*q1)*z);
R2:=Evaluate(F,y,d2*x+(m*q2-d2*q2)*z);

and we use Lemma 16 to impose that these lines are tangent to Q at flex points
of Q:

c:=Coefficients(R1);
P3:=c[1]*c[5]-1/4*c[2]*c[4]+1/12*c[3]^2;
P4:=c[1]*c[4]^2+c[2]^2*c[5]-c[2]*c[3]*c[4]+8/27*c[3]^3;
c:=Coefficients(R2);
P5:=c[1]*c[5]-1/4*c[2]*c[4]+1/12*c[3]^2;
P6:=c[1]*c[4]^2+c[2]^2*c[5]-c[2]*c[3]*c[4]+8/27*c[3]^3;

We note that the lines L1 and L2 cannot contain the points p2 and p3:

D3:=Evaluate(L1,[0,1,1]);
D4:=Evaluate(L1,[1,0,1]);
D5:=Evaluate(L2,[0,1,1]);
D6:=Evaluate(L2,[1,0,1]);

Also, the line Li cannot contain the point p1, i = 1,2:
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D7:=(m-d1)*(m-d2);

It is clear that the following must be nonzero:

D8:=a*q1*q2*(q1-q2);

Finally, we define a scheme with all these conditions:

A:=AffineSpace(R);
S:=Scheme(A,[P1,P2,P3,P4,P5,P6,1+n*D1*D2*D3*D4*D5*D6*D7*D8]);

We compute (that takes a few hours)

PrimeComponents(S);

and get the unique solution a = −8. �

From the equation of the quartic Q = MP2 we can compute a 24th-degree equa-
tion for the mirror M48:
(31072410*r+44060139)*x^24+(599304420*r-4660302600)*x^21*y
+(-106415505000*r+18054913500)*x^18*y^2+(796474485000*r
+3638808225000)*x^15*y^3+(-27123660*r-18697014)*x^16*z
+(34521715125000*r-31210968093750)*x^12*y^4+(107726220*r
+2948918400)*x^13*y*z+(-257483985484500*r-516632817969000)*x^9*y^5
+(42798843000*r-32351244300)*x^10*y^2*z+(-1747212737190000*r
+3228789525752500)*x^6*y^6+(-407331396000*r-935091495000)*x^7*y^3*z
+(-655139025450000*r+10855982580975000)*x^3*y^7+(7724970*r
-2222037)*x^8*z^2+(-3383703150000*r+9052448883750)*x^4*y^4*z
+(1544666220033750*r+11942493993804375)*y^8+(-102498120*r
-465161400)*x^5*y*z^2+(-319463676000*r+12613760073000)*x*y^5*z
+(-2705586000*r+7086771600)*x^2*y^2*z^2+(-712080*r+1186268)*z^3=0

where r = √−2.

5.4. A Configuration of Four Plane Conics Related to the Orbifold Ball-Quotient

In this subsection, we describe the configuration of conics, which we announced
in the introduction.

Let us consider a conic tangent to two lines of a triangle in P2 and going
through two points of the remaining line. Performing a Cremona transformation at
the three vertices of the triangle, we obtain a quartic curve in P2 with singularities
a1 + 2a2. Conversely, starting with such a quartic, its image by the Cremona
transform at the three singularities is a conic with three lines having the above
configuration.

Thus we consider the Cremona transform ϕ at the three singularities of the
quartic MP2 . Let D1, . . . ,D4 be respectively the images of MP2 , the line L0

through the node and the two residual points of the flex lines, and the two flex
lines. Using Magma, we see that these are four conics meeting in 10 points as
follows:
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q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

D1 1+ 1+ 0 0 0 0 1 1 1 1
D2 1 1 1 1 1 0 0 0 1 1
D3 0 1+ 1 1 1 1 1 0 0 0
D4 1+ 0 1 1 1 1 0 1 0 0

Here two + in the column of qj mean that the two curves meet with multiplic-
ity 3 at point qi . The other intersections are transverse. We see that the various
ball-quotient orbifolds that Deraux described in [12] may be obtained from a con-
figuration of conics by performing birational transformations.

