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For any polynomial f of F2n [x] we introduce the following characteristic of the 
distribution of its second order derivative, which extends the differential uniformity 
notion:

δ2(f) := max
α∈F

∗
2n ,α′∈F

∗
2n ,β∈F2n

α�=α′

�{x ∈ F2n | D2
α,α′f(x) = β}

where D2
α,α′f(x) := Dα′ (Dαf(x)) = f(x) + f(x + α) + f(x + α′) + f(x + α + α′) is 

the second order derivative. Our purpose is to prove a density theorem relative to 
this quantity, which is an analogue of a density theorem proved by Voloch for the 
differential uniformity.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

For any polynomial f ∈ Fq[x] where q = 2n, and for α ∈ F
∗
q , the derivative of f with respect to α is the 

polynomial Dαf(x) = f(x + α) + f(x). The differential uniformity δ(f) of f introduced by Nyberg in [6] is 
then defined by

δ(f) := max
(α,β)∈F∗

q×Fq

�{x ∈ Fq | Dαf(x) = β}.

To stand against differential cryptanalysis, one wants to have a small differential uniformity (ideally equal 
to 2). Voloch proved that most polynomials f of Fq[x] of degree m ≡ 0, 3 (mod 4) have a differential 
uniformity equal to m − 1 or m − 2 (Theorem 1 in [11]).
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When studying differential cryptanalysis, Lai introduced in [5] the notion of higher order derivatives. 
The higher order derivatives are defined recursively by Dα1,...,αi+1f = Dα1,...,αi

(Dαi+1f), and a new design 
principle is given in [5]: “For each small i, the nontrivial i-th derivatives of function should take on each 
possible value roughly uniform”. After considering the differential uniformity, it seems natural to investigate 
the number of solutions of the equation Dα1,α2f(x) = β, that is of the equation

f(x) + f(x + α1) + f(x + α2) + f(x + α1 + α2) = β

and thus to consider the second order differential uniformity of f over Fq:

δ2(f) := max
α∈F

∗
q ,α

′∈F
∗
q ,β∈Fq

α�=α′

�{x ∈ Fq | D2
α,α′f(x) = β}.

For example, the inversion mapping from Fq to itself which sends x to x−1 if x �= 0 and 0 to 0 (and which 
corresponds to the polynomial f(x) = xq−2) has a differential uniformity δ(f) = 2 for n odd and δ(f) = 4
for n even (see [6]). We will prove in Section 8 that it has a second order differential uniformity δ2(f) = 8
for any n � 6.

The purpose of the paper is to prove that, as Voloch proved it for the differential uniformity, most 
polynomials f have a maximal δ2(f). More precisely, we prove (Theorem 7.1) that: for a given integer 
m � 7 such that m ≡ 0 (mod 8) (respectively m ≡ 1, 2, 7 (mod 8)), and with δ0 = m − 4 (respectively 
δ0 = m − 5, m − 6, m − 3) we have

lim
n→∞

�{f ∈ F2n [x] | deg(f) = m, δ2(f) = δ0}
�{f ∈ F2n [x] | deg(f) = m} = 1.

We follow and generalize the ideas of Voloch in [11]. Let us present the strategy.

– In Section 2, we associate to any integer m an integer d depending on the congruence of m modulo 4 
(Definition 2.1). Then, if α and α′ are two distinct elements of F∗

q , we associate (Proposition 2.2) to 
any polynomial f ∈ Fq[x] of degree m a polynomial Lα,α′(f) (which will be sometimes denoted by g for 
simplicity) of degree less than or equal to d such that:

D2
α,α′f(x) = g

(
x(x + α)(x + α′)(x + α + α′)

)
.

– In Section 3, we determine the geometric and the arithmetic monodromy groups of Lα,α′(f) when this 
polynomial is Morse (Proposition 3.1). For α and α′ fixed, we give an upper bound depending only on 
m and q for the number of polynomials f of Fq[x] of degree at most m such that Lα,α′(f) is non-Morse 
(Proposition 3.2).

– Section 4 is devoted to the study of the monodromy groups of D2
α,α′f . In order to apply the Chebotarev’s 

density theorem (Theorem 5.1) we look for a condition of regularity, that is a condition for Fq to be 
algebraically closed in the Galois closure of the polynomial D2

α,α′f(x) (Proposition 4.6).
– In Section 5, we use the Chebotarev theorem to prove that (Proposition 5.2) for q sufficiently large and 

under the regularity hypothesis the polynomial D2
α,α′f(x) + β totally splits in Fq[x].

– In Section 6, we show that we can choose a finite set of couples (αi, α′
i) such that most polynomials 

f ∈ Fq[x] of degree m satisfy the above regularity condition (Proposition 6.1).
– Finally, Section 7 is devoted to the statement and the proof of the main theorem (Theorem 7.1).

To fix notation, throughout the whole paper we consider n a non-negative integer and q = 2n. We denote 
by Fq the finite field with q elements, by Fq[x] the ring of polynomials in one variable over Fq and by 
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Fq[x]m the Fq-vector space of polynomials of Fq[x] of degree at most m. We will often consider a polynomial 
f ∈ Fq[x] of degree m, an element β of Fq and distinct elements α and α′ in F∗

q .

2. The associated polynomial Lα,α′(f)

The derivative of a polynomial f ∈ Fq[x] along α ∈ F
∗
q is defined by

Dαf(x) = f(x) + f(x + α)

and its second derivative along (α, α′) ∈ F
2
q is defined by

D2
α,α′f(x) = Dα (Dα′f) (x) = f(x) + f(x + α) + f(x + α′) + f(x + α + α′).

Actually D2
α,α′f depends only on the F2-vector space generated by α and α′. If f ∈ Fq[x] is of odd degree 

m, then for any α ∈ F
∗
q the degree of Dαf is m − 1. On the other hand, if m is even then the degree of Dαf

is less than or equal to m − 2. Consequently, if α′ ∈ F
∗
q we obtain that the degree of D2

α,α′f is less than or 
equal to m −3 when m is odd, and less than or equal to m −4 otherwise. To any integer m � 7 we associate 
the following integer d = d(m) (we will often omit the dependance in m).

Definition 2.1. Let m be an integer greater or equal to 7. If m ≡ 0 (mod 4) we set d = m−4
4 , if m ≡ 1

(mod 4) we set d = m−5
4 , if m ≡ 2 (mod 4) we set d = m−6

4 and if m ≡ 3 (mod 4) we set d = m−3
4 .

We sum up the situation in the following table.

Table 1
Definition of d.
m (mod 4) degD2

α,α′f d

0 � m − 4 m−4
4

1 � m − 3 m−5
4

2 � m − 4 m−6
4

3 � m − 3 m−3
4

Proposition 2.2. Let α, α′ ∈ F
∗
q such that α �= α′ and let f ∈ Fq[x] be a polynomial of degree m. There exists 

a unique polynomial g ∈ Fq[x] of degree less than or equal to d such that

D2
α,α′f(x) = g

(
x(x + α)(x + α′)(x + α + α′)

)
.

