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Abstract AgraphG is free (a, b)-choosable if for any vertex v with b colors assigned
and for any list of colors of size a associated with each vertex u ̸= v, the coloring can
be completed by choosing for u a subset of b colors such that adjacent vertices are
colored with disjoint color sets. In this note, a necessary and sufficient condition for
a cycle to be free (a, b)-choosable is given. As a corollary, we obtain almost optimal
results about the free (a, b)-choosability of outerplanar graphs.
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Mathematics Subject Classification 05C15 · 05C38 · 05C10

1 Introduction

We consider only simple graphs, i.e. graphs without loops or parallel edges. For a
graph G, we denote its vertex set by V (G) and edge set by E(G). A list assignment
L of a graph G is an assignment of lists of integers (colors) to the vertices of G. For
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an integer a, a a-assignment L of G is a list assignment such that |L(v)| = a for any
v ∈ V (G).

In 1996, Voigt considered the following problem: let G be a graph and L a list
assignment and assume that an arbitrary vertex v ∈ V (G) is precolored by a color
f ∈ L(v). Under which hypothesis is it always possible to complete this precoloring
to a proper list coloring ? This question leads to the concept of free choosability
introduced by Voigt [9].

Formally, for a graph G, integers a, b and a a-assignment L of G, an (L , b)-
coloring of G is a mapping c that associates to each vertex u a subset c(u) of L(u)
such that |c(u)| = b and c(u) ∩ c(v) = ∅ for any edge uv ∈ E(G). The graph G
is (a, b)-choosable if for any a-assignment L of G, there exists an (L , b)-coloring .
Moreover, G is free (a, b)-choosable if for any a-assignment L , any vertex v0 and
any set c0 ⊂ L(v0) of b colors, there exists an (L , b)-coloring c such that c(v0) = c0.
Remark that another equivalent way to view the problem is to consider that the list
assignment L(v) is of size a for any vertex except for v0 for which |L(v0)| = b. We
will use interchangeably both views.

As shown byVoigt [9], there are examples of graphsG that are (a, b)-choosable but
not free (a, b)-choosable. Some related recent results concern defective free choosabil-
ity of outerplanar graphs [7]. We investigate, in the next section, the free-choosability
of the first interesting case, namely the cycle. We derive a necessary and sufficient
condition for a cycle to be free (a, b)-choosable (Theorem 1). Then we use it to obtain
free (a, b)-choosability results of outerplanar graphs in Sect. 3. We end the paper with
some algorithmic issues in Sect. 4.

In order to get concise statements, we introduce the free-choice ratio of a graph,
in the same way that Alon, Tuza and Voigt [1] introduced the choice ratio (which is
equal to the so-called fractional chromatic number).

For any real x , let FCH(x) be the set of graphs G which are free (a, b)-choosable
for all a, b such that a

b ≥ x :

FCH(x) =
{
G | ∀ a

b
≥ x, G is free (a, b)-choosable

}
.

Moreover, we can define the free-choice ratio fchr(G) of a graph G by:

fchr(G) := inf
{a
b
| G is free (a, b)-choosable

}
.

Remark 1 Erdős, Rubin and Taylor have asked [4] the following question: If G is
(a, b)-choosable, and c

d > a
b , does it imply that G is (c, d)-choosable ? Gutner and

Tarsi have shown [6] that the answer is negative in general. If we consider the analogue
question for the free choosability, then Theorem 1 implies that it is true for the cycle.

The path Pn+1 of length n is the graph with vertex set V = {v0, v1, . . . , vn} and
edge set E = ⋃n−1

i=0 {vivi+1}. The cycle Cn of length n is the graph with vertex set
V = {v0, . . . , vn−1} and edge set E = ⋃n−1

i=0 {vivi+1(mod n)}. To simplify the notation,
for a list assignment L of Pn or Cn , we let L(i) denote L(vi ) and c(i) denote c(vi ).
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The notion of waterfall list assignment was introduced in [2] to obtain choosability
results on the weighted path and then used to prove the (5m, 2m)-choosability of
triangle-free induced subgraphs of the triangular lattice. We recall one of the results
from [2] that will be used in this note, with the function Even being defined for any
real x by: Even(x) is the smallest even integer p such that p ≥ x .

Proposition 1 ([2]) Let L be a list assignment of Pn+1 such that |L(0)| = |L(n)| = b,
and |L(i)| = a = 2b + e for all i ∈ {1, . . . , n − 1} (with e > 0).

If n ≥ Even
(2b
e

)
then Pn+1 is (L , b)-colorable.

