
Chapter 2
Hypersurfaces in Weighted Projective Spaces
Over Finite Fields with Applications to Coding
Theory
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Abstract We consider the question of determining the maximum number of Fq-
rational points that can lie on a hypersurface of a given degree in a weighted pro-
jective space over the finite field Fq, or in other words, the maximum number of
zeros that a weighted homogeneous polynomial of a given degree can have in the
corresponding weighted projective space over Fq. In the case of classical projective
spaces, this question has been answered by J.-P. Serre. In the case of weighted pro-
jective spaces, we give some conjectures and partial results. Applications to coding
theory are included and an appendix providing a brief compendium of results about
weighted projective spaces is also included.
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2.1 Introduction

Let q be a prime power and let Fq denote the finite field with q elements. Let d ≥ 0
and m≥ 1 be integers. For any integer r, we define

pr :=
∣∣Pr(Fq)

∣∣= qr+qr−1+ · · ·+1 for r ≥ 0 and pr := 0 for r < 0 .

In a letter to M. Tsfasman in 1989, J.-P. Serre [18] proved that for any nonzero
homogeneous degree d polynomial F ∈ Fq[X0,X1, . . . ,Xm], the hypersurface V (F)
consisting of Fq-rational zeros of F in the projective m-space Pm satisfies

|V (F)| ≤ dqm−1+ pm−2 . (2.1)

Note that if d ≥ q+ 1, then dqm−1 + pm−2 ≥ pm =
∣∣Pm(Fq)

∣∣, and thus the above
bound is trivial in this case; moreover, the polynomial Xd−q−1

0 (Xq
0X1 − X0X

q
1 ) is

evidently homogeneous of degree d ≥ q+ 1 and has pm zeros in Pm(Fq). On the
other hand, in the nontrivial case when d ≤ q+1, the bound (2.1) is met by

F =
d

∏
i=1

(αiX0−βiX1) , (2.2)

whenever (α1 :β1),(α2 :β2), . . . ,(αd :βd) are distinct elements of P1(Fq). It follows
that if we let eq(d,m) denote the maximum possible number of Fq-rational zeros in
Pm that a nonzero homogeneous polynomial of degree d in Fq[X0,X1, . . . ,Xm] can
admit, then

eq(d,m) =min{pm, dqm−1+ pm−2} . (2.3)

Alternative proofs of (2.1), and hence (2.3), can be found in [19] and [6], whereas
some extensions and generalizations are given in [5] and [7]. Serre’s result has also
been applied to determine the minimum distance of the projective Reed–Muller
codes, which were introduced by Lachaud in [13], and further studied in [14]
and [19].

In this chapter we discuss how the bound (2.1) can possibly be generalized to
weighted projective spaces, along with a number of partial results and some impli-
cations for coding theory. Let us recall that given any positive integers a0,a1, . . . ,am,
the corresponding weighted projective space is defined by
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2 Hypersurfaces in Weighted Projective Spaces 27

P(a0,a1, . . . ,am) :=
(
Fm+1
q \{(0,0, . . . ,0)}

)
/ ∼

where Fq denotes an algebraic closure of Fq and the equivalence relation ∼ is such
that

(x0,x1, . . . ,xm) ∼ (λa0x0,λa1x1, . . . ,λamxm) for every λ ∈ F∗q .

The corresponding equivalence class is denoted by (x0 : x1 : · · · : xm) and is called a
weighted projective point. We say that the point is Fq-rational if (x0 : x1 : · · · : xm) =
(xq0 : x

q
1 : · · · : x

q
m). It can be shown using Hilbert’s theorem 90 that every Fq-rational

point has at least one representative in Fm+1
q \{(0,0, . . . ,0)}. In fact, a finer analysis

shows that it has exactly q−1 such representatives; see [16, §3]. In particular, the to-
tal number of Fq-rational points equals pm, i.e., it is the same as in the non-weighted
case. The weighted projective spaces are fascinating objects. On the one hand, they
are analogous to classical projective spaces, but they are often difficult to deal with,
partly since they can admit singularities. For the convenience of the reader, and
possible future use, we include at the end of this chapter a fairly self-contained ap-
pendix that provides a glossary of various notions and results concerning weighted
projective spaces.

Now let S= Fq[X0,X1, . . . ,Xm] and consider a nonzero polynomial F ∈ S which
is homogeneous of degree d provided that we measure Xi with weight ai for each
i= 0,1, . . . ,m, so that

F(λa0X0,λa1X1, . . . ,λamXm) = λdF(X0,X1, . . . ,Xm) for all λ ∈ F∗q .

Thus it is meaningful to consider the weighted projective hypersurface V (F) of Fq-
rational points of P(a0,a1, . . . ,am) at which F vanishes. Our object of study is the
quantity

eq(d;a0,a1, . . . ,am) := max
F∈Sd\{0}

|V (F)| ,

where Sd denotes the space of weighted homogeneous polynomials in S of degree d.
One caveat is that Sd might be trivial for certain values of d (namely those values that
are not contained in the semigroup a0Z≥0+ a1Z≥0+ . . .+ amZ≥0), in which case
we say that eq(d;a0,a1, . . . ,am) is not defined. Also note that eq(d;a0,a1, . . . ,am)
is not necessarily increasing as a function in d: for instance eq(7;3,4) = 2 while
eq(8;3,4) = 1 since the only monomials of (weighted) degree 7 and 8 are constant
multiples of X0X1 and X2

1 respectively.
Seeking inspiration in the example (2.2) that meets Serre’s bound, it is natural to

consider polynomials of the form

F =
d/ars

∏
i=1

(αiX
ars/ar
r −βiXars/as

s ) , (2.4)

where r,s ∈ {0,1, . . . ,m} are distinct indices, ars is the least common multiple of ar
and as, d is a multiple of ars satisfying d ≤ ars(q+1), and the (αi : βi)’s are distinct
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elements of P1(Fq). In Section 2.2 we will prove that |V (F)|= (d/ars)qm−1+ pm−2,
leading to the following lower bound:

Lemma 2.1. Let a=min{lcm(ar,as) : 0 ≤ r < s ≤ m} and assume that a | d. Then

eq(d;a0,a1, . . . ,am)≥min
{
pm,

d
a
qm−1+ pm−2

}
.

Example 2.2. Let us prove that equality holds in the lemma for P(a0,a1). Writing
a = lcm(a0,a1), we want to prove that eq(d;a0,a1) = min{p1,d/a}. Let F ∈ Sd \
{0} and note that

F(X0,X1)/X
d/a1
1

can be viewed as a univariate polynomial in T =Xa/a0
0 /Xa/a1

1 . Indeed, if a monomial

Xβ0
0 Xβ1

1 is weighted homogeneous of degree d, so that β0a0+β1a1 = d, then an easy
calculation shows that

Xβ0
0 Xβ1

1

Xd/a1
1

=

(
Xa/a0
0

Xa/a1
1

)β0a0/a

.

Let d = ak and bi = a/ai for i = 0,1. Now factor F(X0,X1)/X
b1k
1 and remultiply

with Xb1k
1 to obtain

F(X0,X1) = c ·Xb1ℓ
1 ·

k−ℓ

∏
i=1

(
Xb0
0 − tiX

b1
1

)

for some ℓ ≤ k, some ti ∈ Fq, and some leading coefficient c ∈ F∗q. Each factor for
which ti ∈ Fq has a unique Fq-rational zero in P(a0,a1). Indeed, to see this it suffices
to show that such a factor has exactly q−1 solutions (X0,X1) ∈ F2

q \{(0,0)}, which
easily follows from the coprimality of b1,b2; see also Lemma 2.8 below. On the
other hand, a factor for which ti /∈ Fq clearly cannot have any Fq-rational zeroes.
This shows that eq(d;a0,a1) = k = d/a for d ≤ q+1.

In Section 2.2 we will generalize the class of polynomials (2.4) to a larger family
which shows that the inequality may be strict if m > 1. We prudently conjecture
that the actual value of eq(d;a0,a1, . . . ,am) is always attained by one of these gen-
eralizations (as soon as it is defined), but elaborating this into a concrete statement
amounts to tedious additive number theory and is omitted.

One assumption that simplifies the combinatorics is lcm(a0,a1, . . . ,am) | d; in
what follows we will usually suppose that this is the case. Another hypothesis which
turns out to simplify things significantly is that one of the weights (say a0) equals 1.
Under these assumptions, we conjecture:

Conjecture 2.3. If a0 = 1 and lcm(a1,a2, . . . ,am) | d, then the bound from
Lemma 2.1 is sharp. In other words, if we order the weights such that a1 ≤ a2 ≤
. . . ≤ am, then
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2 Hypersurfaces in Weighted Projective Spaces 29

eq(d;1,a1,a2, . . . ,am) =min
{
pm,

d
a1

qm−1+ pm−2

}
.