Moreover, the map

Lα,α′ : Fq[x] −→ Fq[x]
f �−→ g

is linear and Lα,α′(Fq[x]m) = Fq[x]d.

Proof. Fix f a polynomial of degree m and α, α′ ∈ F
∗
q such that α �= α′. Let us first prove the existence 

of g. If D2
α,α′f is the zero polynomial then g = 0 is suitable. Suppose now that D2

α,α′f is non-zero and set 
c for its leading coefficient and Λk the set of its roots of multiplicity k in an algebraic closure Fq of Fq. As 
x �→ x + α and x �→ x + α′ are two involutions of each set Λk, there exists Λ′

k ⊂ Λk such that:

D2
α,α′f(x) = c

∏
k�1

∏
′

(x + λ)k(x + λ + α)k(x + λ + α′)k(x + λ + α + α′)k.

λ∈Λk
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Hence

D2
α,α′f(x) = c

∏
k�1

∏
λ∈Λ′

k

(
x4+(α2+α′ 2+αα′)x2+(α2α′+αα′ 2)x+λ4+(α2+α′ 2+αα′)λ2+(α2α′+αα′ 2)λ

)k

= c
∏
k�1

∏
λ∈Λ′

k

(
x(x+α)(x+α′)(x+α+α′)+λ(λ+α)(λ+α′)(λ+α+α′)

)k.

Then the polynomial g defined by

g(x) = c
∏
k�1

∏
λ∈Λ′

k

(x + λ(λ + α)(λ + α′)(λ + α + α′))k

satisfies g (x(x + α)(x + α′)(x + α + α′)) = D2
α,α′f(x) and has degree at most d. To prove that g ∈ Fq[x], 

one can quote linear algebra arguments. Actually, solving g(x(x + α)(x + α′)(x + α + α′)) = D2
α,α′f(x)

amounts to solving an affine equation with coefficients in Fq and we have already proven that this equation 
admits solutions with coefficients in Fq. As the existence of solutions of such affine equations does not depend 
of the extension field considered, we have solutions with coefficients in Fq. The uniqueness is a consequence 
of the linearity of composition. To prove the surjectivity of Lα,α′ , we will determine the dimension of 
its kernel and apply the rank-nullity theorem. Note that f ∈ KerLα,α′ if and only if D2

α,α′f = 0. But 
D2

α,α′f = DαDα′f , so KerLα,α′ = D−1
α′ (KerDα). Classical linear algebra properties give the equality 

dim KerLα,α′ = dim (ImDα′ ∩ KerDα) + dim Ker (Dα′). We conclude separating cases according to the 
congruence of m modulo 4 and using Lemma 2.3. �

For simplicity of notation we continue to write Dα for the restriction of Dα to the subspace of polynomials 
of degree less than or equal to m. We also use the notations 	a
 for the greatest integer less than or equal 
to a and �a� for the least integer greater than or equal to a.

Lemma 2.3. Let α and α′ be two distinct elements in F∗
q. We have:

(i) KerDα = {h (x(x + α)) | deg(h) � 	m/2
}.
(ii) ImDα = {h (x(x + α)) | deg(h) � �m/2� − 1}.
(iii) If m is odd, then

ImDα′ ∩ KerDα = {h (x(x + α)(x + α′)(x + α + α′)) | deg(h) � m/4}.

(iv) If m is even, then

ImDα′ ∩ KerDα = {h (x(x + α)(x + α′)(x + α + α′)) | deg(h) � (m− 2)/4}.

Proof. If Dαf = 0 then f(x) = f(x +α). The map x �→ x +α induces a bijection onto the sets of the roots of 
f of same multiplicity. Using the method of the proof of Proposition 2.2 we prove (i). We deduce (ii) proving 
an easy inclusion and the rank-nullity theorem. To prove (iii), use that if m is odd then ImDα′ = KerDα′

by (i) and (ii). Suppose that f ∈ KerDα′ ∩KerDα. If x0 is a root of f of multiplicity k, so are x0+α, x0+α′

and x0 + α + α′, and we can use the method of the proof of Proposition 2.2. We prove (iv) using the same 
method and noticing that the intersection ImDα′ ∩KerDα consists of the polynomials of KerDα′ ∩KerDα

of degree less than or equal to m − 2. �



Y. Aubry, F. Herbaut / Journal of Pure and Applied Algebra 222 (2018) 1095–1110 1099
3. Monodromy groups and Morse polynomials

Let g ∈ Fq[x] be a polynomial of degree d. We consider the field extension Fq(u)/Fq(t) corresponding to 
the polynomial g where t is transcendental over Fq i.e. with u such that g(u) −t = 0. Denote by F the Galois 
closure of Fq(u)/Fq(t), i.e. F is the splitting field of g(x) − t over Fq(t). The Galois group Gal(F/Fq(t)) is 
called the arithmetic monodromy group of g. Let FF

q be the algebraic closure of Fq in F . Then the Galois 
group Gal(F/FF

q (t)) is a normal subgroup of Gal(F/Fq(t)) called the geometric monodromy group of g.
The polynomial g is said to be Morse (see [9], p. 39) if g, viewed as a ramified covering g : P

1 −→ P
1 of 

degree d, is such that above each affine branch point there is only one ramification point and the ramification 
index of such points is 2. In even characteristic, this notion has to be precised: following Geyer in the 
Appendix of [4], the polynomial g is said to be Morse if the three following conditions hold:

a) g′(τ) = 0 implies that g[2](τ) �= 0 where g[2] is the second Hasse–Schmidt derivative,
b) g′(τ) = g′(η) = 0 and g(τ) = g(η) imply τ = η,
c) the degree of g is not divisible by the characteristic of Fq.

For Morse polynomials g, the general form of the Hilbert theorem given by Serre in Theorem 4.4.5 of 
[9] adapted to the even characteristic in Proposition 4.2 in the Appendix by Geyer of [4] implies that the 
geometric monodromy group Gal(F/FF

q (t)) is the symmetric group Sd. Moreover, it is a subgroup of the 
arithmetic monodromy group Gal(F/Fq(t)) and this last group is also contained in Sd, hence they coincide.

Now let us return to our situation. Let α, α′ be two distinct elements of F∗
q . Let m be an integer and 

d = d(m) defined in Table 1. Let f ∈ Fq[x] be a polynomial of degree m. Let us consider the polynomial 
g := Lα,α′(f) ∈ Fq[x] of degree � d such that

g
(
x(x + α)(x + α′)(x + α + α′)

)
= D2

α,α′f(x)

whose existence follows from Proposition 2.2.