6. One Further Quotient by an Involution

6.1. The Quotient Morphism P1 × P1 → P2, Image of the Mirror
as the Cuspidal Cubic

Consider the plane quartic curve Q from Theorem 14. Here we show the existence
of a birational map

ρ : P2 ��� P1 × P1 ⊂ P3

and an involution σ on P1 × P1 that preserves ρ(Q) and fixes the diagonal D of
P1 ×P1 pointwise. Moreover, we have (P1 ×P1)/σ = P2, and the images Cu and
Co of ρ(Q) and D are curves of degrees 3 and 2, respectively. The curve Cu has a
cusp singularity and intersects Co at three points, with intersection multiplicities
4, 1, 1. The map ρ is the inverse of the birational transform P1 × P1 ��� P2 de-
scribed in Section 5.1.3, whose indeterminacy is at the singularity a3 of MP1×P1 .

K:=Rationals();
R<r>:=PolynomialRing(K);
K<r>:=ext<K|r^2+2>;
P2<x,y,z>:=ProjectiveSpace(K,2);
Q:=Curve(P2,(x^2+x*y+y^2-x*z-y*z)^2-8*x*y*(x+y-z)^2);
p6:=P2![2*r,-2*r,1];
p7:=P2![-2*r,2*r,1];

We compute the linear system of conics through the cuspidal points p2 and p3
and take the corresponding map to P3.

L:=LinearSystem(LinearSystem(P2,2),[p6,p7]);
P3<a,b,c,d>:=ProjectiveSpace(K,3);
rho:=map<P2->P3|Sections(L)>;

The image of P2 is a quadric surface Q2 (∼= P1 × P1).

Q2:=rho(P2);Q2;
C:=rho(Q);C;

There is an involution preserving both Q2 and the curve C := ρ(Q).

sigma:=map<P3->P3|[d,b,c,a]>;
C:=rho(Q);C;
sigma(Q2) eq Q2;
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sigma(C) eq C;

We compute the corresponding map to the quotient. The image of C is a cubic
curve, and the image of the diagonal is a conic.

psi:=map<P3->P2|[a+d,b,c]>;
Cu:=psi(C);
Co:=psi(Scheme(rho(P2),[a-d]));
Co:=Curve(P2,DefiningEquations(Co));

The curve Cu has a cusp singularity:

pts:=SingularPoints(Cu);
ResolutionGraph(Cu,pts[1]);

The intersections of Co and Cu:

Degree(ReducedSubscheme(Co meet Cu)) eq 3;
pt:=Points(Co meet Cu)[1];
IntersectionNumber(Co,Cu,pt) eq 4;

Let C′
1 and C′

2 be the fibers that intersect MP1×P1 each at a unique point with
multiplicity 3. These fibers are exchanged by the involution σ and are sent to a
line Fl , which cuts the cubic curve Cu at a unique point; this is a flex line. That
line Fl also cuts the conic Co at a unique point.

Conversely, let us start from the data of a conic Co and a cuspidal cubic Cu

intersecting as before, with the flex line (at the smooth flex point) of the cubic
tangent to the conic. We can take the double cover of the plane branched over Co,
which is P1 × P1. The pull-back of Cu is then a curve satisfying the properties of
Theorem 14, and thus the configuration (Co,Cu) we described is unique in P2 up
to projective automorphisms.

6.2. An Orbifold Ball-Quotient Structure from (P2, (Co,Cu))

Let Cu ↪→ P2 be the unique plane cuspidal curve, and let c1 be its cuspidal point.
Let Fl be the flex line through the unique smooth flex point c2 of Cu. By the
previous subsection we have the following result.

Proposition 17. There exists a unique conic Co ↪→ P2 such that the following
holds:

(i) Fl is tangent to Co;
(ii) Co cuts Cu at points c3, c4, c5 ( �= c1, c2) with intersection multiplicities 4, 1,

1, respectively.