This immediately specializes to Serre’s bound for a1 = . . .= am = 1. The right-hand
side equals d

a1
qm−1+ pm−2 if and only if d ≤ a1(q+ 1), which will be assumed in

practice because the other case is again easy to handle.
In the statement of Conjecture 2.3 it can be assumed without loss of generality

that gcd(a1,a2, . . . ,am) = 1. This follows from Delorme weight reduction [8], which
states that for any index i and any positive integer b coprime to ai,

P(a0b, . . . ,ai−1b,ai,ai+1b, . . . ,amb) ∼= P(a0,a1, . . . ,am) ,

the underlying observation being that an (a0b, . . . ,ai−1b,ai,ai+1b, . . . ,amb)-weight-
ed homogeneous polynomial of degree d = kb (with k some integer) can be
easily transformed into an (a0b, . . . ,ai−1b,aib,ai+1b, . . . ,amb)-weighted homo-
geneous polynomial of the same degree, by replacing each occurrence of Xb

i
by Xi. A rescaling of the weights then allows us to view this as an (a0,a1, . . . ,am)-
weighted homogeneous degree k polynomial. See the treatments in [12, §3.3], [17,
§3.6], [10, §1] for more details. For our needs, the relevant observation is that
there is a one-to-one correspondence between the respective Fq-rational zeroes
given by

(α0 : . . . : αi−1 : αi : αi+1 : . . . : αm) '→ (α0 : . . . : αi−1 : αb
i : αi+1 : . . . : αm) .

In particular the Delorme isomorphism respects Conjecture 2.3 in the sense that
eq(db;1,a1b,a2b, . . . ,amb) and eq(d;1,a1,a2, . . . ,am) have the same value.

For m = 1, the validity of Conjecture 2.3 follows from the example discussed
above; we note that alternatively this example could have been settled by reducing
to the case of P1(1,1) using Delorme weight reduction (preceded by a rescaling of
the weights if needed to ensure that gcd(a0,a1) = 1). In Section 2.3 we give further
evidence in favor of Conjecture 2.3:

Theorem 2.4. Conjecture 2.3 is true if m ≤ 2.

The proof for m = 2 is done by mimicking Serre’s original method. In order to
do so, our main task is to come up with a convenient notion of “lines” inside the
weighted projective plane, which is not obvious a priori. The handy property of
P(1,a1,a2) is that it naturally arises as a completion of the affine plane A2, which
leads us to consider completed affine lines; as we will see, these indeed allow for a
working version of Serre’s proof. Even though P(1,a1,a2) is a very particular case,
we hope that our approach has the ingredients needed to establish Conjecture 2.3 in
full generality.

Finally, in Section 2.4, we introduce the natural weighted analogue of projec-
tive Reed–Muller codes, reinterpret Conjecture 2.3 in terms of the minimal distance,
and examine some further first properties. These codes do not seem to have seen
previous study, even though a different notion bearing the name “weighted projec-
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tive Reed–Muller codes” was introduced and analyzed by Sørensen [20]. As noted
earlier, an appendix giving a formal introduction to weighted projective spaces and
many of its geometric aspects is provided at the end.

2.2 Polynomials with Many Zeros

In this section we generalize the class of polynomials considered in (2.4). As
before, let S denote the polynomial ring Fq[X0,X1, . . . ,Xm]. Fix a grading on S
with respect to weights a = (a0,a1, . . . ,am) so that degXi = ai ≥ 1 (0 ≤ i ≤ m),
and for a monomial M = Xi0

0 Xi1
1 · · ·Xim

m , the (weighted) degree of M is degM =
i0a0+ i1a1+ · · ·+ imam. We now define a useful notion about pairs of monomials
in S.

Definition 2.5. Let M0,M1 ∈ S be monomials different from 1. If

• degM0 = degM1,
• gcd(M0,M1) = 1, i.e. no variables appear in bothM0 and M1,
• gcd(exponents appearing in the monomialM0M1) = 1,

then we call (M0,M1) a primitive pair. Denoting by si (i = 0,1) the number of
distinct variables appearing inMi, we call (s0,s1) the corresponding signature.

Example 2.6. For P(2,3,5), the pairs (X0X1,X2), (X3
0 ,X

2
1 ) are primitive of degrees

5, 6 and signatures (2,1), (1,1), respectively.

Our generalized class consists of weighted homogeneous polynomials of the
form

Fℓ,s0,s1,σ0,σ1 = µ0µ1
ℓ

∏
i=1

(M0− tiM1) (2.5)

where 1 ≤ s0 ≥ σ0 ≥ 0, 1 ≤ s1 ≥ σ1 ≥ 0 are integers and

• (M0,M1) is a primitive pair of signature (s0,s1),
• t1, . . . , tℓ are distinct elements of F∗q (in particular 0 ≤ ℓ ≤ q−1),
• the (possibly trivial) monomial µi (i = 0,1) is only divisible by variables that

also appear inMi; more precisely it is divisible by σi ≤ si such variables.

It is allowed that ℓ = 0, but in that case we assume that σ0 = s0 and σ1 = s1. In
this case F is just a monomial in at least two variables. Strictly speaking, since we
assumed that s0≥ 1 and s1≥ 1, monomials in one variable (or F = 1) are not covered
by the construction, but in order to have a chance of meeting eq(d;a0,a1, . . . ,am) for
every value of d one should include them; since this is speculative anyway, we omit
a further discussion of such pathologies.

The construction indeed concerns a generalization of (2.4): modulo scaling, the
polynomial

d/ars

∏
i=1

(αiX
ars/ar
r −βiXars/as

s )
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2 Hypersurfaces in Weighted Projective Spaces 31

is of the form Fd/ars−σ0−σ1,1,1,σ0,σ1 with σ0,σ1 ∈ {0,1}, depending on whether (1 :
0) or (0 : 1) are among the points (αi : βi). Here the underlying primitive pair is
(Xars/ar

r , Xars/as
s ).

Of course the polynomial Fℓ,s0,s1,σ0,σ1 is not uniquely determined by the integers
ℓ,s0,s1,σ0,σ1, but these are the parameters accounting for the number of Fq-rational
points at which it vanishes:

Lemma 2.7.
∣∣V (Fℓ,s0,s1,σ0,σ1)

∣∣= λqm+1−s0−s1 + pm−s0−s1 where

λ = ℓ · (q−1)s0+s1−2

+ [(qs0 − (q−1)s0)(qs1 − (q−1)s1)−1]/(q−1)

+ (q−1)s1−1qs0−σ0(qσ0 − (q−1)σ0)

+ (q−1)s0−1qs1−σ1(qσ1 − (q−1)σ1) .

In order to prove this, let us denote the variables appearing in M0 and M1 by
Y1,Y2, . . . ,Ys0 and Z1,Z2, . . . ,Zs1 , respectively. These are distinct because of the prim-
itivity of the pair (M0,M1). The points at which all these variables vanish have the
structure of a weighted projective space of dimension m− s0− s1. Since there are
pm−s0−s1 such points which are Fq-rational, our task easily reduces to the case where
s0+s1 =m+1, meaning that each of the variables X0,X1, . . . ,Xm appears among the
Yi or Zi. In the latter case we need to show that

∣∣V (Fℓ,s0,s1,σ0,σ1)
∣∣= λ. We claim that,

respectively, the summands in the statement of Lemma 2.7 correspond to

(i) the zeros all of whose coordinates are nonzero,
(ii) the zeros for which at least one of the Yi’s is zero and at least one of the Zi’s

is zero,
(iii) the zeros for which at least one of the Yi’s is zero, but none of the Zi’s is,
(iv) the zeros for which at least one of the Zi’s is zero, but none of the Yi’s is.

As for (i), this immediately follows from the lemma below, along with the prim-
itivity of (M0,M1) and the fact that every Fq-rational weighted projective point has
exactly q−1 rational representatives by [16, §3].

Lemma 2.8. Let a1,a2, . . . ,as0 ,b1,b2, . . . ,bs1 be mutually coprime integers and let
α,β ∈ F∗q. Then the number of solutions in the torus Ts0+s1

q (Fq) := (F∗q)s0+s1 of the
equation

αxa11 xa22 · · ·xas0s0 −βyb11 yb22 · · ·ybs1s1 = 0

is given by (q−1)s0+s1−1.

Proof. Since a0,a1, . . . ,as0 ,−b0,−b1, . . . ,−bs1 are coprime, these integers can be
viewed as the entries in the first row of a matrix M ∈ GLs0+s1(Z); see [4]. Rewrite
the equation as

xa11 xa22 · · ·xas0s0 y−b11 y−b22 · · ·y−bs1s1 = α−1β .

UsingM it is easy to find a monomial transformation (= an invertible substitution of
the variables by Laurent monomials) that takes this equation to
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x1 = α−1β .

