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Abstract 

For a graph G with a given list assignment L on the vertices, we give 
an algebraic description of the set of all weights w such that G is 
( )wL, -colorable, called permissible weights. Moreover, for a graph G 

with a given list L and a given permissible weight w, we describe the 
set of all ( )wL, -colorings of G. By the way, we solve the channel 

assignment problem. Furthermore, we describe the set of solutions to 
the on call problem: when w is not a permissible weight, we find all 
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the nearest permissible weights .w′  Finally, we give a solution to the 
non-recoloring problem keeping a given subcoloring. 

1. Introduction 

It is convenient to model cellular data and communication networks as 
graphs with each node representing a base station in a cell in the network and 
edges representing geographical adjacency of cells. Moreover, we associate 
to each vertex in the graph a set of calls in the cell served by the node 
corresponding to this vertex. 

The channel assignment problem (see [8], [7] and [6]) is, at a given time 
instant, to assign a number ( )vw  of channels to each node v in the network in 

such a way that co-channel interference constraints are respected, and the 
total number of channels used over all nodes in the network is minimized. 

The problem is related to the following graph multicoloring problem: for 
a graph G with a given list assignment L, find the weights w such that G is 
( )wL, -colorable (see below for a precise definition of colorability). We will 

call such a weight w a permissible weight. 

The purpose of this paper is to describe the set of all permissible weights 
w and then to give a construction of all ( )wL, -colorings of G. In particular, 

we solve the channel assignment problem which can be seen as: for a given 
graph G and a given weight w of G, we find the weighted chromatic number 
( )wG,χ  and furthermore find an ( ( ) )wwG ,,χL -coloring of G (where 

( )( ) ( ){ }wGvwG ,...,,2,1, χ=χL  for every vertex v of G). 

Additionally, the description of the set of all permissible weights enables 
us to solve the on call problem: when w is not a permissible weight, we find 
all the nearest permissible weights .w′  This is the situation we meet when the 
network is exceptionally saturated as for the 31st December. 

Finally, we consider the non-recoloring problem which arises when we 
want to extend a pre-coloring. 
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Note that, although all our proofs are constructive (and hence algorithms 
can be derived from them), the purpose of the present paper is not to compete 
with existing graph coloring algorithms such as those of Byskov [1, 2] for the 
unweighted case or the one of Caramia and Dell’Olmo [4] that computes the 
weighted chromatic number. Our setting is more ambitious, since we 
consider the list coloring problem on weighted graphs, for which, to our 
knowledge, no general algorithm exists. 

This paper is organized as follows: we develop a vectorial point of view 
in Section 2. In particular, for any color x arising in L, we introduce the 

induced subgraph xG  of G whose vertices are those which have x as a color 

in their list. After introducing a partial order in ,nN  we define 
hyperrectangles built on a finite set of vectors. Then we define the set 

( )LGW ,max
→

 of a graph G with a given list L: it is the set of sums of the 

maximal independent vectors of all the subgraphs .xG  This set will be a 
fundamental object in our results because it will be shown that this is the set 
of weight-vectors wG  which give a maximal ( )wL, -coloring of G. In Section 

3, we consider a graph G with a given list L and a permissible weight w, and 
we describe the set ( )wLG ,,C  of all ( )wL, -colorings of G. It gives an 

explicit answer to the channel assignment problem as shown in Section 5. 
Section 4 is devoted to the second main result, namely, for a graph G with a 

given list L, the characterization of the set ( )LGW ,
→

 of permissible weight-

vectors wG  (i.e., such that G is ( )wL, -colorable). We prove (Theorem 7) that 

( )LGW ,
→

 is the hyperrectangle of ( ).,max LGW
→

 Section 6 is concerned with 

the on call problem. We describe the set of weights which give an answer to 
this problem. Section 7 focuses on the non-recoloring problem and Section 8 
deals with some algorithmic considerations. 

In the paper, all the graphs are simple, undirected and with a finite 
number of vertices. 
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If G is a graph, then we denote by ( )GV  the set of its vertices and by 
( )GE  the set of its edges. 