In this subsection, we prove that there is a natural birational transformation W ���
P2 such that together with the strict transform of the curves Co and Cu we get an
orbifold ball-quotient surface. For definitions and results on orbifold theory, we
use [7; 11] and [29].

Let us blow up over points c1, c2, c3 and then contract some divisors as follows
(for a pictural description, see Figure 6):
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Figure 6 The plane, the surfaces Z and W .

We blow up over c1 three times. The first blowup resolves the cusp of Cu,
and the exceptional divisor intersects the strict transform of Cu tangentially, the
second blowup is at that point of tangency, and the third blowup separates the
strict transforms of the first exceptional divisor and the curve Cu. We obtain in
that way a chain of (−3)-, (−1)-, and (−2)-curves. We then contract the (−2)-
and (−3)-curves obtaining in that way the singularities A1 and 1

3 (1,1). The image
of the (−1)-curve by that contraction map is denoted by H . As an orbifold, we
put multiplicity 2 on H .

We blow up over c2 (the flex point) three times in order that the strict transform
of the curves Fl and Cu get separated over c2. We obtain in that way a chain of
(−1)-, (−2)-, and (−2)-curves. We then contract the two (−2)-curves and obtain
an A2-singularity. The strict transform of the line Fl is a (−2)-curve, which we
also contract, obtaining in that way an A1-singularity. The contracted curve being
tangent to C̃0, the image C̄0 has a cusp a2 at the singularity A1.

We moreover blow up over c3 four times, in order that the strict transform of
the curves Co and Cu get separated over c3. We obtain in that way a chain of
(−1)-, (−2)-, (−2)-, (−2)-curves. We then contract the three (−2)-curves and
obtain an A3-singularity. The image of the (−1)-curve by the contraction map is
a curve denoted by Fd , we give the weight 2 to that curve.

Let us denote by W the resulting surface. For a curve D on P2, we denote
by D̃ its strict transform on W . Let W be the orbifold with the same subjacent
topological space, with divisorial part:

� =
(

1 − 1

∞
)

C̄u +
(

1 − 1

2

)
(C̄o + Fd + H).

The singular points of W are

A1 + A1 + A2 + A3 + 1

3
(1,1),

and they have an isotropy β of order 16, 4, 3, 8, 6 respectively, for W . The compu-
tation of the isotropy is immediate, except for the first point (that we shall denote
by r1), which is also a cusp on the curve C̄0 (which has weight 2). Let SD16 be
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the the semidihedral group of order 16, generated by the matrices

g1 =
(

0 −ζ

−ζ 3 0

)
, g2 =

(
0 1
1 0

)
,

where ζ is a primitive 8th root of unity. The order 2 elements g2 and g−1
1 g2g1

generate an order 8 reflection group D4. The quotient of C2 by SD16 has an
A1-singularity, and we compute that the image of the four mirrors of D4 is a
curve with a cusp a2 at the A1-singularity of C2/SD16. The isotropy group of the
point r1 in the orbifold is therefore the semidihedral group SD16 of order 16. The
following proposition is an application of the main result of [21].

Proposition 18. The Chern numbers of the orbifold W = (W,�) satisfy

c2
1(W) = 3c2(W) = 9

16
;

in particular, W is an orbifold ball-quotient.

Proof. Let us compute the orbifold second Chern number of W . We have (see,
e.g., [27]):

c2(W) = e(W) −
((

1 − 1

∞
)

e(C̄u \ S) +
(

1 − 1

2

)
e(C̄o \ S)

+
(

1 − 1

2

)
e(Fd \ S) +

(
1 − 1

2

)
e(H \ S)

)
−

∑
p∈S

(
1 − 1

β(p)

)
,

where S is the union of the singular points of W with the singular points of the
round-up divisor ���, and where, moreover, β(p) is the isotropy order of the
point p, so that, for example, for p on C̄u, β(p) = ∞, and the unique point p in
Fd and C̄o has β(p) = 4. Since we have blown-up P2 over 10 points and we have
contracted eight rational curves, we get

e(W) = 3 + 10 − 8 = 5.