This transformation determines a bijection between the respective sets of solutions
inside Ts0+s1(Fq), from which the lemma follows. ⊓*

As for (ii), note that if a point (y1 : y2 : . . . : ys0 : z1 : z2 : . . . : zs1) satisfies yi = 0 and
z j = 0 for at least one pair yi,z j then it automatically concerns a zero of Fℓ,s0,s1,σ0,σ1 .
There are

(qs0 − (q−1)s0)(qs1 − (q−1)s1)−1

such points in Fs0+s1
q \{(0,0, . . . ,0)}, and so we find the desired contribution, again

by using that every Fq-rational point has q−1 representatives.
Concerning (iii): these are exactly the zeros of µ0 that were not counted else-

where. Once more we adopt the strategy of first counting the number of Fq-rational
representatives, after which we divide by q−1. At least one of the σ0 variables ap-
pearing in µ0 should be set to zero, accounting for the factor qσ0 − (q−1)σ0 , while
the other Yi’s can be chosen freely and the Zi’s must be chosen nonzero, accounting
for the factors qs0−σ0 and (q−1)s1 , respectively.

The case (iv) follows by symmetry. This completes the proof of Lemma 2.7.

Example 2.9. Consider P(2,3,5), let d = 30, and assume q≥ 5. Let

F4,2,1,2,1 = X0X1X2
4

∏
i=1

(X0X1− tiX2) .

According to Lemma 2.7, the number of Fq-rational zeros of F4,2,1,2,1 is 7q−4. We
believe that this equals eq(30;2,3,5), although we currently cannot offer a proof.
But at least this shows that the lower bound from Lemma 2.1, which relied on the
polynomial

F3,1,1,1,1 = X3
0X

2
1

3

∏
i=1

(X3
0 − tiX2

1 ) ,

can be strict: indeed, F3,1,1,1,1 has only 5q+ 1 zeros. On the other hand, for q = 4,
this last polynomial trivially meets eq(30;2,3,5) because it is “space-filling,” i.e.,
its set of Fq-rational zeros equals all of P(2,3,5)(Fq).

2.3 Hypersurfaces in Weighted Projective Planes P(1,a1,a2)

In this section we prove Theorem 2.4, i.e., we prove Conjecture 2.3 for weighted
projective planes P(1,a1,a2). Note that by Serre’s result for classical projective
spaces and by Delorme’s isomorphism we may assume without loss of general-
ity that a1 < a2 and that these weights are coprime, so lcm(a1,a2) = a1a2. Let
F ∈ Fq[X0,X1,X2] be a nonzero polynomial which is weighted homogeneous of de-
gree d with a1a2 | d. Assuming that d ≤ a1(q+1), our task is to prove
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|V (F)| ≤ d
a1

q+1 . (2.6)

This we will do by mimicking Serre’s original proof, for which we need a convenient
notion of “lines” in the weighted projective plane. Note that if we define lines merely
as subsets that are cut out by a weighted homogeneous polynomial of degree 1, in
general the resulting notion is too poor to be of any use (we would usually only find
X0 = 0).

An easy but crucial feature of having a0 = 1 is that every point (x0 : x1 : x2) for
which x0 ̸= 0 has a unique representative of the form (1 : x : y). Moreover, the point
is Fq-rational if and only if x,y ∈ Fq. Thus the embedding

A2 ↪→ P(1,a1,a2) : (x,y) '→ (1 : x : y)

identifies A2 with the chart X0 ̸= 0 in an equivariant way (i.e., the identification
continues to hold if one restricts to Fq-rational points). We call H∞ : X0 = 0 the “line
at infinity.” Note that it naturally carries the structure of the weighted projective line
P(a1,a2).
Remark 2.10. We can think of P(1,a1,a2) as the affine plane to which a line at infin-
ity has been glued, albeit in a nonstandard way. This can be made precise geometri-
cally (see, for example, Dolgachev [10]) and it turns out (see, for example, Section
2 of the appendix) that, in general, the coordinate points at infinity are singular (we
will not use this).

Remark 2.11. Writing V (F)aff for the set of affine Fq-rational zeroes, it is not too
hard to show that

∣∣V (F)aff
∣∣ ≤ (d/a1)q, for instance using Ore’s inequality; see Sec-

tion 2.A.5.3 of the appendix.

The affine zeros of F are precisely the zeros of the dehomogenized polynomial

F(1,x,y) ∈ Fq[x,y] .

Conversely, given a polynomial in x and y, there is a natural way of homogenizing
it, by substituting x← X1,y← X2 and adding to each term as many factors X0 as
minimally needed. We define a “line” in P(1,a1,a2) to be either a homogenized
linear bivariate equation, or the line at infinity:

Definition 2.12. An Fq-rational line in P(1,a1,a2) is a subset defined by an equa-
tion of one of the following types.

• Type 0: The line X0 = 0, which we shall denote H∞ (the line at infinity). Points
on this line may be called the points at infinity.

• Type 1: Lines of the form αXa1
0 +X1 = 0 with α ∈ Fq (vertical lines).

• Type 2: Lines of the form αXa2
0 +βX1Xa2−a1

0 +X2 = 0 with α,β ∈ Fq (non-
vertical lines).

Remark 2.13. Note that using an Fq-rational change of variables that respects the
grading, any Fq-rational line of type i can be transformed into Xi = 0. For instance,
for the vertical line αXa1

0 +X1 = 0 this amounts to substituting X1← X1−αXa1
0 .
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Lemma 2.14. Any Fq-rational line in P(1,a1,a2) contains exactly q+ 1 rational
points, and any pair of Fq-rational lines in P(1,a1,a2) has at least one rational
point in common.

Proof. Being a copy of P(a1,a2), it is clear that the line at infinity in P(1,a1,a2)
contains q+1 rational points, while all other Fq-rational lines contain q affine points
along with a unique point at infinity. Clearly type 1 and type 2 lines meet the line
X0 = 0 and a type 1 line meets a type 2 line in the affine plane. Type 1 lines all meet
at (0 : 0 : 1) and type 2 lines all meet at (0 : 1 : 0). This establishes the lemma. ⊓*

The points at infinity (0 : 0 : 1) and (0 : 1 : 0) on the coordinate axes will be
denoted by P∞ and P′∞, respectively.

Remark 2.15. Figure 2.1 illustrates the intersection behavior of lines in P(1,a1,a2);
the point P′∞ acts as a vortex attracting all lines of type 2.

(1 : 0 : 0) (0 : 1 : 0) = P′

P = (0 : 0 : 1)

H

affine plane

type 0 (H )
type 1 (vertical line)
type 2 (non-vertical line)

Fig. 2.1: Lines in P(1,a1,a2).

We are now ready to prove the upper bound for |V (F)| stated in (2.6). Let
H1,H2, . . . ,Ht ∈ Fq[X0,X1,X2] be the distinct “linear” factors of F , i.e., the divisors
of F having one of the three forms mentioned in Definition 2.12. Note that

d ≥ degH1H2 · · ·Ht ≥ 1+(t−1)a1 ,

which leads to t ≤ d/a1 since a1 | d. For each i = 1,2, . . . , t we define Li = V (Hi),
and we similarly write L∞ =V (X0) for the set of Fq-rational points on H∞. Let

L=
t⋃

i=1

Li .
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As a first step in the proof, we show that |L| ≤ tq+ 1 by induction on t. The case
t = 0 is trivial and the case t = 1 follows from Lemma 2.14. In the general case we
have

|L|=
∣∣∣∣

t⋃

i=1

Li

∣∣∣∣

=

∣∣∣∣
t−1⋃

i=1

Li

∣∣∣∣+ |Lt |−
∣∣∣∣
t−1⋃

i=1

Li∩Lt
∣∣∣∣

≤ (t−1)q+1+q+1−1

= tq+1 ,

where the second step again uses Lemma 2.14.
To proceed, we distinguish between three cases.

Case 1: Suppose that V (F)\L ⊆ L∞ \{P∞}.
1. If Li = L∞ for some i, then we have

|V (F)|= |L| ≤ (d/a1)q+1

by the previous observation.
2. Suppose Li ̸= L∞ for all i. Then:

• either t = d/a1, which is possible only if all Hi’s are vertical andV (F) = L,
so again the bound follows (note that this case covers our example (2.4)
proving sharpness),

• or t < d/a1, in which case the following estimate applies:

|V (F)| ≤ |L|+ |L∞ \{P∞}|
= |L|+q

≤ tq+1+q

≤ (d/a1−1)q+1+q

= (d/a1)q+1 .

This concludes the proof in Case 1.

Case 2: There exists a point P ∈ A2 that lies in V (F) \L. Let X denote the set of
pairs (P′,H) of Fq-rational points and Fq-rational lines such that P,P′ ∈ V (F)∩H
and P ̸= P′. We are going to estimate the cardinality of X in two ways. On the one
hand

|X |= ∑
P′∈V (F)\{P}

∣∣{L : L is a line with P,P′ ∈ L
}∣∣

≥ ∑
P′∈V (F)aff\{P}

1 =
∣∣∣V (F)aff \{P}

∣∣∣ ,
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where as before V (F)aff =V (F)∩A2 =V (F)\L∞. On the other hand, we have

|X |= ∑
H∋P

H type 1

(|V (F)∩H|−1)+ ∑
H∋P

H type 2

(|V (F)∩H|−1)

↓ X1 = 0! P(1,a2) ↓ X2 = 0! P(1,a1)

≤ 1 ·
(

d
a2
−1
)

+ q
(

d
a1
−1
)
.