Proposition 3.1. If f is a polynomial of degree m such that the polynomial Lα,α′(f) is of degree exactly d
and is Morse then the geometric monodromy group, and then also the arithmetic monodromy group of the 
polynomial Lα,α′(f) is the symmetric group Sd. Hence the extension F/Fq(t) is regular i.e. FF

q = Fq.

Proof. By the previous paragraph we have that the geometric and the arithmetic monodromy groups coin-
cide, which gives the regularity property. �

Note that if Lα,α′(f) is of degree exactly d and is Morse then Condition (c) says that d must be odd. 
This is equivalent to say that m ≡ 0, 1, 2 or 7 (mod 8).

Now we give a lower bound for the number of polynomials f such that Lα,α′(f) is Morse.

Proposition 3.2. Let m � 7 such that m ≡ 0, 1, 2 or 7 (mod 8) and d as defined in Definition 2.1. There 
exists an integer d̃ > 0 depending only on d such that for any couple (α, α′) of distinct elements of F∗

q the 
number of polynomials f of Fq[x] of degree at most m such that Lα,α′(f) is non-Morse is bounded by d̃qm.

Proof. The loci of non-Morse polynomials g =
∑d

j=0 bd−jx
j of Fq[x] of degree d is a Zariski-closed subset 

of the (d + 1)-dimensional affine space with coordinates b0, . . . , bd given by Geyer in Proposition 4.3 of 
the Appendix of [4]. Indeed, the above condition (a) means that g′ and g[2] have no common root, i.e. 
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the resultant R(b0, . . . , bd) of the polynomials g′ and g[2] is non-zero. Condition (b) above means that the 
product

Π =
∏
i�=j

(g(ηi) − g(ηj))

where ηi are the roots of g does not vanish. By the theorem on symmetric functions, Π = Π(b0, . . . , bd) is a 
polynomial in the coefficients of g.

Finally the polynomials f =
∑m

j=0 ajx
m−j such that Lα,α′(f) is non-Morse are those such that

R ◦ Lα,α′(a0, . . . , am) = 0 or Π ◦ Lα,α′(a0, . . . , am) = 0.

The polynomials R and Π are proven to be non-zero in Geyer’s Appendix. By Proposition 2.2 we know 
that Lα,α′ is surjective. Hence R ◦ Lα,α′ and Π ◦ Lα,α′ are non-zero, and then define hypersurfaces in 
A

m+1(Fq). Their numbers of rational points are bounded respectively by CRq
m and CΠq

m where CR and 
CΠ are respectively the degree of R ◦ Lα,α′ and Π ◦ Lα,α′ (see for example Section 5 of Chapter 1 in [1]). 
Since Lα,α′ is linear, one can bound CR and CΠ by the degree dR of R and the degree dΠ of Π and then 
one can bound CR + CΠ by d̃ = dR + dΠ, which does not depend on the choice of (α, α′). �
4. Geometric and arithmetic monodromy groups of D2

α,α′f

In the whole section we consider a polynomial f of degree m with m ≡ 0, 1, 2 or 7 (mod 8) and two 
distinct elements α, α′ of F∗

q such that the polynomial g := Lα,α′(f) is of degree exactly d (given by Table 1) 
and is Morse. We denote by u0, . . . , ud−1 the roots of Lα,α′(f)(u) + t, and for i = 0, . . . , d − 1 we denote by 
xi a solution of the equation

x(x + α)(x + α′)(x + α + α′) = ui.

Hence D2
α,α′f(xi) = t. For convenience, we will note

Sγ(X) = X(X + γ)

for γ ∈ Fq and

Tγ1,γ2(X) = X(X + γ1)(X + γ2)(X + γ1 + γ2)

for (γ1, γ2) ∈ F
2
q. We will use the following equalities (easy to check):

Sγ1γ2(xi(xi + γ3)) = ui and Sγ1γ2γ3(γ3xi(xi + γ3)) = γ2
3ui (1)

where {γ1, γ2, γ3} = {α, α′, α + α′}.
We consider, for i ∈ {0, . . . , d − 1}, the extensions F (xi)/F and Ω their compositum (where the field 

F is defined in the previous section). Then Ω is the splitting field of D2
α,α′f(x) + t and Gal(Ω/Fq(t)) is 

the arithmetic monodromy group of D2
α,α′f whereas Gal(Ω/FΩ

q (t)) is the geometric monodromy group of 
D2

α,α′f , where we denote by FΩ
q the algebraic closure of Fq in Ω. The figure below sums up the situation 

whose details will be explained in this section.
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Fq(t)

F = Fq(u0, . . . , ud−1)

F (x0)

F (x0, x1)

...

Ω = F (x0, . . . , xd−1)

FF
Ω
q

FF
Ω
q (x0)

FF
Ω
q (x0, x1)

...

= FF
Ω
q (x0, . . . , xd−1)

Z/2Z× Z/2Z

Z/2Z× Z/2Z

Sd

Z/2Z× Z/2Z

Z/2Z× Z/2Z

The following lemma gives conditions for two Artin–Schreier extensions to be equal.

Lemma 4.1. Let k(y1) and k(y2) be two Artin–Schreier extensions of a field k of characteristic 2. Suppose 
that y2

i + γiyi = wi for i ∈ {1, 2} with γi and wi in k∗. Then k(y1) = k(y2) if and only if γ2y1 + γ1y2 ∈ k.

Proof. Suppose that k(y1) = k(y2). Consequently y2 ∈ k(y1) and there exists (a, b) ∈ k2 such that y2 =
a + by1. Consider the element τ of Gal (k(y1)/k) distinct from the identity. It maps y1 to y1 + γ1. We have 
τ(y2) = a +by1+bγ1 i.e. τ(y2) = y2+bγ1. But τ(y2) is a root of y2+γ2y = w2, so τ(y2) = y2 or τ(y2) = y2+γ2. 
In the first case τ would be the identity, a contradiction. Hence τ(y2) = y2 +γ2 and then y2 +γ2 = y2 + bγ1, 
which implies that γ2 = bγ1. So we get γ2y1 + γ1y2 = bγ1y1 + γ1y2 = bγ1y1 + aγ1 + bγ1y1 = aγ1 ∈ k where 
we used that y2 = a + by1. The converse is straightforward. �

Now we prove that a linear combination of the roots uj with no pole actually involves all of them.

Lemma 4.2. Let κ be Fq or FΩ
q . For each place ℘ of κ(u0, . . . , ud−1) above the place ∞ of κ(t) and 

each j ∈ {0, . . . , d − 1} we have that uj has a simple pole at ℘. Moreover, let J ⊂ {0, . . . , d − 1} and 
let c0, . . . , cd−1 ∈ F

∗
q . If J is neither empty nor the whole set then 

∑
j∈J cjuj has a pole at a place of 

κ(u0, . . . , ud−1) lying over the infinite place ∞ of κ(t).