We obtain

c2(W) = 5 −
(

(2 − 4) + 1

2
(2 − 4) + 1

2
(2 − 3) + 1

2
(2 − 3)

)

−
(

10 − 1

16
− 1

4
− 1

3
− 1

8
− 1

6
− 1

4
− 4 · 1

∞
)

,

and thus c2(W) = 3
16 .

Let us compute c2
1(W). We have

c2
1(W) = (KW + �)2,

so that

c2
1(W) = K2

W + 2KWC̄u + KW(C̄o + Fd + H) + 1

4
(C̄2

o + F 2
d + H 2) + C̄2

u

+ C̄u(C̄o + Fd + H) + 1

2
(C̄oFd + C̄oH + FdH).
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Let p : Z → W be the surface above W that resolves W and is a blowup of P2.
Since Z is obtained by 10 blowups of P2, we have K2

Z = 9 − 10 = −1. Moreover,
since all singularities but one are ADE, we have KZ = p∗KW − 1

3D1, where D1

is the (−3)-curve on Z that is contracted to the 1
3 (1,1) singularity on W . Since

p∗KW · D1 = 0, we obtain

K2
W = −2

3
.

The curve C̄u is a smooth curve of genus 0 on the smooth locus of W . The blowup
at the a2-singularity of the cuspidal cubic decreases the self-intersection by 4,
and the remaining blow-ups decrease the self-intersection by 1. Since we have
4 + 2 + 3 = 9 such blowups, we get

C̄2
u = 32 − 4 − 9 = −4,

and therefore KWC̄u = 2. Let D̃ be the strict transform on Z of a curve D on W

or P2. We have
C̃o = p∗C̄o − aFl.

Since C̃oFl = 2, a is equal to 1. Since, moreover, C̃o
2 = 0, we get 0 = (C̃o)

2 =
C̄2

o − 2, and thus C̄2
o = 2. We have

KWC̄o = (C̃o + Fl)

(
KW + 1

3
D1

)
= −2.

Let F1,F2,F3 ⊂ Z be the chain of three (−2)-curves above the A3-singularity in
W , so that F̃dF1 = 1. We compute that

F̃d = p∗Fd − 1

4
(3F1 + 2F2 + F3)

(it is easy to check that F̃dF1 = 1 and F̃dF2 = F̃dF3 = 0). Then

−1 = F̃ 2
d = F 2

d − 3

4

gives F 2
d = − 1

4 . We have

KWFd =
(

KZ + 1

3
D1

)(
F̃d + 1

4
(3F1 + 2F2 + F3)

)
= −1.

Let D1 and D2 be respectively the (−3)- and (−2)-curves intersecting H̃ . Since
H̃D1 = H̃D2 = 1, we have

H̃ = p∗H − 1

3
D1 − 1

2
D2,

and thus

−1 = H̃ 2 = H 2 − 1

3
− 1

2
,

and H 2 = − 1
6 . Moreover,

KWH =
(

KZ + 1

3
D1

)(
H̃ + 1

3
D1 + 1

2
D2

)
= −1 + 1

3
+ 1

3
− 1

3
= −2

3
.
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We therefore compute

c2
1(W) = −2

3
+ 2 · 2 +

(
−2 − 1 − 2

3

)
+ 1

4

(
2 − 1

4
− 1

6

)
− 4

+ (2 + 1 + 1) + 1

2
(1 + 0 + 0) = 9

16
,

and thus c2
1(W) = 3c2(W) = 9

16 . �

Remark 19. In [12], Deraux obtains four different orbifold ball-quotient struc-
tures on surfaces birational to A/G48. Among these, only the fourth one, W ′, is
invariant by the involution σ , the obstruction being the divisor E in [12], which
creates an asymmetry, unless it has weight 1. The orbifold W we just described
can be seen as the quotient of W ′ by the involution σ .
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