A list assignment (called simply a list) of G is a map ( ) →GVL :  

( ):NP  to each vertex v of G, we associate a finite set of integers which can 

be viewed as possible colors that can be chosen on v. 

If a is an integer ,1≥  then we define the a-uniform list aL  of G by: for 

every vertex v of G, 

( ) { }....,,2,1 ava =L  

A weight of G is a map ( ) :: N→GVw  to each vertex v of G, we 

associate an integer which can be viewed as the number of wanted colors    
on v. 

The cardinal of a finite set A will be denoted by .A  

We recall in the next definition what we mean exactly by an ( )wL, - 

coloring of a graph, the central notion of this paper. 

Definition 1. Let G be a graph with a given list L and a given weight w. 
An ( )wL, -coloring C of a graph G is a map C that associates to each vertex 

v exactly ( )vw  colors from ( )vL  and such that adjacent vertices receive 

disjoints color sets, i.e., for all ( ):GVv ∈  

( ) ( ) ( ) ( )vwvCvLvC =⊂ ,  

and for all ( ):GEvv ∈′  

( ) ( ) .∅=′vCvC ∩  

We say that G is ( )wL, -colorable if there exists an ( )wL, -coloring of G. 

2. A Vectorial Point of View 

When dealing with graphs with n vertices, we will work with vectors 

with integer coordinates in the vector space .nR  
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2.1. The vectorial decomposition 

For any ,N∈n  let us set 

,: 1 n
n ee G"G NNN ++=  

where ( ) niie ≤≤1
G  is a basis of the R -vector space .nR  For any vector =xG  

,1∑ =
n
i iiex G  we consider the norm ∑ == n

i ixx 1 .G  

Let G be a graph with n vertices ,...,,1 nvv  let L be a list of G and let w 

be a weight of G. Let us introduce some notation. 

For any subset N of the set ( )GV  of vertices of G, we associate the 

vector 

∑
=

∈λ=
n

i

n
iieN

1
NGG

 

defined by: 1=λi  if Nvi ∈  and 0 if .Nvi ∉  

We define the set of all colors of L by: 

( )
( )
∪

GVv
vLL

∈
= ,:  

and we define ( )( )nL NP∈
~  the n-tuple of sets: 

( ) ( )( )....,,:~
1 nvLvLL =  

For any list L′  of G, we define the union-list LL ′~~~ ∪  by: 

( ) ( ) ( ) ( )( )....,,:~~~
11 nn vLvLvLvLLL ′′=′ ∪∪∪  

For any ( )wL, -coloring C of G, we define its weight-vector ( ) nCw N∈
G  

by: 

( ) ( ) ( )∑ ∑
= =

==
n

i

n

i
iiii evwevCCw

1 1
.: GGG  

Definition 2. For any color Lx ∈  and any ( )wL, -coloring C of G, we 
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define the x-color sublist xC  as the list of the graph G defined by: for any 

( ) ( ) { }xvCGVv i
x

i =∈ ,  if ( ),ivCx ∈  and ( ) ∅=i
x vC  otherwise. 

The following proposition gives the decomposition of any coloring in 
terms of its x-color sublists. 

Proposition 3. For any graph G, any list L of G and any weight w of G, 
if C is an ( )wL, -coloring of G, then 

~ ~~ ∪ Lx
xCC

∈
=   and  ( ) ( )∑

∈

=
Lx

xCwCw .GG  

Proof. For any color ,Lx ∈  we consider the x-color sublist xC  of the 
graph G defined above. By construction, we have, for any vertex ( ),GVv ∈  