Proof. Fix ℘ a place above ∞ and ui a root of g(u) −t. We have v℘(g(ui)) = v℘(t) and v℘(t) = e (℘|∞) v∞(t)
where e (℘|∞) is the ramification index of ℘ over ∞. By [9], p. 41, we have that the inertia group at 
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infinity is generated by a d-cycle, so we have e (℘|∞) = d and then v℘(t) = −d. Now v℘(g(ui)) =
v℘

(
b0u

d
i + b1u

d−1
i + · · · + bd

)
so using the properties of the valuation of a sum we deduce that v℘(ui) = −1.

The proof of the second part of the lemma is inspired by [11]. To obtain a contradiction, suppose that 
J ⊂ {0, . . . , d − 1} and that j0 ∈ J whereas j1 ∈ {0, . . . , d − 1} \J . Suppose also that 

∑
j∈J cjuj has no pole 

in places above ∞. Then it has no pole at all, and so it is constant, i.e. it belongs to κ. By Proposition 3.1
we have that Gal (κ(u0, . . . , ud−1)/κ(t)) is Sd. Let us choose the automorphism θ corresponding to the 
transposition (j0j1) and let us apply θ to 

∑
j∈J cjuj . We obtain 

∑
j∈J\j0 cjuj + cj0uj0 =

∑
j∈J\j0 cjuj +

cj0uj1 . We deduce uj0 = uj1 , a contradiction. �
The following lemma, used with Lemma 4.1, will enable us to distinguish different Artin–Schreier subex-

tensions of Ω.

Lemma 4.3. Let F̃ be F or FF
Ω
q . Let J be a non-empty strict subset of {0, . . . , d − 1} and for all j ∈ J

consider any γj ∈ {α, α′, α + α′}. Then ∑
j∈J

γjxj(xj + γj) /∈ F̃ .

Proof. In order to obtain a contradiction suppose that 
∑

j∈J γjxj(xj + γj) ∈ F̃ . Lemma 4.2 implies that ∑
j∈J γ2

j uj has a pole at a place ℘ of F̃ above ∞. Moreover this pole is simple as for all j ∈ {1, . . . , d −1} the 
root uj has a simple pole by Lemma 4.2. Now consider A =

∑
j∈J γjxj(xj+γj) and B =

∑
j∈J γjxj(xj+γj) +

αα′(α + α′). If A (and thus B) belongs to F̃ , one can consider the valuation of A and B at ℘. As

A.B = Sαα′(α+α′)

⎛⎝∑
j∈J

γjxj(xj + γj)

⎞⎠ =
∑
j∈J

γ2
j uj ,

it follows that either A or B has a pole. Since A and B differ by a constant, it follows that both of them have 
a pole and the order of multiplicity is the same. Thus we obtain 2v℘(A) = −1 which is a contradiction. �

The following lemma establishes the base case of the induction proof of Proposition 4.5.

Lemma 4.4. Let F̃ be F or FF
Ω
q . Let i ∈ {0, . . . , d − 1}. The field F̃ (xi) is a degree 4 extension of F̃ and 

its Galois group is Z/2Z × Z/2Z. The three subextensions of degree 2 are the subextensions F̃ (xi(xi + γ))
where γ ∈ {α, α′, α + α′}. The following diagram sums up the situation:

F̃

F̃ (xi(xi + α + α′))

F̃ (xi)

F̃ (xi(xi + α′))F̃ (xi(xi + α))

2
2

2

22
2

Proof. First notice that xi /∈ F̃ . Otherwise, one would obtain a contradiction considering the equality 
xi(xi +α)(xi +α′)(xi +α+α′) = ui, the valuation of xi at a place above ∞, and the valuation of ui at this 
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place which is −1. Now suppose that [F̃ (xi) : F̃ ] = 2. We would have a degree 2 factor of the polynomial 
X(X +α)(X +α′)(X +α+α′) +ui and then an element xi(xi + γ) with γ ∈ {α, α′, α+α′} would be in F̃ , 
contradicting Lemma 4.3. So [F̃ (xi) : F̃ ] = 4, and Tα,α′(X) + ui is the minimal polynomial of xi over F̃ . 
It enables us to define, for any γ ∈ {α, α′, α + α′}, an element τγ of Gal

(
F̃ (xi)/F̃

)
by τγ(xi) = xi + γ. 

We thus have Gal
(
F̃ (xi)/F̃

)
= {id, τα, τα′ , τα+α′} and thus Gal

(
F̃ (xi)/F̃

)
� Z/2Z × Z/2Z. There are 

three subextensions of degree 2, namely the subextensions F̃ (xi(xi + γ)) where γ ∈ {α, α′, α + α′}. Their 
stabilizers are respectively the index 2 subgroups {id, τγ}. �

The previous lemmas enable us to determine in the following two propositions the Galois groups of 
F̃ (x0, . . . , xd−2) and Ω = F̃ (x0, . . . , xd−1) over F̃ where F̃ is equal to F or FF

Ω
q .

Proposition 4.5. Let F̃ be F or FF
Ω
q and let r be an integer such that 0 � r � d − 2. Then:

(i) The field F̃ (x0, . . . , xr) is an extension of degree 4r+1 of F̃ .
(ii) The Galois group Gal

(
F̃ (x0, . . . , xr)/F̃

)
is (Z/2Z× Z/2Z)r+1. It is generated by the automorphisms 

τi,γ for i ∈ {0, . . . , r} and γ ∈ {α, α′, α+α′} (where τi,γ maps xi to xi + γ and leaves xj invariant for 
j �= i).

(iii) There are 4r+1 − 1 quadratic extensions of F̃ contained in F̃ (x0, . . . , xr). These extensions are the 

fields F̃
(∑

j∈J γjxj(xj + γj)
)

with non-empty J ⊂ {0, . . . , r} and γj ∈ {α, α′, α + α′} for all j ∈ J .

Proof. We proceed by induction. The case r = 0 follows from Lemma 4.4. Assuming that the proposition 
holds for r − 1, with 0 < r � d − 2, we will prove it for r. We consider the extension F̃ (x0, . . . , xr−1)(xr)
of F̃ (x0, . . . , xr−1). We first prove that the degree of this extension is 4 and that the minimal polynomial 
of xr is Tα,α′(X) + ur. Suppose it is false: either xr ∈ F̃ (x0, . . . , xr−1) or Tα,α′(X) + ur (which is equal to 
(x + xr)(x + xr +α)(x + xr +α′)(x + xr +α+α′)) has a degree 2 factor in F̃ (x0, . . . , xr−1)[X], hence there 
exists γ ∈ {α, α′, α+α′} such that xr(xr + γ) ∈ F̃ (x0, . . . , xr−1). In both cases we would have an extension 
F̃ (xr(xr + γ)) of degree 2 of F̃ contained in F̃ (x0, . . . , xr−1). Use the induction hypothesis: it is one of 
the subextensions F̃

(∑
j∈J γjxj(xj + γj)

)
with a non-empty subset J ⊂ {0, . . . , r − 1}. By Lemma 4.1

and identities (1) it follows that 
∑

j∈J γjxj(xj + γj) + γxr(xr + γ) ∈ F̃ , a contradiction with Lemma 4.3. 
We conclude that the extension F̃ (x0, . . . , xr)/F̃ (x0, . . . , xr−1) has degree 4 and then F̃ (x0, . . . , xr)/F̃ has 
degree 4r+1.