As an example, let Pn+1 be the path of length n with a list assignment L such that
|L(0)| = |L(n)| = 4, and |L(i)| = 9 for all i ∈ {1, . . . , n − 1}. Then the previous
proposition asserts us that we can find an (L , 4)-coloring of Pn+1 whenever n ≥ 8.
In other words, if n ≥ 8, we can choose 4 colors on each vertex such that adjacent
vertices receive disjoint colors sets. On the other side, there are list assignments L
for which Pn+1 is not (L , 4)-colorable for n < 8. For instance, there is no (L , 4)-
coloring of the path P8 with list assignment L such that L(0) = L(7) = {1, 2, 3, 4}
and L(i) = {1, . . . , 9} for 1 ≤ i ≤ 6. But if |L(i)| = 11 for all i ∈ {1, . . . , n − 1},
then Pn+1 is (L , 4)-colorable whenever n ≥ 4.

2 Free Choosability of the Cycle

We begin with a negative result for the even-length cycle:

Lemma 1 For any integers a, b, p such that p ≥ 2, and a
b < 2+ 1

p , the cycle C2p is
not free (a, b)-choosable.

Proof We construct a counterexample for the free-choosability of C2p: let L be the
a-assignment of C2p such that

L(i) =

⎧
⎪⎪⎨

⎪⎪⎩

{1, . . . , a}, if i ∈ {0, 1};
{ i−1

2 a + 1, . . . , i−1
2 a + a}, if i ̸= 2p − 1 is odd;

{b + i−2
2 a + 1, . . . , b + ( i−2

2 + 1)a}, if i is even and i ̸= 0;
{1, . . . , b, 1+ (p − 1)a, . . . , 1+ pa − b − 1}, if i = 2p − 1.

If we choose c0 = {1, . . . , b} ⊂ L(0), we can check that there does not exist an
(L , b)-coloring of C2p such that c(0) = c0, so C2p is not free (a, b)-choosable. See
Fig. 1 for an illustration when p = 3, a = 9 and b = 4. ⊓+

Now, if ⌊x⌋ denotes the greatest integer less than or equal to the real x , we can
state:

Theorem 1 For the cycle Cn of length n,

Cn ∈ FCH
(
2+

⌊n
2

⌋−1)
.
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Fig. 1 The cycle C6, along with
a nine-assignment L for which
there is no (L , 4)-coloring c
such that c(v0) = {1, 2, 3, 4}

v0

{1, 2, . . . , 9}

v5{1, . . . , 4, 19, . . . , 23}

v4{14, . . . , 22}

v3

{10, . . . , 18}

v2 {5, . . . , 14}

v1 {1, . . . , 9}

Moreover, we have:

fchr(Cn) = 2+
⌊n
2

⌋−1
.

Proof Let a, b be two integers such that a/b ≥ 2+ ⌊ n
2 ⌋−1. Let L be a a-assignment

of Cn . Without loss of generality, we can suppose that v0 is the vertex chosen for the
free-choosability and c0 ⊂ L(v0) has b elements. It remains to construct an (L , b)-
coloring c of Cn such that c(v0) = c0. Hence we have to construct an (L ′, b)-coloring
c of Pn+1 such that L ′(0) = L ′(n) = L0 and for all i ∈ {1, ..., n − 1}, L ′(i) = L(vi ).
We have |L ′(0)| = |L ′(n)| = b and for all i ∈ {1, ..., n − 1}, |L ′(i)| = a. Since
a/b ≥ 2 + ⌊ n

2 ⌋−1 and e = a − 2b, we get e/b ≥ ⌊ n
2 ⌋−1 hence n ≥ Even(2b/e).

Using Proposition 1, we get:

Cn ∈ FCH
(
2+

⌊n
2

⌋−1
)
.

Hence, we have that fchr(Cn) ≤ 2 + ⌊ n
2 ⌋−1. Moreover, let us prove that M =

2+ ⌊ n
2 ⌋−1 is reached. For n odd, Voigt has proved [10] that the choice ratio chr(Cn)

of a cycle of odd length n is exactly M . Hence fchr(Cn) ≥ chr(Cn) = M , and the
result is proved. For n even, Lemma 1 asserts that Cn is not free (a, b)-choosable for
a
b < 2+ ⌊ n

2 ⌋−1. ⊓+
Remark 2 In particular, the previous theorem implies that if b, e, n are integers such
that n ≥ Even( 2be ), then the cycle Cn of length n is free (2b + e, b)-choosable.

Remark 3 As a comparison with the ordinary choice ratio, we can note that the free
choice ratio of an odd-length cycle is the same than its choice ratio whereas for the
even-length cycle C2p, we have chr(C2p) = 2 < fchr(C2p) = 2+ 1/p.