The first vertical arrow above indicates that in order to estimate |V (F)∩H| for a
line H of type 1, we can assume that H is defined by X1 = 0, by using a change of
variables if needed by the remark after Definition 2.12. But then our task is to esti-
mate the number of Fq-rational zeros of F(X0,0,X2) in the weighted projective line
P(1,a2), which is bounded by d/a2 as observed in the example in Section 2.1, dis-
cussing the base case m= 1. Here we note that F(X0,0,X2) ̸= 0 because H contains
P /∈ L. A similar justification goes along with the second vertical arrow.

Combining both estimates, we find that

∣∣∣V (F)aff \{P}
∣∣∣=
∣∣∣V (F)aff

∣∣∣−1 ≤ d
a2
−1+q

(
d
a1
−1
)
.

Since a1 < a2 and a1 and a2 are coprime it follows that

|V (F)| ≤ d
a2

+q
(

d
a1
−1
)
+ |V (F)∩H∞|

↓ X0 = 0! P(a1,a2)

≤ d
a2

+q
(

d
a1
−1
)

+
d

a1a2

= q
d
a1

+1+
d
a2

a1+1
a1
−q−1

≤ q
d
a1

+1+
d
a1
−q−1

≤ q
d
a1

+1 ,

where the last inequality uses our assumption that d ≤ a1(q+ 1). This ends the
proof in Case 2.

Case 3: One has P∞ ∈ V (F) \ L. This case is similar but easier. Using the same
definition of X with P= P∞, one finds, on the one hand, that

|X |= ∑
P′∈V (F)\{P}

∣∣{L : L is a line with P,P′ ∈ L
}∣∣

= ∑
P′∈V (F)\{P}

1

= |V (F)|−1 ,
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and, on the other hand, that

|X |= ∑
H type 0

(|V (F)∩H|−1)+ ∑
H type 1

(|V (F)∩H|−1)

↓ X0 = 0! P(a1,a2) ↓ X1 = 0! P(1,a2)

≤ 1 ·
(

d
a1a2

−1
)

+ q
(

d
a2
−1
)
.

Together, this combines to yield

|V (F)| ≤ d
a1a2

+q
(

d
a2
−1
)

≤ d
a1

+q
d
a1
−q

≤ q
d
a1

+1 ,

where the last step uses d ≤ a1(q+1). Thus Theorem 2.4 is proved.

2.4 Weighted Projective Reed–Muller Codes

In this section, we outline how the considerations of the previous sections can be
applied to coding theory. Recall that a (q-ary) linear code of length n and dimension
k is, by definition, a k-dimensional subspace of Fn

q. The minimum distance of such
a code C is defined by

d(C) :=min{wt(x) : x ∈C with x ̸= 0} ,

where for any x= (x1, . . . ,xn), the Hamming weight wt(x) is the number of nonzero
coordinates in x, i.e., |{i : xi ̸= 0}|. We usually say that a q-ary linear code C has
parameters [n,k,d] or that C is a [n,k,d]q-code if C has length n, dimension k, and
minimum distance d. We shall begin by reviewing some classical families of linear
codes.

2.4.1 Generalized Reed–Muller Codes, Projective Reed–Muller
Codes, and Projective Nested Cartesian Codes

The generalized Reed–Muller code over Fq of order d and withm variables has been
introduced by Delsarte, Goethals, and MacWilliams in 1970 in [9]. It is denoted by
RMq(d,m) and defined as the image of the evaluation map

c : Fq[X1, . . . ,Xm]≤d −→ Fqm
q given by c( f ) = ( f (P))P∈Am(Fq) ,
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where Fq[X1, . . . ,Xm]≤d denotes the Fq-vector space of all polynomials in m vari-
ables X1, . . . ,Xm with coefficients in Fq and with degree ≤ d.

If d < q, then the evaluation map c is injective, and so the dimension of
RMq(d,m) equals dimFq Fq[X1, . . . ,Xm]≤d , which is

(d+m
m

)
. The minimum distance

can be deduced from a classical result of Ore (cf. noted in [15, Thm. 6.13]),
which implies that the maximal number of zeros in Am(Fq) of a polynomial in
Fq[X1, . . . ,Xm] of degree d is equal to dqm−1. Thus we have:

Proposition 2.16. If d < q, then the code RMq(d,m) has parameters
[
qm,
(
d+m
d

)
, (q−d)qm−1

]
.

The projective Reed–Muller codes were introduced and studied by Lachaud [13,
14] and Sørensen [19] by the late 1980s and early 1990s. They can be defined as
follows.

Choose representatives in Fm+1
q for Fq-rational points of the (usual) projective

space Pm in such a way that the first nonzero coordinate is 1. Let P1, . . . ,Ppm be a
fixed collection of such representatives for the points of Pm(Fq). Now the evalua-
tion map

c : Fq[X1, . . . ,Xm]d −→ Fpm
q given by c( f ) = ( f (P1), . . . f (Ppm))

is injective if d ≤ q and we define PRMq(d,m) to be the image of this map. Us-
ing (2.3), we can deduce the following.

Proposition 2.17. If d ≤ q, then the code PRMq(d,m) has parameters
[
pm,
(
d+m
d

)
, (q−d+1)qm−1

]
.

This construction has been generalized in [1] where the evaluation of the homo-
geneous polynomials is done on the rational points of an hypersurface of Pm(Fq),
most notably on quadric hypersurfaces. The parameters of such codes have been
improved in 3- and 4-dimensional projective spaces in a series of papers (see, for
example, [11]).

Recently, Carvalho, Lopez Neumann, and López have proposed in [3] another
generalization of PRMq(d,m). In their paper, the evaluation of homogeneous poly-
nomials is done on suitable representatives in Fm+1

q of projective Cartesian sets
{(a0 : a1 : · · · : am) ∈ Pm(Fq) : ai ∈ Ai for i = 0,1, . . . ,m}, where A0,A1, . . . ,Am are
nonempty subsets of Fq.
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2.4.2 Weighted Projective Reed–Muller Codes

Let a0, . . . ,am be positive integers such that gcd(a0,a1, . . . ,am) = 1. Denote the
(m+1)-tuple (a0,a1, . . . ,am) by a. Consider an integer d which is a multiple of
the least common multiple of the ai’s, say d = k lcm(a0 . . .am).

We consider the weighted projective space P(a) = P(a0, . . . ,am) of dimension m
with weights a0, . . . ,am over Fq, whose definition was recalled in Section 2.1. Note
that P(a0, . . . ,am) is a disjoint union ofW0,W1, . . . ,Wm, where for 0 ≤ i ≤ m,

Wi := {(x0 : · · · : xm) ∈ P(a0, . . . ,am) : x0 = · · ·= xi−1 = 0, xi ̸= 0} .

As before, let Sd denote the space of weighted homogeneous polynomials of
degree d. We define the Weighted Projective Reed–Muller code of order d over
P(a0, . . . ,am)(Fq), denoted by WPRMq(d,m;a), as the image of the linear map

c : Sd −→ Fpm
q given by c(F) = (cx(F))x∈P(a)(Fq) ,

where for x= (x0 : x1 : · · · : xm) ∈ P(a)(Fq),

cx(F) =
F(x0, . . . ,xm)

xd/aii

if x= (x0 : · · · : xm) ∈Wi .

Observe that the map c is well defined. Indeed, for a nonzero λ ∈ Fq, if y= (λa0x0 :
· · · : λamxm) = (x0 : · · · : xm) = x ∈Wi, then

cy(F) =
F(λa0x0, . . . ,λamxm)

(λaixi)d/ai
=

λdF(x0, . . . ,xm)

λdxd/aii

= cx(F) .

This argument shows also that cx(F) ∈ Fq since every point x of P(a)(Fq) has
weighted homogeneous coordinates (x0 : x1 : · · · : xm) such that xi ∈ Fq for i =
0,1, . . . ,m.

2.4.2.1 Length and Dimension

The length of WPRMq(d,m;a) is clearly pm = qm+ · · ·+q+1. Assume that d ≤ q.
Then the linear map c in injective and so the dimension of WPRMq(d,m;a) is equal
to the dimension of the Fq-vector space Sd , which is equal to the number of repre-
sentations of d as a nonnegative integer linear combination of a0, . . . ,am:

∣∣{(α0, . . . ,αm) ∈ Zm+1
≥0 : α0a0+ · · ·+αmam = d}

∣∣ .

Note that, using a theorem of Schur (see, e.g., [21, Thm. 3.15.2]), we have an asymp-
totic formula

dimWPRMq(d,m;a) =
dm

m!a0 . . .am
+O(dm−1) when d→ ∞ .
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If we suppose that a0 = 1, then this dimension is equal to
∣∣{(α1, . . . ,αm) ∈ Zm+1

≥0 : α1a1+ · · ·+αmam ≤ d}
∣∣ .