( ) ( )∪ Lx
x vCvC ∈= ,  therefore, 

~
.~~ ∪ Lx

xCC ∈=  For any Lyx ∈,  such that 

,yx ≠  we have for any vertex ( ),GVv ∈  ( ) ( ) ,∅=vCvC yx ∩  therefore, 

( ) ( )∑ ∈= Lx
xCwCw .GG  ~ 

Definition 4. For any graph G and any color ,Lx∈  we define the x-color 

subgraph xG  to be the induced subgraph of G defined by: ( )xGVv ∈  if and 

only if ( ).vLx ∈  

Remark that, if xL  denotes the list of the graphs xG  defined by: ( )vLx  

{ }x=  for any ( ),xGVv ∈  then xC  is an ( ( ))xx CwL , -coloring of .xG  

2.2. Hyperrectangles 

In order to define the hyperrectangles, let us introduce a (partial) order in 

.nN  

For any vectors ,, nyx N∈
GG  we say that 

∑ ∑
= =

=≤=
n

i

n

i
iiii exxeyy

1 1

GGGG  

if and only if ii xy ≤  for all .1 ni ≤≤  
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For any vector ,nx N∈
G  we define the hyperrectangle of xG  (see Figure 

1) by: 

( ) { }.: xyyxR n GGGG
≤|∈= N  

For a finite set of vectors { }kxxX GG ...,,1=  with ,n
ix N∈
G  ,1 ki ≤≤  we 

define the hyperrectangle of X by: 

( ) { }( ) ( )∪ GGG k

i
ik xRxxRXR

1
1 .:...,,

=
==  

 
Figure 1. A vector yG  in the hyperrectangle of .xG  

2.3. The set of maximal independent sets of a graph 

Recall that an independent (or stable) set S of a graph G is a subset of 
( )GV  such that ( )GEvv ∉′  for any ., Svv ∈′  A maximal independent set of 

a graph G is an independent set S of G of maximal cardinality, i.e., S is not 
the proper subset of another independent set. 

Now, let G be a graph and L be a list of G. For any color x arising in L, 

we consider the maximal independent sets of the subgraphs .xG  They are 
subsets of ( )GV  and we consider their associated vectors. Summing all these 

vectors, we obtain the following definition of the set ( )LGW ,max
→

 which 

will be central in this paper. 
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For sets kXX ...,,1  of vectors of ,nR  we recall that the vectorial sum is 

defined by: 

{ }∑
=

∈∈|++=
k

i
kkki XxXxxxX

1
111 ....,,: GGG"G  

Recall also that, if N is a subset of ( ) { },...,,1 nvvGV =  then the vector 

N
G

 is defined by ∑ = λ= n
i iieN 1

GG
 with 1=λi  if Nvi ∈  and 0 otherwise. 

If Lx ∈  and H is a subgraph of G, then we define: 

( ) { ( ) }.ofsettindependenmaximalais:MIS HNNH GV |∈= N
G

 

Definition 5. For any graph G and any list L of G, we define 

( ) ( )∑
∈

→
=

Lx

xGLGW .MIS:,max  

3. The Set of All Colorings 

For any graph G, any list L of G and any weight w of G, we consider the 
set ( )wLG ,,C  of all ( )wL, -colorings of G. 

The purpose of this section is to give a description of this set. In order to 
do it, we define the maximal ( )wL, -colorings set: 

( ) { ( ) ( ) ( )}.MIS,,,:,, max
xx GCwLxwLGCwLG ∈∈∀|∈=

G
CC  

By Proposition 3, we have the following: 

( ) ( ).,,, maxmax LGWwwLG
→

∈⇔∅≠
G

C  ( )∗  

For any ( )wLGC ,,C∈  and any ,nd N∈
G

 we define the subcoloring 

set: 

( ) { ( ) ( ) ( ) ( ) ( ) }.and,::, dCwCwvCvCGVvCdC
GGGG

−=′⊂′∈∀|′=−C  
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Theorem 6. For any graph G, any list L of G and any permissible weight 
w of G, i.e., such that G is ( )wL, -colorable, we have: 

( ) ( )
( )

( )

∪ ∪
GG

G

GG

ww
LGWw

wLGC
wwCwLG

≥′

→
∈′

′∈′

− −′′=

,
,,

max
max

.,,,
C

CC  

Proof. Let G be a graph, L be a list of G and w be a permissible weight. 