But we can define 4r+1 different F̃ -automorphisms of F̃ (x0, . . . , xr) by sending for any i ∈ {0, . . . , r} the 
element xi to xi + γi with γi ∈ {0, α, α′, α + α′}. Since all these automorphisms (apart from the identity) 
have order 2, the Galois group Gal

(
F̃ (x0, . . . , xr)/F̃

)
is isomorphic to (Z/2Z× Z/2Z)r+1.

For any non-empty subset J ⊂ {0, . . . , r} and for any choice of a family (γj)j∈J of elements of {α, α′,

α + α′}, we know that 
∑

j∈J γjxj(xj + γj) is a root of Sαα′(α+α′)(X) +
∑

j∈J γ2
j uj . By Lemma 4.3 we also 

know that this sum does not belong to F̃ , so the extensions F̃
(∑

j∈J γjxj(xj + γj)
)

are quadratic.

We claim that we obtain this way 4r+1 − 1 different quadratic extensions between F̃ and F̃ (x0, . . . , xr). 
To prove our claim, we consider two families (γj)j∈J and (γ′

j)j∈J ′ of elements of {α, α′, α + α′} where J
and J ′ are two subsets of {0, . . . , r}. We notice that if j ∈ J ∩ J ′ is such that γj �= γ′

j then γjxj(xj + γj) +
γ′
jxj(xj + γ′

j) = γ′′
j xj(xj + γ′′

j ) where {γj , γ′
j , γ

′′
j } = {α, α′, α + α′}. Then if F̃

(∑
j∈J γjxj(xj + γj)

)
=

F̃
(∑

′ γjxj(xj + γj)
)

we obtain by Lemma 4.1 a sum
j∈J
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∑
j∈J\J ′

γjxj(xj + γj) +
∑

j∈J ′\J
γ′
jxj(xj + γ′

j) +
∑

j∈J∩J′
γj �=γ′

j

γ′′
j xj(xj + γ′′

j )

which is in F̃ . By Lemma 4.3, it implies J = J ′ and γj = γ′
j for all j ∈ J .

Finally, we claim that these 4r+1 − 1 quadratic extensions are the only ones. Indeed, the quadratic 
extensions are in correspondence with the subgroups of (Z/2Z× Z/2Z)r+1 of index 2. These subgroups are 
the hyperplanes of (Z/2Z)2r+2 and there are 4r+1 − 1 such hyperplanes. �

Recall that in this section the polynomial g = Lα,α′(f) =
∑d

i=0 bd−ix
i is supposed to be Morse and to 

have degree exactly d. We can now establish the main result of this section: we give a sufficient condition 
on b1/b0 for Ω/Fq(t) to be regular, which is a necessary condition to apply the Chebotarev theorem.

Proposition 4.6. If there exists x ∈ Fq such that

b1
b0

= x(x + α)(x + α′)(x + α + α′)

then we have:

(i) F (x0, . . . , xd−2, xd−1) = F (x0, . . . , xd−2).
(ii) Gal(Ω/F ) � Gal(Ω/FF

Ω
q ) �

(
Z/2Z × Z/2Z

)d−1.
(iii) The Galois group Gal(Ω/Fq(t)) is an extension of Sd by 

(
Z/2Z × Z/2Z

)d−1.
(iv) Ω/Fq(t) is a regular extension i.e. FΩ

q = Fq.

Proof. Suppose that there exists x ∈ Fq such that b1/b0 = Tα,α′(x). We have b1
b0

=
∑d−1

i=0 ui =∑d−1
i=0 Tα,α′(xi) and then by linearity we deduce that Tα,α′(xd−1 + x +

∑d−2
i=0 xi) = 0. It implies that 

xd−1 + x +
∑d−2

i=0 xi ∈ {0, α, α′, α + α′} and thus xd−1 ∈ F (x0, . . . , xd−2) which proves the point (i). Using 
(i) and Proposition 4.5 we obtain the point (ii). Now point (ii) with Proposition 3.1 and Galois theory 
give point (iii). To obtain point (iv), we use the multiplicativity of the degrees in fields extensions and we 
write [Ω : F ] = [Ω : FF

Ω
q ] × [FF

Ω
q : F ]. Points (i) and (ii) yield [FF

Ω
q : F ] = 1 and then the extension 

Ω/F is regular. But Proposition 3.1 implies that the extension F/Fq(t) is regular. Then we obtain that the 
extension Ω/Fq(t) is regular. �
5. Application of Chebotarev density theorem

The Chebotarev density theorem describes the proportion of places splitting in a given way in Galois 
extensions of global fields (see [7], p. 125). In [2], P. Fouque and M. Tibouchi made the following version of 
Chebotarev theorem explicit. They deduced it from the Proposition 4.6.8 in [3].

Theorem 5.1. (Chebotarev) Let K be an extension of Fq(t) of finite degree dK and L a Galois extension of 
K of finite degree dL/K . Assume Fq is algebraically closed in L, and fix some subset S of Gal(L/K) stable 
under conjugation. Let s = �S and let N(S) be the number of places v of K of degree 1, unramified in L, 
such that the Artin symbol 

(L/K
v

)
(defined up to conjugation) is in S. Then∣∣∣∣N(S) − s

dL/K
q

∣∣∣∣ � 2s
dL/K

(
(dL/K + gL)q1/2 + dL/K(2gK + 1)q1/4 + gL + dKdL/K

)
where gK and gL are the genera of the function fields K and L.
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In this work, we are interested in places of K = Fq(t) which split completely in L = Ω. Indeed, if a place 
of degree one (t − β) with β ∈ Fq totally splits in Ω, then the polynomial D2

α,α′f(x) − β totally splits in 
Fq[x]. These places correspond to places v of K which are unramified in Ω and for which the Artin symbol (Ω/Fq(t)

v

)
is equal to (id), the conjugacy class of Gal(Ω/Fq(t)) consisting of the identity element. Hence 

the previous theorem can be used to prove the following proposition which will be the main tool to prove 
Theorem 7.1.

Proposition 5.2. Let m � 7 be an integer and d as defined in Definition 2.1. There exists an integer N
depending only on d such that for all n � N , for all f ∈ Fq[x] (with q = 2n) of degree less or equal to m, 
and for all couple (α, α′) of distinct elements of F∗

q such that the extension Ω/Fq(t) is regular there exists 
β ∈ Fq such that the polynomial D2

α,α′f(x) + β splits in Fq[x] with no repeated factors.