This can be viewed as the number of integral points in an integral convex polytope
and then the dimension can be obtained using Ehrhart polynomials (see the exam-
ples below in dimension 2).

2.4.2.2 Minimum Distance

The minimum distance of WPRMq(d,m;a) is equal to the number of rational points
on P(a)(Fq) minus the maximal number of points on a hypersurface V of degree d
of P(a)(Fq). Thus we can determine it using the results of the previous sections.

First, suppose i, j ∈ {0,1, . . . ,m} and d′ ∈ Z are such that

lcm(ai,a j) =min{lcm(ar,as),r ̸= s}, and d′ :=
d

lcm(ai,a j)
.

Then from Lemma 2.1, we see that

d(WPRMq(d,m;a)) ≤ (q−d′+1)qm−1.

Furthermore, if a0 = 1 and m = 2 and we assume without loss of generality that
a1 ≤ a2, then from Theorem 2.4, we see that

d(WPRMq(d,2;a)) =
(
q− d

a1
+1
)
qm−1. (2.7)

2.4.2.3 A Particular Case

Consider the particular case of the weighted projective plane P(1,1,a), where a is
a positive integer. Also let a = (1,1,a). Given a convex polytope ∆ whose vertices
have integral coordinates, the function which assigns to a nonnegative integer k the
number |k∆ ∩Zm| of integral points in dilates k∆ of ∆ is a polynomial of degree m,
called the Ehrhart polynomial of ∆ (see, for example, [2]). For m = 2, this polyno-
mial can be written in the following way:

∣∣k∆ ∩Z2
∣∣= Vol(∆)k2+ 1

2

∣∣∂∆ ∩Z2
∣∣k+1 .

Hence we find that, for d= ka, the dimension of the codeWPRMq(d,2;a) is equal to

1
2
ak2+

a+2
2

k+1=
d2

2a
+

(a+2)d
2a

+1=
(d+a)(d+2)

2a
.
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Since we have d′ = d in our case, we find from (2.7) that the minimum distance of
WPRMq(d,2;a) is q2− (d−1)q.

Thus, the code WPRMq(d,2;a) has parameters
[
p2,

(d+a)(d+2)
2a

, q2− (d−1)q
]

and we can compare it to the parameters of the code PRMq(d,2), which are
[
p2,

(d+1)(d+2)
2

, q2− (d−1)q
]
.

We find here that the weighted projective Reed–Muller code has the same length and
the same minimum distance, but worse dimension than the projective Reed–Muller
code.

2.4.2.4 Another Particular Case

Let a,b be positive integers with a ≤ b and let a = (1,a,b). Consider the par-
ticular case of the weighted projective plane P2(1,a,b) and consider an integer
d = k lcm(a,b) with d ≤ q. Arguing as before, we can deduce the following.

Proposition 2.18. The code WPRMq(d,2;a) has parameters
[
p2,

(d+2a)(d+b)+(gcd(a,b)−a)d
2ab

, q2−
(
d
a
−1
)
q
]
.

In particular, if a = 2 and b ≥ 2, we see that the minimum distance of the code
WPRMq(d,2;(1,2,b)) is always better than the minimum distance of PRMq(d,2),
but the dimension of WPRMq(d,2;(1,2,b)) is always worse than the dimension of
PRMq(d,2).

2.4.2.5 Relative Parameters

Recall that, for any codeC, the transmission rate R(C) and the relative distance δ (C)
of C are defined by

R(C) =
dimC
lengthC

and δ (C) = distC
lengthC

.

The number

λ(C) = R(C)+δ (C) = (dimC+distC)/ lengthC
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is a parameter of C and it is suggested in [14] that it can be taken as a measure of
the performance of the code C.

It is proved in [14] that if q≥ d+1, m≥ 2, and d ≥ 2m/(m−1), then

λ(PRMq(d,m))> λ(RMq(d,m)) .

If q is sufficiently large then one can show that WPRMq(d,2;(1,2,2)) has a
greater (and thus better) performance than PRMq(d,2):

Proposition 2.19. If q≥ 3k+3
2 , then

λ(WPRMq(2k,2;(1,2,2)))≥ λ(PRMq(2k,2)) .

Proof. Since the lengths of these codes are equal (namely to p2), we just have to
show that the sum of the dimension and the minimum distance is greater for the first
code when q is sufficiently large. Applying Propositions 2.17 and 2.18 yields the
desired result. ⊓*

In the same way, it is easy to see that:

Proposition 2.20. If q≥ 7k+4
2 , then

λ(WPRMq(4k, 2; (1,2,4)))≥ λ(PRMq(4k,2)) .

More generally, using Propositions 2.17 and 2.18 we can show that:

Theorem 2.21. For any nonnegative integers a,β and k with a≥ 2,

λ(WPRMq(kaβ, 2; (1,a,aβ)))≥ λ(PRMq(kaβ,2)) ,

provided

q≥ kβ2a2+3βa− kβ−β−2
2β(a−1)

.

Let us compare the performance over F19 and in degree 16 of the generalized
Reed–Muller code over A2, the projective Reed–Muller code over P2, and the
weighted projective Reed–Muller codes over the five different weighted projective
planes P(1,2,2), P(1,2,4), P(1,2,8), P(1,4,4), and P(1,16,16).

We find that RM19(16,2) has parameters [361,153,57] and the projective coun-
terpart PRM19(16,2) has parameters [381,153,76], whereas

• WPRM19(16,2;(1,2,2)) has parameters [381,45,228],
• WPRM19(16,2;(1,2,4)) has parameters [381,25,228],
• WPRM19(16,2;(1,2,8)) has parameters [381,15,228],
• WPRM19(16,2;(1,4,4)) has parameters [381,15,304], and
• WPRM19(16,2;(1,16,16)) has parameters [381,3,361].
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The affine and projective Reed–Muller codes above have performances

λ(RM19(16,2)) = 0.581 . . . and λ(PRM19(16,2)) = 0.601 . . . ,

whereas the performances of the above five weighted projective Reed–Muller codes
are 0.716 . . ., 0.664 . . ., 0.637 . . ., 0.837 . . ., and 0.955 . . ., respectively.
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2.A Appendix: Weighted Projective Spaces

This appendix is aimed at providing a handy reference for weighted projective
spaces over arbitrary fields. While some proofs are occasionally outlined, for the
most part we provide complete statements of results and suitable references where
proofs can be found.
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2.A.1 Definitions of Weighted Projective Spaces

2.A.1.1 WPS as a Proj Functor

Let k be a field and let a = (a0, . . . ,am) be a sequence of strictly positive integers.
The condition

degXi = ai, i= 0, . . . ,m

defines a gradation of type Z on the polynomial algebra S= k[X0, . . . ,Xm]:

S=
⊕

n≥0
Sn

such that Sn = 0 if n< 0. For a monomial f = Xr0
0 . . .Xrm

m , we have

a-deg f = n ⇐⇒ a0r0+ · · ·+amrm = n .

We assume that the characteristic p of k is coprime to all ai (0 ≤ i ≤ m), and that
gcd(a0, . . . ,am)= 1. Theweighted projective space (WPS) with sequence of weights
a over k is the scheme P(a) = ProjS(a). If a = (1, . . . ,1), we recover the usual
projective space:

P(1, . . . ,1) = Pm .

2.A.1.2 Quotients

Let G be an affine algebraic group over a field k acting on an algebraic variety X
over k. A categorical quotient of X by G, see [Do2, p. 92], [Gr, Ch. V, §1], [MFK,
Def. 0.5, p. 3], is a morphism p : X −→ Y , where Y is a variety over k, such that

1. p is surjective.
2. p is G-invariant, or G-equivariant, that is, p is constant on the orbits of G.
3. If f : X −→ Z is a k-morphism constant on the orbits of G, then there exists a

k-morphism ϕ : Y −→ Z such that f = ϕ ◦p.

The couple (Y,p) is unique up to unique isomorphism. A categorical quotient is
called a geometric quotient, see [Do2, p. 92], [MFK, Def. 0.6, p. 4], if moreover

4. p is open.
5. The fibers of p are the orbits of G in X .
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2.A.1.3 WPS as a Quotient of the Punctured Affine Space

The gradation a of S defines an action

σ : G m × Am+1 Am+1

of G m on Am+1 such that

σ(t).(x0, . . . ,xm) = t.(x0, . . . ,xm) = (ta0x0, . . . , tamxm) .

The corresponding morphism

σ ♭ : S k[T,T−1]⊗ S ≃ S[T,T−1]

is such that
[σ ♭ f ](T,X0, . . . ,Xm) = f (Ta0X0, . . . ,TamXm) .

The algebra S[T,T−1] is called the algebra of Laurent polynomials over S. The group
G m operates as well on the pointed cone

V= Am+1 \{0}.

Theorem 2.22. The morphism

p : V V/G m

is a geometric quotient, and there is an isomorphism

ι : V/G m P(a)∼

Proof. [Do1, §1.21, p. 36], [Do2, Ex. 6.2, p. 96]. ⊓*
The scheme P(a) is a normal irreducible projective variety of dimensionm [MFK,

p. 5], [Do1, §1.3.3].