3 Free Choosability of Outerplanar Graphs

An outerplanar graph is a graph that has a crossing-free embedding in the plane such
that all vertices are on the same face (without loss of generality, it may be assumed
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that it is the unbounded one). Biconnected graphs have interesting decomposition
properties (see [3, p.124–125]): for a subgraph F of a graph G, an ear of F in G is a
nontrivial path P in G whose endpoints lie in F but whose internal vertices do not. An
ear decomposition is a sequence (G0,G1, . . . ,Gr ) of subgraphs of G such that G0 is
a cycle, Gi+1 = Gi ∪ Qi , where Qi is an ear of Gi in G, 0 ≤ i < r , and Gr = G. As
noticed in [3], the ear decomposition can start from any cycle of the graph.

Bi-connected outerplanar graphs have special ear decompositions:

Observation 2 Any 2-connected outerplanar graph G embedded on the plane admits
an ear decomposition (G0,G1, . . . ,Gr ) such that G0 is any face of G and the end-
points of each ear are adjacent vertices in G.

Proof Since G is 2-connected, any crossing-free embedding of G on the plane has an
ear decomposition (G0,G1, . . . ,Gr ) with G0 being any of its faces. We now show
that the ends xi , yi of each ear Qi = Gi+1 −Gi , 0 ≤ i < r are adjacent vertices in G.
By contradiction, assume that there exists j such that x j y j /∈ E(G). Then, since G is
2-connected, there is another path Q′ of length at least 2 between x j and y j that share
no edge with Q j . But any internal vertex of Q′ will not remain on the unbounded face
if the ear Q j is added to G j , contradicting the hypothesis that G is embedded on the
plane. ⊓+

An example of an ear decomposition of a 2-connected outerplanar graph is given
in Fig. 2.

In order to restrict our argument to biconnected graphs, we first show the following:

G0

G0

Fig. 2 A 2-connected outerplanar graph G (on the top) and an ear decomposition of G from G0 (on the
bottom)
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Lemma 2 Let a, b be integers and let G1,G2 be two free (a, b)-choosable graphs.
Then the graph obtained from G1 and G2 by identifying any vertex of G1 with any
vertex of G2 is free (a, b)-choosable.

Proof Let G be the graph obtained by identifying vertex x1 of G1 with vertex x2 of
G2, resulting in a vertex named x . Let x0 ∈ V (G) and let L be a list assignment of G
with |L(v)| = a for v ∈ V (G)\{x0} and |L(x0)| = b (i.e. x0 is the precolored vertex).
Assume without loss of generality, that x0 ∈ V (G1). Let Li , i = 1, 2, be the sublist
assignment of L restricted to vertices ofGi . AsG1,G2 are both free (a, b)-choosable,
there exists an (L1, b)-coloring c1 of G1 and an (L2, b)-coloring c2 of G2 such that
c2(x) = c1(x) (i.e. x is the precolored vertex of G2). The union of colorings c1 and
c2 is an (L , b)-coloring of G. ⊓+

We now show a free choosability result for graphs having restricted ear decompo-
sitions. A graph G is k-ear decomposable if it has an ear decomposition starting from
any cycle of length at least k and such that the length of each ear is at least k.

Theorem 3 If a graph G is k-ear decomposable, then

G ∈ FCH
(
2+

⌊k
2

⌋−1)
.

Proof Let a, b be integers such that a
b ≥ 2 + ⌊ k

2⌋−1. We show that G is free (a, b)-
choosable. Let L be a list assignment of G such that |L(v)| = a for v ̸= x0 and
|L(x0)| = b (x0 is the precolored vertex) and let C0 be any cycle of G on which x0
lies. As G is k-ear decomposable, it possesses an ear decomposition (G0, . . . ,Gr ),
with G0 = C0 and with ears of length at least k. First color the vertices of G0 thanks
to Theorem 1. Now, we show that the ears Qi = Gi+1−Gi , 0 ≤ i < r , can be colored
in sequence: by hypothesis, we have

a
b

≥ 2+
⌊k
2

⌋−1

⇔
⌊k
2

⌋
≥ b

a − 2b
. (1)

If k is even, then Inequality 1 becomes k
2 ≥ b

a−2b , hence k ≥ Even( 2b
a−2b ). If k is

odd, then Inequality 1 becomes k−1
2 ≥ b

a−2b , hence k ≥ Even( 2b
a−2b ). Therefore, in

both cases, the conditions of Proposition 1 are satisfied, hence the coloring of Gi can
be extended to Gi+1. ⊓+

Corollary 1 If G is an outerplanar graph of girth g, then

G ∈ FCH
(
2+

⌊g − 1
2

⌋−1)
.