If ( ),,, wLGC C∈  then for any ,Lx ∈  we define the subset xN  of ( )GV  

such that ( ).xx CwN GG
=  Therefore, xN  is an independent set of ,xG  and 

there exists a maximal independent set xS  of xG  such that .xx SN ⊂      

We construct a list C′  of G such that for any ,Lx ∈  ( ) .xx SCw
GG

=′             

By construction, ( ) ( ) ( )∑ ∈

→
∈′=′=′ Lx

x LGWCwCww ,,max
GGG  then ∈′C  

( ) .,, maxwLG ′C  Since ,xx SN ⊂  ( ) ( ) ,wCwCww Lx Lx
xx ′=′≤= ∑ ∑∈ ∈

GGGG  

and by construction, ( )., wwCC GG
−′′∈ −C  Hence we have the first inclusion. 

If ( )LGWw ,
→

∈′
G  be such that ,ww GG

≥′  and ( ) .,, maxwLGC ′∈′ C  For 

any ( ),, wwCC GG
−′′∈′′ −C  we have ( ) ( ) ,wwwwCw GGGGG

=−′−′=′′  therefore, 

∈′′C  ( ),,, wLGC  and we have the reverse inclusion. ~ 

4. The Set of All Weights 

Now, we can state the main result of the paper: the set ( )LGW ,
→

 of all 

possible weight-vectors wG  such that G is ( )wL, -colorable, is given by the 

hyperrectangle of the set ( ):,max LGW
→

 

Theorem 7. For any graph G and any list L of G: 

( ) ( ( )).,, max LGWRLGW
→→

=  

In other words, the graph G is ( )wL, -colorable if and only if the vector wG  
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belongs to the hyperrectangle constructed on the maximal independent sets 

of the subgraphs .’ sGx  

Proof. Let G be a graph and L be a list of G. If ( ),, LGWw
→

∈
G  then 

( ) .,, ∅≠wLGC  By Theorem 6, there exists ( )LGWw ,max
→

∈′
G  such that 

.ww GG
≥′  Then ( ) ( ( )).,, max LGWRLGW

→→
⊂  

If ( ( )),,0 max LGWRw
→

∈≠
GG

 then by construction, there exists ∈′wG  

( )LGW ,max
→

 such that .ww GG
≥′  By Theorem 6 and Property ( ),∗  we have 

( ) ,,, ∅≠wLGC  therefore, ( ),, LGWw
→

∈
G  and since ( ),,0 LGW

→
∈
G

 we have 
the reverse inclusion. ~ 

Theorem 7 can be written in a nice way in the particular case of an              
a-uniform list aL  (i.e., ( ) { }ava ...,,2,1=L  for any v). 

Corollary 8. Let G be a graph with m maximal independent sets 
....,,1 mSS  Then we have 

( ) .,
1 1 ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≤∈= ∑ ∑
= =

→ m

i

m

i
iiiia axandxwithSxGW N

G
L  

Proof. By definition, we have ( ) ( )∑ ∈

→
= Lx

x
a GMISGW .,max L  In the 

case of the a-uniform list ,aL  the subgraph xG  is equal to G for any color 

Lx ∈  thus ( ) ( )∑ =

→
= a

ia GMISGW 1max ., L  Since ( ) { },...,,1 mSSGMIS
GG

=  

we obtain 

( ) .andwith,
1 1

max
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=∈= ∑ ∑
= =

→ m

i

m

i
iiiia axxSxGW N

G
L  

Then Theorem 7 concludes the proof by taking the hyperrectangle of 

( ).,max aGW L
→

 ~ 
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5. The Static Channel Assignment Problem 

Let G be a graph and w be a weight of G. Then the weighted chromatic 
number ( )wG,χ  of G associated to the weight w is defined to be the smallest 

integer a such that G is ( )wa ,L -colorable: it is the minimum number of 

colors for which there exists a proper weighted a-coloring (see [3] for a 
recent study of this number). In the particular case where the weight w is 
defined by ( ) 1=vw  for all vertices v of G (i.e., if the weight-vector =wG  

( )),1...,,1  then ( )wG,χ  is nothing but the chromatic number ( )Gχ  of G.  

The static channel assignment problem can then be viewed as follows: 
for a given graph G and a given weight w of G, find the weighted chromatic 
number ( )wG,χ  and furthermore find an ( ( ) )wwG ,,χL -coloring of G. 

Our strategy to solve the static assignment problem is the following one. 