2.A.1.4 WPS as a Finite Quotient of the Projective Space

For any integer n> 0, we denote by µµµn the finite group scheme of n-th roots of unity,
with coordinate ring k[X ]/(Xn−1). We put

G= Ga = µµµa0 × · · ·× µµµam .

Then |Ga| = a, with a = a0 . . .am, and Ga ≃ µµµa if and only if a is the l.c.m. of
a0, . . . ,am, that is, if and only if a0, . . . ,am are pairwise coprime. There is a linear
action of G on Pm given by

(ζ0, . . . ,ζm).(x0 : . . . : xm) = (ζ0x0 : . . . : ζmxm)
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The morphism π0 : V→ V given by

π0(x0, . . . ,xm) = (xa00 , . . . ,xamm )

induces a diagram

Let G be an affine algebraic group over a field k acting on an algebraic variety X
over k. For the definition of a good geometric quotient of X by G, see [Do2, p. 92].
We denote by G(x) the stabilizer or isotropy group of X . The action is free at x if
G(x) is trivial.

Proposition 2.23. The morphism π : Pm −→ P(a) given by

π (x0 : . . . : xm) = (xa00 : . . . : xamm )

is a good geometric quotient of X by G, and therefore enjoys the following
properties:

1. π is surjective, finite, and submersive.
2. The fibers of π are the orbits of G in Pm.
3. If x ∈ Pm and y = π (x) ∈ P(a), the residual field κ (x) is a Galois extension of

κ (y) and the canonical homomorphism of G(x) in the group Gal(κ (x)/κ (y)) of
κ (y)-automorphisms of κ (x) is surjective.

Proof. See [Se, Ch. III, Prop. 19], [Gr, Ch. V, Props. 1.3 and 1.8], [Do2, Ex. 6.1,
p. 95]. ⊓*

Notice that degπ = a0 . . .am. The Jacobian matrix of π is

dπ (x) = Diag(a0x
a0−1
0 , . . . ,amxam−1m ) ,

and
detdπ (x) = (a0 . . .am)x

a0−1
0 . . .xam−1m

If we denote by Hi the hyperplane xi = 0, the ramification locus is

R=
⋃

ai>1

Hi .
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Then π is étale outside R, which clearly contains the singular set.

Proposition 2.24. The scheme P(a) is Cohen–Macaulay.

Proof. Cf. [BR, Th. 3A.1]. ⊓*

2.A.2 The Singular Locus

We say that the sequence of weights a is normalized [Di, p. 185] or well formed [Ho,
Def. 3.3.4] if

gcd(a0, . . . , âi, . . . ,am) = 1 for every 0 ≤ i ≤ m .

Any weighted projective space is isomorphic to a well-formed weighted projective
space [loc. cit]. If p is a prime number, we put

I(p) = {i ∈ {1, . . . ,m} : p divides ai} .

The set Σ = Σ(a) of prime numbers such that I(p) ̸= /0 is finite, and a is normalized
if and only if |I(p)| ≤ m−1 for every p. The space

S(p) = {x ∈ P(a) : xi = 0 if i /∈ I(p)}

is a weighted projective space of dimension |I(p)|.

Proposition 2.25. Assume that a is normalized.

1. The decomposition of SingP(a) into irreducible components is

SingP(a) =
⋃

p∈Σ
S(p) .

2. Moreover
SingP(a) = {x ∈ SingP(a) : Gx ̸= {1}} .

Proof. See Dimca [Di, p. 185]. ⊓*

Notice that dimSingP(a) ≤ m−2, that is, P(a) is regular in codimension one, as
it already follows from normality.

Corollary 2.26. Assume that a is normalized.

1. If (x0 : . . . : xm) ∈ SingP(a), then xi = 0 for at least one i.
2. If

gcd(a j,a j) = 1 for every couple (i, j) with j ̸= i ,

then
SingP(a) = {P0, . . . ,Pm} ,

where Pi are the m+1 vertices (0 : . . . : 1 : . . . : 0).
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Proof. From Proposition 2.25 we deduce that if x ∈ SingP(a), then x ∈ S(p) for
some p∈Σ , hence, xi = 0 for at least one i. This proves (1). If a0, . . . ,am are pairwise
coprime, then I(p) has only one element i, and S(p) = {Pi}. This proves (2). ⊓*

2.A.3 Affine Parts

2.A.3.1 Quotient of the Affine Space by a Cyclic Group

We shall define an action of the cyclic group µµµai on Am, which is called the action
of type

1
ai
(a0, . . . , âi, . . . ,am) .

Let Am
{i} the affine hypersurface of V with equation Xi = 1. Our action is defined by

ζ .(x0, . . . ,1, . . . ,xm) = (ζ a0x0, . . . ,1, . . . ,ζ amxm) , ζ ∈ µµµai ,

and we get a finite quotient

p : Am
{i} Am

{i}/µµµai .

We have
k[Am

{i}] = S/(Xi−1) = k[X0, . . . , X̂i, . . . ,Xm] .

If
k[Am

{i}]
inv = k[Am

{i}/µµµai ] = k[Am
{i}]

µµµai ,

then [BR, Lem. 2.5, p. 11]

k[Am
{i}]

inv =
⊕

k[Am
{i}]nai .

If gcd(a j,ai) = 1 for j ̸= i, then the only point x ∈ Am with nontrivial isotropy
subgroup is x= 0, and the projection Am

{i}→ Am
{i}/µµµai is étale outside 0.

2.A.3.2 Affine Parts

For 0 ≤ i ≤ m, we consider the principal open subset

Vi = {x ∈ V : xi ̸= 0} .

Then k[Vi] is the localization of S with respect to Xi, namely

k[Vi] = k
[
1
Xi

]
=

{
f
Xn
i
: f ∈ S

}
⊂ k(Am+1) .
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We put
Ui = p(Vi) =Vi/G m = {x= (x0 : . . . : xn) ∈ P(a) : xi ̸= 0}

and we consider the k-subalgebra of degree 0 elements of k[Vi]:

k[Vi]0 =
{

f
Xn
i
∈ S[i] : f homogeneous, n≥ 0, deg f = nai

}
. (2.8)

Then

k[Ui] = k[Vi]0 = k[Vi]Gm .

Proposition 2.27. With the preceding notation:

1. The projection p : Am
{i}→Ui given by

p(x0, . . . ,1, . . . ,xm) = (x0 : . . . : 1 : . . . : xm)

is surjective and induces an isomorphism

ϕ : Am
{i}/µµµai Ui ,

∼

with an inverse

ψ : Ui Am
{i}/µµµai

∼

such that

ψ(x0 : . . . : 1 : . . . : xm) = (x0, . . . ,1, . . . ,xm) .

2. The canonical homomorphism p♭ : k[Ui]→ k[Am
{i}] given by

p♭
(

f
Xn
i

)
= f (X0, . . . ,1, . . . ,Xm) ,

for f homogeneous, n ≥ 0, a-deg f = nai, is injective and induces an isomor-
phism

ϕ♭ : k[Ui] k[Am
{i}]

inv,∼

with an inverse
ψ♭ : k[Am

{i}]
inv k[Ui]

such that

ψ♭( f ) =
f
Xn
i
,
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for f ∈ k[Am
{i}]

inv, deg f = nai. In particular

ψ♭
(
Xai
j

)
=

Xai
j

X
a j
i

.

Proposition 2.27 leads to the two diagrams

Proof (Proposition 2.27).
1. See [BR, Th. 2.6.b, p. 12], [Ho, 1.2.3], and occasionally see also [Te, pp. 63–

64] and [Re, pp. 4–5].
2. Let x and y be in Am

{i}. If

(y0, . . . ,1, . . . ,ym) = (ζ a0x0, . . . ,1, . . . ,ζ amxm) , ζ ∈ µµµai ,

then p(x) = p(y), and the existence of ϕ follows. Conversely, assume that p(y) =
p(x). Then we have in V, with some t ∈ G m:

(v0, . . . ,1, . . . ,vm) = (ta0u0, . . . , tai , . . . , tamum)

This implies that t ∈ µµµai , hence, p factors modulo µµµai , and ϕ is injective.
3. Let

Wi = {x= (x0 : . . . : ξi : . . . : xn) ∈ P(a0, . . . ,1, . . . ,am) : ξi ̸= 0}

and consider the morphisms

m : Wi Ui

given by
m(x0 : . . . : ξi : . . . : xm) = (x0 : . . . : ξ ai

i : . . . : xm)

and
ψ0 : Wi Am

{i}/µµµai

given by
ψ0(x0 : . . . : ξi : . . . : xm) = (

x0
ξ a0
i

, . . . ,1, . . . ,
xm
ξ am
i

) .

If m(x) = m(y), then ηi = tξi with t ∈ µµµai and ψ0(x) = ψ0(y). Hence, there is a
morphism

ψ : Ui Am
{i}/µµµai
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such that ψ0 = ψ ◦m:

We have
ψ(x0 : . . . : 1 : . . . : xm) = (x0, . . . ,1, . . . ,xm) .