Proof Let a, b be integers such that a
b ≥ 2+ ⌊ g−1

2 ⌋−1. We show that G is free (a, b)-
choosable. First, if G is not 2-connected, then it can be decomposed into blocks (that
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Fig. 3 A cactus of girth 5

are maximally 2-connected subgraphs or single edges). Trivially, a single edge K2 is
free (2b, b)-choosable and thus free (a, b)-choosable. By Lemma 2, if each block is
free (a, b)-choosable, then the whole graphG is also free (a, b)-choosable. Therefore,
we can suppose that G is 2-connected, and, since it is outerplanar, it possesses an ear
decomposition. Moreover, since G is of girth g and the endvertices of the ears are
adjacent vertices, the length of each ear is at least g − 1. Therefore, G is (g − 1)-ear
decomposable and, by Theorem 3, G is free (a, b)-choosable. ⊓+

Notice that for odd g, the above result is tight since ⌊ g−1
2 ⌋ = ⌊ g

2 ⌋. For even g,
however, we were not able to find an outerplanar graph of girth g that is not free
(a, b)-choosable for a

b = 2+ ⌊ g
2 ⌋−1. We propose the following conjecture:

Conjecture 1 If G is an outerplanar graph of girth g, then

G ∈ FCH
(
2+

⌊g
2

⌋−1)
.

As a first step, we now show that Conjecture 1 is true for cactus graphs, a subclass
of outerplanar graphs. A cactus is a graph in which every edge is part of at most one
cycle (see Fig. 3 for an example).

Proposition 2 For any cactus G of girth g, we have G ∈ FCH(2 + ⌊ g
2 ⌋−1) and

fchr(G) = (2+ ⌊ g
2 ⌋−1).

Proof LetG be a cactus of girth g and let a, b be integers such that ab ≥ 2+⌊ g
2 ⌋−1.We

show thatG is free (a, b)-choosable. SinceG is a cactus, each of its blocks B0, . . . , Br
is either a cycle (of length at least g) or a single edge, and they are connected in a
treelike structure. By virtue of Theorem 1, any cycle of length at least g is free (a, b)-
choosable and trivially, any edge is free (a, b)-choosable. Therefore, by virtue of
Lemma 2, G is free (a, b)-choosable. Moreover, since G contains a cycle of length g,
then by Theorem 1, fchr(G) ≥ (2+ ⌊ g

2 ⌋−1). ⊓+

Notice that Conjecture 1 is no longer true if we consider planar graphs instead of
outerplanar graphs, as the next result shows:

123

Author's personal copy



858 Graphs and Combinatorics (2016) 32:851–859

Fig. 4 A planar graph G along
with a five-assignment L (in
condensed notation) for which
G is not free (L , 2)-choosable

v1

12345 34567

12567
v0

12345

34567

12467

34567

12367

Proposition 3 There are planar graphs of girth 4 that are not in FCH( 52 ).

Proof The graph depicted on Fig. 4 is not free (5, 2)-choosable: a 5-assignment L for
which the graph is not free (L , 2)-colorable is given on the figure. If the vertex chosen
for the free choosability is v0 (the one of degree 4 on the top) and if c(v0) = {1, 2},
then it can be seen that anyway we color the other vertex v1 of degree 4, it will not be
possible to complete the coloring. Effectively, each of the three antipodal vertices of
v1 needs to have at least a color in common with those of v1 in order the last vertex of
each C4 be colored, which is impossible. ⊓+

Webelieve that there is no counterexample with smaller order than the one of Fig. 4.
Finding the smallest counterexamples for other values of the girth g could also have
some interest.

4 Algorithmic considerations

Let n ≥ 3 be an integer and let a, b be two integers such that a/b ≥ 2 + ⌊ n
2 ⌋−1. Let

L be a a-assignment of Cn .
As defined in [2], awaterfall list L of a path Pn+1 of length n is a list L such that for

all i, j ∈ {0, . . . , n} with |i − j | ≥ 2, we have L(i)∩ L( j) = ∅. Let m = |∪n
i=0 L(i)|

be the total number of colors of the color-list L .
The algorithm behind the proof of Proposition 1 consists in three steps: first, the

transformation of the list L into a waterfall list L ′ by renaming some colors; second,
the construction of the (L ′, b)-coloring by coloring vertices from 0 to n − 1, giving to
vertex i the first b-colors that are not used by the previous vertex; third, the backward
transformation to obtain an (L , b)-coloring from the (L ′, b)-coloring by coming back
to original colors and resolving color conflicts if any. It can be seen that the time
complexity of the first step is O(mn); that of the second one is O(a2n) and that of the
third one is O(max(a, b3)n). Therefore, the total running time for computing a free
(L , b)-coloring of the cycle Cn is O(max(m, a2, b3)n).
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