Proof. Since the extension Ω/Fq(t) is regular, by the above Chebotarev theorem the number N(S) of places 
v of Fq(t) of degree 1, unramified in Ω, such that 

(Ω/Fq(t)
v

)
= (id) satisfies

N(S) � q

dL/K
− 2

(
(1 + gL

dL/K
)q1/2 + q1/4 + 1 + gL

dL/K

)
.

From the point (iii) of Proposition 4.6 we know that dL/K = d!4d−1 or dL/K = d!4d. Moreover, one can 
obtain an upper bound on gL depending only on d using induction and Castelnuovo’s inequality as stated 
in Theorem 3.11.3 of [10]. Then if q (or n since q = 2n) is sufficiently large, we will have N(S) � 1, which 
concludes the proof. �
6. A class of good polynomials

The last proposition applies when the Galois closure of D2
α,α′f−t is regular. By Proposition 4.6 this is the 

case when the quotient of the first coefficients of Lα,α′(f) can be written in the form x(x +α)(x +α′)(x +α+α′)
with x ∈ Fq. Our strategy is now to choose a well fitted finite family (αi, α′

i)i∈{1,...,k} such that we can apply 
Proposition 5.2 with at least one couple (αi, α′

i) for most of polynomials of degree m.

Proposition 6.1. Let ε > 0. There exist k ∈ N
∗ and N ∈ N

∗ such that for all n � N there exist k couples 
(α1, α′

1), . . . , (αk, α′
k) of distinct elements of F∗

q such that there exist at least (1 −ε)qm(q−1) −qm polynomials 
f ∈ Fq[x] of degree m such that:

– for all i ∈ {1, . . . , k} the polynomial Lαi,α′
i
(f) = b0x

d + b1x
d−1 + · · · + bd has degree d and

– for at least one of the couples (αi, α′
i), the equation

b1
b0

= x(x + αi)(x + α′
i)(x + αi + α′

i)

has a solution in Fq.

Proof. Let f =
∑m

j=0 ajx
m−j be a polynomial of degree m. First we notice that for any distinct elements α

and α′ of F∗
q the polynomial Lα,α′(f) is of degree d (with d given by Table 1) if and only if aj1 �= 0, where 

j1 ∈ {0, 1, 2, 3} is given by Lemma 6.2. In this case, the quotient b1/b0 is well defined. By abuse of notation, we 
will write b1b0 (Lα,α′(f)) for this quotient. By linearity of Lα,α′ we have b1/b0 (Lα,α′(λf)) = b1/b0 (Lα,α′(f))
for any λ ∈ F

∗
q . So in order to count the polynomials f satisfying the conditions of the proposition we can 

restrict ourselves to those whose coefficient aj1 is 1, and then multiply by q−1 in our count. We will denote 
by Pj1 the set of polynomials f ∈ Fq[x] of degree m such that aj1 = 1 and we will identify Pj1 with Fm

q .
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Let ε > 0. Consider k such that (3/4)k < ε, and N = 2k. For n � N , identify F2n with Fn
2 and fix a 

basis. Consider k couples (α1, α′
1), . . . , (αk, α′

k) of distinct elements of F∗
q such that for any i ∈ {1, . . . , k} the 

subspace ImTαi,α′
i

has for equation (ξ2i−1 = ξ2i = 0) in the fixed basis of Fn
2 (recall that Tα,α′ is defined in 

Section 4 by Tα,α′(x) = x(x +α)(x +α′)(x +α+α′)). The existence of these couples is given by Lemma 6.3. 
For any i ∈ {1, . . . , k} we consider the map ψi : Pj1 → Fq defined by ψi(f) = b1/b0

(
Lαi,α′

i
(f)

)
. Lemma 6.2

gives the existence of an integer j2 (which depends only on the congruence of m) and the existence of 
coefficients ci,j and di in Fq such that

ψi(f) = aj2 + di +
∑

j∈{0,...,m}\{j1,j2}
ci,jaj .

Now, for i ∈ {1, . . . , k} the set of (a0, . . . , aj1−1, aj1+1, . . . , am) ∈ F
m
2n corresponding to elements of 

ψ−1
i

(
ImTαi,α′

i

)
is an affine space over F2 which is the intersection of the affine hyperplanes given by the 

affine equations (aj2)2i−1 +
∑

j /∈{j1,j2}(ci,jaj)2i−1 = (di)2i−1 and (aj2)2i +
∑

j /∈{j1,j2}(ci,jaj)2i = (di)2i. The 
2k linear forms defined by the left-hand sides of these equations are linearly independent, so a change of 
basis of the F2-vector space Fnm

2 gives the following systems of equations of ψ−1
i

(
ImTαi,α′

i

)
: ζ2i−1 = μi and 

ζ2i = νi where (μi)i∈{1,...,k} and (νi)i∈{1,...,k} are elements of Fk
2 . To count the elements ζ ∈ F

nm
2 such that 

ζ corresponds to an element of ∪k
i=1ψ

−1
i

(
ImTαi,α′

i

)
one can determine the cardinal of the complementary. 

For each i ∈ {1, . . . , k} there are three ways to choose the couple of components (ζ2i−1, ζ2i) different from 
(μi, νi), and 2mn−2k ways to choose the other components.

We find # ∪k
i=1 ψ−1

i

(
ImTαi,α′

i

)
= 2mn − 3k2mn−2k = qm

(
1 − (3/4)k

)
. Finally, we have to multiply by 

q− 1 in order to take into account the coefficient aj1, and to remove the qm polynomials of degree less than 
m. (Note that in the case where m ≡ 7 mod (8) we have already removed these polynomials as we have 
supposed aj1 �= 0 and in this case j1 = 0.) �
Lemma 6.2. Let f =

∑m
j=0 ajx

m−j be a polynomial of Fq[x] of degree m with m ≡ 0, 1, 2 or 7 (mod 8). 
For α, α′ ∈ F

∗
q we set Lα,α′(f) =

∑d
j=0 bjx

d−j. We have b0 = αα′(α + α′)ai where i ∈ {0, 1, 2, 3} satisfies 
i ≡ m + 1 mod 4. Moreover the following table gives the quotient b1/b0 as a function of the coefficients of 
f depending on the congruence of m modulo 16.