This implies ψ ◦ϕ(x) = x if x ∈ Am
{i}/µµµai , and ψ is surjective. On the other hand, it

is easy to see that ϕ ◦ψ ◦m(x) = m(x) if x ∈Wi, hence, ϕ ◦ψ(x) = x if x ∈Ui, and
ϕ is surjective.

4. The corresponding homomorphisms of algebras are respectively

m♭ : S(i) = k[Ui] k[Wi]

given by
m♭( f/Xn

i ) = f/Ξ nai
i ,

for f homogeneous, n≥ 0, a-deg f = nai, and

ψ♭
0 : k[Am

{i}]
inv k[Wi]

given by
ψ♭
0( f ) = f/Ξ nai

i ,

for f ∈ R{i}, deg f = nai. Now the morphism

ψ♭ : k[Am
{i}]

inv k[Ui]

such that
ψ♭( f ) = f/Xn

i ,

for f ∈ k[Am
{i}]

inv, deg f = nai, satisfies ψ♭
0 = m♭ ◦ψ♭, and we have a diagram

⊓*
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Remark 2.28. Roughly speaking, we have

ψ(x0 : . . . : xi : . . . : xm) =

(
x0

xa0/aii

, . . . ,1, . . . ,
xm

xam/aii

)
.

This formula obviously makes sense if ai = 1 (see below).

From Proposition 2.27 we get, see also [Ko, p. 81] and [Do1, Prop. 1.3.3(ii)]:

Corollary 2.29. The space P(a) has cyclic quotient singularities.

Similarly, if k = R, the space P(a) is an orbifold (or V -variety) [Do1, Th. 3.1.6].

2.A.3.3 A Special Case

The complement of the open set Ui is the hyperplane Pi of P(a) with equation xi =
0. Then Pi is the weighted projective space P(a′) of dimension m− 1, with a′ =
(a0, . . . , âi, . . . ,am), and we have the standard “motivic” decomposition

P(a) =Ui*Pi . (2.9)

If we assume a = (a0, . . . ,1, . . . ,am), with ai = 1, the set Ui is affine, since k[Ui] =
k[Y1, . . . ,Ym], with

Y1 =
X0
Xa0
i

, . . . , Ym =
Xm
Xam
i

andUi is isomorphic to Am. The morphism

ϕ : Am
{i} Ui ,

∼

is an isomorphism, with an inverse

ψ : Ui Am
{i}

∼

given by
ψ(x0 : . . . : xi : . . . : xm) = (

x0
xa0i

, . . . ,1, . . . ,
xm
xami

) .

Since Ui is isomorphic to Am, the space P(a) is a compactification of the affine
space Am.

2.A.3.4 Action of G m

The action
σ : G m × Am

{i} Vi
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is given by
σ(t).(x0, . . . ,1, . . .xm) = (ta0x0, . . . , tai , . . . , tamxm) .

Let x = (x0, . . . ,xm) and similarly for x′. If σ(t ′).x′ = σ(t).x, then (t ′)ai = tai and
t ′ = ζ−1t with ζ ∈ µµµai . We thus have (x′0, . . . ,x

′
m) = (ζ a0x0, . . . ,ζ amxm) and

σ(t ′).x′ = σ(t).x ⇐⇒ t ′ = ζ−1t and x′ = ζ .x , ζ ∈ µµµai .

Hence, the action σ factors through

(G m × Am
{i})/µµµai

with the action ζ .(t,x) = (ζ−1t,ζ .x). The canonical homomorphism

σ ♭ : k[Vi] k[Am
{i}][T,T

−1]

is equal, for f a-homogeneous, to

σ ♭

(
f
Xn
i

)
= f (X0, . . . ,1, . . . ,Xm) ·T deg f−nai

which is injective, with image equal to k[Am
{i}][T,T

−1]µµµai . Then:

Proposition 2.30. The action σ induces isomorphisms

(G m × Am
{i})/µµµai Vi ,

∼ k[Vi] k[Am
{i}][T,T

−1]µµµai ,∼

and σ is an étale morphism.

Proof. See [BR, Th. 2.6.c, p. 12]. ⊓*

Warning. These isomorphisms are not surjective on the sets of rational points: think
of the covering A1→ A1 given by z '→ z2 !

2.A.4 Rationality

Let k be a field. A point y ∈ P(a) is rational if and only if p−1(y) is invariant under
the Galois group Γ = Gal(k/k). We denote as usual the subset of rational points of
P(a) by P(a)(k). The orbit of x = (x0, . . . ,xm) ∈ V(k) with image p(x) = y is the
rational curve

C(x) = p−1(y) = σ(k× ).x=
{
(λa0x0, . . . ,λamxm) : λ ∈ k×

}
⊂ V(k) .
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Lemma 2.31. Let k be any field.

1. Let x ∈ V. Then

p(x) ∈ P(a)(k) ⇐⇒ C(x)∩V(k) ̸= /0 .

In other words, the map p : V(k) !! P(a)(k) is surjective.

2. The map p induces a bijection V(k)/R ∼ !! P(a)(k) where R is the equiva-
lence relation whose classes are the subsets C(x)∩V(k).

Proof. It is sufficient to prove the first assertion. See [Pe, Lem. 6] and [Go,
Lem. 1.2]. ⊓*

Lemma 2.32. Assume k = Fq. Recall that p is prime to all ai.

1. If x ∈ V(k), then
∣∣C(x)∩V(Fq)

∣∣= σ(k× ).x and
∣∣C(x)∩V(Fq)

∣∣= q−1 .

2. The map p induces a bijection

V(k)/σ(k× ) ∼ !! P(a)(k)

3. We have

∣∣P(a)(Fq)
∣∣= πm , with πm =

∣∣Pm(Fq)
∣∣= qm+1−1

q−1
.

Proof. (1): See Goto [Go, Prop. 1.3] and Perret [Pe, Lem. 7]. Then (2) follows from
(1) and Lemma 2.31(2), whereas (3) follows from (2). ⊓*

Corollary 2.33. Let X be a hypersurface in a weighted projective space of dimen-
sion m over Fq. Write

∣∣X(Fq)
∣∣ for the number of Fq-rational points on X and∣∣(ConeX)(Fq)

∣∣ for the number of affine solutions for the defining equation of X
in Am+1. Then ∣∣(ConeX)(Fq)

∣∣= (q−1)
∣∣X(Fq)

∣∣+1 .

Proof. See [Go, Cor. 1.4]. ⊓*

If X is a hypersurface of degree d over Fq in Pm with m≥ 1, then Serre’s inequal-
ity is ∣∣X(Fq)

∣∣ ≤ dqm−1+πm−2
(recall that πm−2 = 0), and hence,

∣∣(ConeX)(Fq)
∣∣ ≤ dqm− (d−1)qm−1.
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The following result is a bit amazing:

Corollary 2.34. Let Am
{i} the affine hypersurface of V with equation Xi = 1, and

p : Am
{i} Am

{i}/µµµai

the quotient map under the action of type

1
ai
(a0, . . . , âi, . . . ,am) .

Let Zi be the scheme Am
{i}/µµµai . Then

∣∣Zi(Fq)
∣∣= qm .

Proof. This is a consequence of (2.9) and of Lemma 2.32(3). ⊓*

To be less amazed, observe that if q is odd and Z = A1/µµµ2, then
∣∣Z(Fq)

∣∣= q.

2.A.5 Weighted Forms

2.A.5.1 Definition

Since the natural homomorphism π ∗ defines an isomorphism

OP(a)(U)
∼−−−−→ π∗(OPm)G(U) = OPm(π−1(U))G ,

for any open setU ⊂ P(a), we have a homomorphism of graded rings

π ♭ : k[X0, . . . ,Xm] −−−−→ k[Xa0
0 , . . . ,Xam

m ]

such that π ♭(Xi) = Xai
i . This leads to the isomorphism

S(a) ∼−−−−→ k[Xa0
0 , . . . ,Xam

m ] = k[X0, . . . ,Xm]G ,

see [Do1, p. 37] and [Ho, Lem. 4.2.1].
Henceforth we write X = (X0, . . . ,Xm) and denote by k[X ] the algebra of polyno-

mials in (X0, . . . ,Xm). A polynomial f ∈ k[X ] is quasi-homogeneous (or weighted
homogeneous, or a weighted form) of a-degree d (or of degree d w.r.t. a) if

f (λa0X0, . . . ,λamXm) = λd(X0, . . . ,Xm) .

We denote by k[X ]d the vector space of homogeneous polynomials of degree d, and
by ka[X ]d the vector space of quasi-homogeneous polynomials of a-degree d. Now

f ∈ ka[X ]d =⇒ π ∗ f ∈ k[X ]d .
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For a monomial m= Xr0
0 . . .Xrm

m , we have

m(λa0X0, . . . ,λamXm) = λa0r0Xr0
0 . . .λamrmXrm

m

hence, m ∈ ka[X ]d with
a0r0+ · · ·+amrm = d ,

and the dimension of ka[X0, . . . ,Xm]d is equal to

{(r0, . . . ,rm) ∈ Nm : a0r0+ · · ·+amrm = d} .