First, we want to find the weighted chromatic number ( )., wGχ  We 

consider the list 1L  of G and we compute: 

( ) ( ) ( )∑
∈

→
==

1

.:, 1max
L

L
x

x GMISGMISGW  

We check whether ( ( )),, 1max LGWRw
→

∈
G  i.e., if there exists ∈′wG  

( )1max , LGW
→

 such that .ww ′≤
GG  

If the answer is positive, then we have ( ) 1, =χ wG  by Theorem 7, 

otherwise, we compute ( )., 2max LGW
→

 

Remark 9. Note that, since ( ) ( ) ,, G
wwG

α
≥χ

G
 where ( )Gα  is the 

independence number of G, i.e., the size of the largest independent set of G, 

we can begin with the computation of (
( )

).,max
G

wGW
α

→
GL  
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Note also that, since our lists aL  are a-uniform lists, we have by 

Corollary 8, an easy description of the set ( ).,max aGW L
→

 

Hence we find ( )wGa ,χ=  as soon as we find ( )aGWw L,max
→

∈′
G  

such that ww GG
≥′  and such that 

( )∑ ∑
= =

∈=′
a

i

a

i
i GMISzw

1 1
.GG  

By Theorem 6, we can construct an ( )wa ′,L -coloring C′  of G. 

But we have by Proposition 3: 
~

1
~~ ∪a

x
xCC

=
′=′   and  ( ) .x

x zCw GG
=′  

By Theorem 6, it is sufficient to take one ( )wwCC GG
−′′∈ − ,C  to get an 

( )wa ,L -coloring of G. 

6. The On Call Problem 

The on call problem can be modelized as follows: for ( ),, LGWw
→

∉
G  we 

find ( )LGWw ,
→

∗ ∈
G  such that ww GG

≤∗  and ∗− ww GG  is minimal. We define 

the vector ( )yx GG,min  as the vector zG  such that ( )iii yxz ,min=  for all ∈i  

{ }....,,1 n  Now, for a fixed vector ,wG  we define the set: 

( ( )) { ( ) ( )}.,,min:,,min maxmax LGWwwwLGWw
→→

∈′|′=
GGGG  

Theorem 10. Let G be a graph, L be a list of G and w be a weight of G. 

Then ∗wG  is a solution to the on call problem if and only if ∗wG  is a vector of 

( ( ))LGWw ,,min max
→G  of maximal norm, i.e., ( ( ))LGWww ,,min max

→
∗ ∈

GG  

such that ( ( )),,,min max LGWww
→

∈′∀
GG  we have .ww ′≥∗ GG  

Proof. For any graph G, any list L of G, and any weight w of G, if ∗wG  is 
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a solution to the on call problem, then ( )., LGWw
→

∗ ∈
G  By Theorem 7, there 

exists ( )LGWw ,max
→

∈′
G  such that .ww ′≤∗ GG  Since by definition, ,ww GG

≤∗  

( ) ,,min wwww GGGG
≤′≤∗  and therefore, ( ) .,min ∗−≤′− wwwww GGGGG  

By the minimality property, we have 

( ) ( ( )).,,min,min max LGWwwww
→

∗ ∈′=
GGGG  

Moreover, for any ( ( )),,,min max LGWww
→

∈′′
GG  since ∗≥ ww GG  and ,ww ′′>

GG  

we have 

,wwwwwwww ′′−=′′−≤−=− ∗∗ GGGGGGGG  

thus .ww ′′≥∗ GG  

Let ∗wG  be a solution to the on call problem and let ∈∗∗wG  

( ( ))LGWw ,,min max
→G  be such that ( ( )).,,min max LGWww

→
∈′∀

GG  Then we 

have .ww ′≥∗∗ GG  We have ( )uww GGG ,min=∗∗  with ( ),,max LGWu
→

∈
G  

hence ( ( )),,max LGWRw
→

∗∗ ∈
G  thus ( )LGWw ,

→
∗∗ ∈

G  by Theorem 7. 