m (16) b1/b0

0
(
(α2α′ + α′ 2α)a2 + (α2 + αα′ + α′ 2)a3 + a5

)
a−1
1

1
(
(α2α′ + α′ 2α)a3 + (α2 + αα′ + α′ 2)a4 + a6

)
a−1
2

2
(
(α2α′ + α′ 2α)a4 + (α2 + αα′ + α′ 2)a5 + a7

)
a−1
3

7
(
(α2α′ + α′ 2α)a1 + (α2 + αα′ + α′ 2)a2 + a4

)
a−1
0 + α4 + α2α′ 2 + α′ 4

8
(
(α2α′ + α′ 2α)a2 + (α2 + αα′ + α′ 2)a3 + a5

)
a−1
1 + α4 + α2α′ 2 + α′ 4

9
(∑6

i=0 αiα′ 6−ia0 + (α2α′ + α′ 2α)a3 + (α2 + αα′ + α′ 2)a4 + a6
)
a−1
2 + α4 + α2α′ 2 + α′ 4

10
(
a0

∑6
i=1 αiα′ 7−i + a1

∑6
i=0 αiα′ 6−i + (α2α′ + α′ 2α)a4 + (α2 + αα′ + α′ 2)a5 + a7

)
a−1
3 + α4 + α2α′ 2 + α′ 4

15
(
(α2α′ + α′ 2α)a1 + (α2 + αα′ + α′ 2)a2 + a4

)
a−1
0

Proof. The question amounts to solving the linear system

d∑
j=0

bj (x(x + α)(x + α′)(x + α + α′))d−j = D2
α,α′

⎛⎝ m∑
j=0

ajx
m−j

⎞⎠ . (2)

On the one hand we have

D2
α,α′f(x) =

m∑(
j∑

aj−sCs

(
m− j + s

s

))
xm−j
j=1 s=1
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where Cs denotes αs+α′ s+(α+α′)s for s � 1. We notice that C1 = C2 = C4 = 0 and that C3 = αα′(α+α′). 
It implies

D2
α,α′f(x) =

(
m

3

)
a0C3x

m−3 +
(
m− 1

3

)
a1C3x

m−4

+
((

m

5

)
a0C5 +

(
m− 2

3

)
a2C3

)
xm−5

+
((

m

6

)
a0C6 +

(
m− 1

5

)
a1C5 +

(
m− 3

3

)
a3C3

)
xm−6 + · · ·

On the other hand, the left-hand side of (2) is equal to

g (Tα,α′(x)) = b0x
4d + b0d(α2 + α′ 2 + αα′)x4d−2 + b0d(α + α′)αα′x4d−3

+
(
b0

(
d

2

)
(α2 + α′ 2 + αα′)2 + b1

)
x4d−4 + · · ·

To obtain b0 (and respectively b1) one can identify the coefficients of x4d (respectively x4d−4) on both sides 
of (2). To distinguish different cases and conclude we use a classical consequence of Lucas’s theorem which 
says that a binomial coefficient 

(
a
b

)
is divisible by 2 if and only if at least one of the base 2 digits of b is 

greater than the corresponding digit of a. �
We use the following representation lemma as a key point in the proof of Proposition 6.1.

Lemma 6.3. Let V be a F2-vectorial subspace of Fq of codimension 2. Then there exist two distinct elements 
α and α′ in F∗

q such that V = ImTα,α′ where Tα,α′(x) = x(x + α)(x + α′)(x + α + α′).

Proof. First we prove that ImTα,α′ is the intersection of the kernels of the morphisms x �→ TrF2n/F2 ×(
x

(α2+αα′)2

)
and x �→ TrF2n/F2

(
x

(α′ 2+αα′)2

)
where TrF2n/F2 is the Trace function relative to the extension 

F2n/F2. Let us prove that Im Tα,α′ is included in the kernel of one the two morphisms. Indeed, if z =
Tα,α′(x), then z = u(u + γ) with γ = α′ 2 + αα′ and u = x(x + α). The Hilbert 90 Theorem implies 
that TrF2n/F2(z/γ2) = 0 and we are done. We have the inclusion in the kernel of the other morphism by 
symmetry, and we conclude with a dimension argument.

As any hyperplane of F2n is the kernel of a linear form x �→ Tr(w.x) for a good choice of w ∈ F
∗
2n , 

and as x �→ 1/x2 is a bijection onto F∗
2n it is now sufficient to prove that for all couple (u, v) of distinct 

elements of F∗
2n there exists a couple of distinct elements (α, α′) of F∗

2n such that α2 + αα′ = u and 
α′ 2 +αα′ = v. To this end, we consider the function Θ : F

∗
2n ×F

∗
2n \Δ → F

∗
2n ×F

∗
2n \Δ which maps (α, α′)

to (α2+αα′, α′ 2+αα′) where Δ denotes the diagonal. It is well defined because if α2+αα′ = α′ 2+αα′ then 
α2 = α′ 2 and so α = α′. If Θ(α1, α′

1) = Θ(α2, α′
2), then one has the two equalities α2

1 + α1α
′
1 = α2

2 + α2α
′
2

and α′ 2
1 + α1α

′
1 = α′ 2

2 + α2α
′
2. It implies (α1 + α′

1)2 = (α2 + α′
2)2 and so there exists μ ∈ F2n such that 

μ = α1 + α′
1 = α2 + α′

2. Using the first equality one obtains α1μ = α2μ. We know that μ �= 0, otherwise 
we would have α1 = α′

1, and (α1, α′
1) ∈ Δ, a contradiction. So we can deduce α1 = α2 and using the first 

equality one more time we have α1α
′
1 = α2α

′
2, and so α′

1 = α′
2. Hence the function Θ is injective and thus 

bijective. �
7. Main theorem

We will use all the previous propositions to prove our main result, namely that most polynomials f over 
Fq have a maximal δ2(f). More precisely, we prove the following theorem.



1108 Y. Aubry, F. Herbaut / Journal of Pure and Applied Algebra 222 (2018) 1095–1110
Theorem 7.1. Let m be an integer such that m � 7 and m ≡ 0 (mod 8) (respectively m ≡ 1, 2, 7 (mod 8)), 
let δ0 = m − 4 (respectively δ0 = m − 5, m − 6, m − 3). Then we have

lim
n→∞

�{f ∈ F2n [x] | deg(f) = m, δ2(f) = δ0}
�{f ∈ F2n [x] | deg(f) = m} = 1.

Proof. Recall that we set q = 2n. We fix an integer m � 7 and consequently an integer d defined by Table 1
and an integer d̃ depending only on d as introduced in Proposition 3.2.