This number can be calculated with the help of Ehrhart polynomials (see [BD]).
Every f ∈ ka[X ]d defines a hypersurface

Y = Yf = {(x0 : . . . : xm) ∈ P(a) : f (x0, . . . ,xm) = 0} ,

and we associate also to f the projective hypersurface of degree d:

X = Xf = {(x0 : . . . : xm) ∈ Pm : π ∗ f (x0, . . . ,xm) = 0} ,

and the morphism π : Pm −→ P(a) induces a morphism

π : Xf −−−−→ Yf

providing a diagram

and the morphism π enjoys the properties of Proposition 2.23.

2.A.5.2 Weighted Binary Forms

Let a = (a0,a1) and assume a1 > 1. We work with the weighted projective line
P(a0,a1). It is known that P(a0,a1) ≃ P1, see [Do1, p. 38]. If P0 = (0 : 1) then
P(a0,a1) = D0∪{P0}.
Proposition 2.35 (D’Alembert’s Theorem for Weighted Binary Forms). Let a=
(1,a1). Let f ∈ k[X0,X1] be a binary weighted form with weighted degree d, where
a1 | d. Then the finite set

Xf = {(x0,x1) ∈ P(1,a1) : f (x0,x1) = 0}
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satisfies
∣∣Xf
∣∣ ≤ d

a1
.

Proof. Let a= (a0,a1), and assume a0a1 | d. We have

f (x0,x1) = ∑
r0,r1

cr0,r1x
r0
0 x

r1
1 (a0r0+a1r1 = d)

and in decreasing powers of x1:

f (x0,x1) = c0,d/a1x
d/a1
1 + · · ·+ cr0,r1x

r0
0 x

r1
1 + · · ·+ cd/a0,0x

d/a0
0 .

Notice that a0 divides every index r1. If x0 = 0 the equation reduces to

c0,d/a1x
d/a1
1 = 0

and the equation has exactly one solution if c0,d/a1 = 0, namely P0, and none other-
wise. In D0, we have as well

f (x0,x1)

xd/a00

= c0,d/a1
xd/a11

xd/a00

+ · · ·+ cr0,r1
xr11

xa1r1/a00

+ · · ·+ cd/a0,0

= c0,d/a1

(
xa01
xa10

)d/a0a1

+ · · ·+ cr0,r1

(
xa01
xa10

)r1/a0

+ · · ·+ cd/a0,0

= f0(u) ,

with u= xa01 /xa10 , and

f0(u) = c0,d/a1u
d/a0a1 + · · ·+ cr0,r1u

r1/a0 + · · ·+ cd/a0,0 .

This is a polynomial of degree ≤ d/a0a1 with strict inequality if c0,d/a1 = 0. If
a= (1,a1), the morphism ϕ : U0→ A1 given by

ϕ(x0 : x1) = u=
x1
xa10

is an isomorphism, with inverse morphism given by u '→ (1 : u), and
∣∣Xf
∣∣ ≤ d/a1.

⊓*

2.A.5.3 Weighted Ternary Forms

We are interested on weighted projective plane curves in the weighted projective
plane P(1,a1,a2), that is, m= 2 and a= (1,a1,a2). We assume 1< a1 < a2. Recall
the notation: the morphism

ψ : U0 !! A2
0
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ψ(x0 : x1 : x2) = (1,y1,y2) ,

where
y1 =

x1
xa10

, y2 =
x2
xa20

,

corresponds to the morphism of algebras

ψ♭ : k[X0,X1,X2] −−−−→ k[Y1,Y2]

where
Y1 =

X1
Xa1
0

, Y2 =
X2
Xa2
0

.

The morphism ψ is an isomorphism, with inverse ϕ : A2
0→U0 given by

ψ(1,y1,y2) = (1 : y1 : y2) .

The complement of U0 is the weighted projective line P(a1,a2), and P(1,a1,a2)
is a compactification of the affine plane.

Recall that Ore’s inequality (1922) for forms is the following: Let f be a form in
m+1 variables, of degree d, defined over Fq. Define

Xf = {x ∈ Pm : f (x) = 0} ,

and (Xf )aff = Xf ∩U0. Then
∣∣∣(Xf )

aff(Fq)
∣∣∣ ≤ dqn−1 .

Proposition 2.36. Let a = (1,a1,a2) and f ∈ k[X0,X1,X2] a ternary weighted form
with weighted degree d, where a1a2 | d. Define

Xf = {(x0,x1,x2) ∈ P(1,a1,a2) : f (x0,x1,x2) = 0} .

1. (Ore’s inequality for weighted ternary forms). Let (Xf )aff = Xf ∩U0. Then

∣∣∣(Xf )
aff(Fq)

∣∣∣ ≤
d
a1

q .

2. We have ∣∣Xf (Fq)
∣∣ ≤ d

a1
q+1 .

Proof. Proof of (1): we write

f (X0,X1,X2) =∑ciX
pi
0 Xqi

1 Xri
2 , pi+a1qi+a2ri = d .
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The general term of f/Xd
0 is

X pi
0 Xqi

1 Xri
2

X pi+a1qi+a2ri
0

=
Xqi
1

Xa1qi
0

·
Xri
2

Xa2ri
0

= Yqi
1 Yri

2 .

If p1 = r1 = 0, then q1 = d/a2, if p2 = q2 = 0, then q2 = d/a2, and if q0 = r0 = 0,
then p0 = d. Hence,

f (X0,X1,X2) = c1X
d/a1
1 + c2X

d/a2
2 + · · ·+ c0Xd

0 ,

and

f (X0,X1,X2)
Xd
0

= c1Y
d/a1
1 + c2Y

d/a2
2 + · · ·+Yqi

1 Y ri
2 + · · ·+ c0 .

This is a bivariate polynomial of degree ≤ d/a1 in A2. We get the result using the
usual Ore inequality. For a proof of (2), see Theorem 2.4 in the main text. ⊓*

References

BD. M. Beck, J. A. De Loera, M. Develin, J. Pfeifle, and R. P. Stanley,
Coefficients and roots of Ehrhart polynomials, Integer Points in Polyhe-
dra — Geometry, Number Theory, Algebra, Optimization (A. Barvinok,
M. Beck, C. Haase, B. Reznick, and V. Welker, eds.), Contemporary Math-
ematics, vol. 374, American Mathematical Society, Providence, RI, 2005,
pp. 15–36.

BR. Mauro Beltrametti and Lorenzo Robbiano, Introduction to the theory of
weighted projective spaces, Exposition. Math. 4 (1986), no. 2, 111–162.

Di. Alexandru Dimca, Singularities and coverings of weighted complete inter-
sections, J. Reine Angew. Math. 366 (1986), 184–193.

Do1. Igor Dolgachev, Weighted projective varieties, Group Actions and Vector
Fields (Vancouver, B.C., 1981) (J. B. Carrell, ed.), Lecture Notes in Mathe-
matics, vol. 956, Springer, Berlin, 1982, pp. 34–71.

Do2. , Lectures on Invariant Theory, London Mathematical Society Lec-
ture Note Series, vol. 296, Cambridge University Press, Cambridge, 2003.

Go. Yasuhiro Goto, Arithmetic of weighted diagonal surfaces over finite fields, J.
Number Theory 59 (1996), no. 1, 37–81.

Gr. Alexander Grothendieck, Revêtements étales et groupe fondamental. Fasc.
I: Exposés 1 à 5, Séminaire de Géométrie Algébrique, vol. 1960/61, Institut
des Hautes Études Scientifiques, Paris, 1963.

Ho. Timothy Hosgood, An introduction to varieties in weighted projective space,
https://thosgood.github.io/pdfs/general/introduction-to-wps.pdf, 2015.

yves.aubry@univ-tln.fr



2 Hypersurfaces in Weighted Projective Spaces 61

Ko. János Kollár, Lectures on Resolution of Singularities, Annals of Mathematics
Studies, vol. 166, Princeton University Press, Princeton, NJ, 2007.

MFK. D. Mumford, J. Fogarty, and F. Kirwan, Geometric Invariant Theory, third
ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2), vol. 34, Springer-
Verlag, Berlin, 1994.

Pe. Marc Perret,On the number of points of some varieties over finite fields, Bull.
London Math. Soc. 35 (2003), no. 3, 309–320.

Re. Miles Reid, Graded rings and varieties in weighted projective space, http://
homepages.warwick.ac.uk/~masda/surf/more/grad.pdf, 2002.

Se. Jean-Pierre Serre, Algebraic Groups and Class Fields, Graduate Texts in
Mathematics, vol. 117, Springer-Verlag, New York, 1988.

Te. Jenia Tevelev, Introduction to invariant theory and moduli spaces, http://
people.math.umass.edu/~tevelev/moduli797.pdf, undated.

yves.aubry@univ-tln.fr