By construction, ( )LGWww ,
→

∗∗ ∈≥
GG  such that =− ∗∗ww GG  

,∗− ww GG  therefore, ∗∗wG  is also a solution to the on call problem. ~ 

7. Non-recoloring Problem 

Let G be a graph, 0w  be a weight of G and ( )00 , wGa χ=  be the 

weighted chromatic number of G associated to .0w  Now, we consider the list 

0aL  of G and 0C  an ( )0,0 waL -coloring of G. Finally, let w be a weight of 

G such that .0ww GG
≥  

The non-recoloring problem is to find the smallest a (denoted by 
( ))0,, CwGχ  such that there exists an ( )wa ,L -coloring C of G such that 
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0C  is a subcoloring of C. In other words, 

( )., 00 wwCC GG
−∈ −C  

We define the set ( )0max ,, 0 CGW aL
→

 to be the set of vectors ∈1wG  

( )0,max aLGW
→

 such that there exists an ( )1,0 waL -coloring 1C  of G such 

that ( )., 0110 wwCC GG
−∈ −C  

By definition, we have ( ) ( ).,,,
00 max0max aa GWCGW LL

→→
⊂  Then we 

set: 

( ) { ( ) ( )}.,,,min:,,, 0max110 00
CGWwwwwwCG aa LL

→
∈|−=δ

GGGGG
 

Theorem 11. If G is a graph with the above notation, then 

( )
( )

( ).,min,,
,,,

00
00

wGaCwG
wCGw a

′χ+≤χ
δ∈′ L
GG  

Proof. Let ( ) ( ).,min ,,,0 00
wGaa wCGw a
′χ+= δ∈′ L

GG  Let ( ,, 0aGw Lδ∈∗ GG  

)wC ,0  such that 

( )
( )

( ).,min,
,,, 00

wGwG
wCGw a

′χ=χ
δ∈′

∗

L
GG  

Then there exists ( )0max ,, 0 CGWw aL
→

∗∗ ∈
G  such that 

( ).,min ∗∗∗ −= wwww GGGG  

Since 0ww GG
≥  and by definition of ,∗∗wG  the vector ( )∗∗= www GGG ,min:3  

,0wG≥  we can thus construct an ( )3,0 waL -coloring 3C  of G such that 

( )., 0330 wwCC GG
−∈ −C  By our construction, choosing the colors in the set 

[ ],,10 aa +  we can construct an ( )∗− waa ,0L -coloring 4C  of G. Finally, we 

construct C such that ,~~~:~
43 CCC ∪=  thus, C is an ( )wa ,L -coloring of G 

and thus ( ) .,, 0 aCwG ≤χ  ~ 
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We believe that the inequality in Theorem 11 can be replaced by an 
equality but we have not been able to prove it. 

8. Algorithmic Considerations 

Proofs of Theorems 6, 7, 10 and 11 are all constructive and thus 
algorithms can be derived from them. But, of course, since the problems 
considered are all NP-complete, there is little hope for polynomial 
complexity. 

By Theorem 7, the problem of knowing, for a given graph G with a list 
assignment L, if a given weight wG  is permissible (i.e., if G is ( )wL, -

colorable) reduces to that of constructing the set ( )LGW ,max
→

 (if the set is 

generated vector by vector, then we can stop as soon as a vector wG ′  with 
ww GG

≥′  is output). 

Algorithm 1. Computing ( )LGW ,max
G
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For the problem of, given graph G of order n with a list L, listing the 

vector set ( ),,max LGW
→

 a good measure of performance is the time required 

compared with the size m of ( ).,max LGW
→

 The set ( )GMIS  of all maximal 
independent vectors of G can be constructed in time within a polynomial 

factor of its size [9] ( that  can be as large as ( ) ).44225.13 n
n

n =  Then, for 

any color x, the set ( )xGMIS  can be computed ‘on the fly’ by checking if 

the restriction of each vector of ( )GMIS  to xG  is maximal (clearly, for any 

independent set of G, its restriction to xG  is also an independent set). 

Checking the maximality can be done in ( )2nO  operations. Algorithm 1 

describes the steps to compute the set ( ).,max LGW
→

 Its time complexity in 

the worst case is in ( ),AmO  where .L=A  
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