Let ε > 0. We fix an integer N1 satisfying the properties of Proposition 5.2. By Proposition 6.1 there 
exist integers k and N2 such that for any n � N2 we can choose k couples (α1, α′

1), . . . , (αk, α′
k) of distinct

elements of F∗
q such that for at least (1 −ε)(q−1)qm−qm polynomials f ∈ Fq[x] of degree m the polynomial 

Lαi,α′
i
(f) has degree d for all i, and at least one of the k equations

b1
b0

= x(x + αi)(x + α′
i)(x + αi + α′

i)

has a solution in Fq, where Lαi,α′
i
(f(x)) = b0x

d + b1x
d−1 + · · ·+ bd. Finally, we fix an integer N3 such that 

for all n � N3

0 � qm + kd̃qm

(q − 1)qm � ε. (3)

Let n � Max(N1, N2, N3) and a polynomial f associated to a couple (αi, α′
i) satisfying the preceding con-

ditions. If we suppose that Lαi,α′
i
(f) is Morse, then by Proposition 4.6 the extension Ω/Fq(t) is regular 

where Ω is the Galois closure of Dαi,α′
i
f(x) + t. Hence by Proposition 5.2 there exists β ∈ Fq such that 

D2
αi,α′

i
(f)(x) = β has 4d solutions in Fq. It amounts to saying that δ2(f) = δ0. Let us count these polyno-

mials: f is chosen among the (1 − ε)(q − 1)qm − qm polynomials given by Proposition 6.1, but we have to 
remove the polynomials f such that for all i ∈ {1, . . . , k} the polynomial Lαi,α′

i
(f) is non-Morse. Thanks 

to Proposition 3.2 we know we have to remove at most kd̃qm polynomials. To obtain the density we have 
to divide by (q − 1)qm which is the number of polynomials of degree m. Finally, the condition (3) above 
ensures that this density is greater than or equal to 1 − 2ε. �
8. The inversion mapping

We conclude the paper by the study of the second order differential uniformity of the inversion mapping 
from Fq (with q = 2n) to itself which sends x to x−1 if x �= 0 and 0 to 0 and which corresponds to the 
polynomial f(x) = xq−2 of Fq[x]. The S-box used by AES involves precisely this function in the case where 
n = 8. Nyberg proved in [6] that it has a differential uniformity δ(f) = 2 for n odd and δ(f) = 4 for n even.

We determine here its second order differential uniformity over F2n for any n. By a direct computation, 
we can show that δ2(f) = 4 over F2n for n = 2, 4 and 5 and that δ2(f) = 8 for n = 3. For n � 6, we have 
the following proposition.

Proposition 8.1. The inversion mapping f over F2n has a second order differential uniformity δ2(f) = 8 for 
any n � 6.

Proof. Set q = 2n and let α, α′ ∈ F
∗
q such that α �= α′ and β ∈ Fq. Consider the equation Dα,α′f(x) = β

i.e.

xq−2 + (x + α)q−2 + (x + α′)q−2 + (x + α + α′)q−2 = β.
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Since f is a monomial function, this equation can be written:

α′ q−2
(( x

α′

)q−2
+
( x

α′ + α

α′

)q−2
+

( x

α′ + 1
)q−2

+
( x

α′ + α

α′ + 1
)q−2

)
= β.

Thus in order to compute δ2(f) we can suppose that α′ = 1. So we consider now for α ∈ Fq \ {0, 1} and 
β ∈ Fq the number of solutions of the equation:

xq−2 + (x + α)q−2 + (x + 1)q−2 + (x + α + 1)q−2 = β. (4)

If x /∈ {0, 1, α, α + 1}, then this equation is equivalent to:

x−1 + (x + α)−1 + (x + 1)−1 + (x + α + 1)−1 = β

which is equivalent to:

βTα,1(x) + α(α + 1) = 0 (5)

where Tα,α′(x) = x(x + α)(x + α′)(x + α + α′) as introduced in Section 4.
Thus Equation (5) has at most four solutions in Fq \ {0, 1, α, α + 1}. Precisely, it has no solution or it 

has four solutions since Tα,1(x) = Tα,1(x + α) = Tα,(x + 1) = Tα,1(x + α + 1).
An element x ∈ {0, 1, α, α + 1} is a solution of Equation (4) if and only if β = α2+α+1

α(α+1) . Now let us solve 
Equation (4) in Fq \ {0, 1, α, α + 1} with such β. If β = 0 then Equation (5) has no solution so we can 

suppose that β �= 0 i.e. α2 + α + 1 �= 0. Then equation (5) can be written Tα,1(x) = γ where γ = α2(α2+1)
α2+α+1 . 

We have shown in the proof of Lemma 6.3 that ImTα,α′ is equal to the intersection of the kernels of the 

morphisms x �→ TrF2n/F2

(
x

(α2+αα′)2

)
and x �→ TrF2n/F2

(
x

(α′ 2+αα′)2

)
. Hence the equation Tα,1(x) = γ has 

a solution if and only if γ is in the intersection of the kernels of these two maps, i.e.

TrF2n/F2

(
1

α2 + α + 1

)
= 0 and TrF2n/F2

(
α2

α2 + α + 1

)
= 0. (6)

In the case where n is even, any element in the subfield F2n/2 has a trace equal to zero. Thus, any α
different from 0 and 1 in this subfield and with α2 + α + 1 �= 0 verifies the two previous conditions of (6). 
Thus if the subfield F2n/2 have more than 4 elements, i.e. if n > 4 then δ2(f) = 8.

In order to solve the problem in the case where n is odd, consider the algebraic surfaces S1 and S2 in the 
affine space A3 given respectively by the equations (y2 + y)(x2 + x + 1) = 1 and (z2 + z)(x2 + x + 1) = x2. 
Consider the affine curve C = S1 ∩ S2 in A3. By Hilbert 90 theorem, a solution α in F2n to Equations (6)
corresponds to four points (x, y, z) on C.

Furthermore if (x, y, z) ∈ C then we can show that x(y2 + y) + y2 + y + z2 + z + 1 = 0 and x(z2 + z +
1) + y2 + y + 1 = 0. Then we obtain:

(y2 + y)2 + (y2 + y)(z2 + z) + (z2 + z + 1)2 = 0. (7)

Consider the projection

π : A
3 −→ A

2

(x, y, z) �−→ (y, z)
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and the affine plane curve D defined by Equation (7). Consider also Z = {(y, z) ∈ A
2 | y2 +y = 0 and z2 +

z + 1 = 0}. The set Z has 4 points and each of them has degree 2 over F2. The projection π provides an 
isomorphism between C and D \ Z whose inverse is given by:

D \ Z → C

(y, z) �→

⎧⎨⎩
(

z2+z+1
y2+y + 1, y, z

)
if y2 + y �= 0,(

y2+y+1
z2+z+1 , y, z

)
if z2 + z + 1 �= 0.

Let us denote by D the projective closure of D in the projective plane P2. It has 2 points at infinity and 
each of them has degree 2.

It follows that the curves C and D have the same number of rational points over F2n for n odd. Further-
more, the curve D is a smooth projective plane quartic, so it is absolutely irreducible and has genus 3. By 
Serre-Weil theorem (see [8]), the number of rational points over F2n of D verifies:

�D(F2n) � 2n + 1 − 3[2(n+2)/2].

So, if n � 7, we have �C(F2n) � 63 and then there are at least 15 solutions to Equations (6) and the 
result follows. �
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