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MAXIMAL CURVES WITH RESPECT TO QUADRATIC

EXTENSIONS OVER FINITE FIELDS

YVES AUBRY, FABIEN HERBAUT, AND JULIEN MONALDI

Abstract. We propose a detailed study of a canonical bound which
relates the numbers of rational points of a curve over a finite field with
that over its quadratic extension. Alternative proofs which relate to the
variance enable to complete the inequality in a symmetrical way and to
obtain optimal refinements.

We focus on the curves reaching the bound, which we call Diophantine-
maximal curves. We provide different characterizations and stress natu-
ral links with the curves which attain the Ihara bound. As consequences,
we establish the list of such curves with low genus and we outline a max-
imality result which involves the Suzuki curves.

At last we determine which polynomials correspond to the Jacobian
of a Diophantine-maximal curve of genus 2.

1. Introduction

Throughout the whole paper we consider an absolutely irreducible smooth

projective algebraic curve X (just called curve from now on) of genus g and

defined over the finite field Fq. In the context of estimating the number

♯X(Fqn) of rational points of X over Fqn, we propose a detailed study of an

inequality hightlighted by Hallouin and Perret. This inequality canonically

appears in [7] among a series of meaningful bounds obtained as consequences

of non-negativity of a series of Gram determinants.

Let us sketch the method developped in [7]. The Neron-Severi group of

the surface X × X can be quotiented by numerical equivalence and thus

tensorised to obtain a real vector space Num(X × X)R equipped by the

intersection pairing. As a consequence of the Hodge-index theorem the in-

tersection pairing is negative definite on the vector space orthogonal to the

plane generated by the classes of the horizontal and vertical fibres. We de-

note by ℘ the orthogonal projection onto this subspace. For an integer k we

thus consider γk the push-down by ℘∗ of the class of the graph of the k-th

iterated Frobenius that we normalize by
√
qk. The non-negativity of the
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determinant of the Gram matrix Gram(γ0, γ1) expresses exactly the Weil

inequality, as explained in Subsection 2.2.1 in [7]:

Theorem. (Weil, [34]) Let X be a curve defined over Fq of genus g. We

have

(1) | ♯X(Fq)− (q + 1) |≤ 2g
√
q.

Next, the non-negativity of the Gram matrix Gram(γ0, γ1, γ2) together

with the arithmetic constraint ♯X(Fq2) ≥ ♯X(Fq) yields to the Ihara bound,

as explained in Subsection 2.3 in [7]:

Theorem. (Ihara, [16] ) Let X be a curve defined over Fq of genus g ≥ 1.

We have

(2) ♯X(Fq)− (q + 1) ≤
√

(8q + 1)g2 + (4q2 − 4q)g − g

2
.

Meanwhile, Hallouin and Perret have also noticed that the non-negativity

of the determinant of the Gram matrix Gram(γ0, γ1, γ2) leads to the follow-

ing inequality:

Theorem. (Hallouin and Perret, Proposition 12 in [7]) Let X be a curve

defined over Fq of genus g ≥ 1. We have

(3) ♯X(Fq2)− (q2 + 1) ≤ 2gq − 1

g

(

♯X(Fq)− (q + 1)
)2
.

This is the inequality we aim to study in our work. A first interpretation

provided in [7] is that the inequality (3) improves the Weil bound for ♯X(Fq2)

all the more as ♯X(Fq) is far from ♯P1(Fq) = q+1. Our first contribution in

this paper is to provide alternative and elementary proofs of the inequality

(3). In particular we make a link with the statistical variance of the real parts

of the reciprocal roots of the L-polynomial of X . This way, the inequality

(3) appears as a consequence of the positivity of the variance. As another

consequence, we can complete inequality (3) with a lower bound which leads

to a symmetrical and new inequality.

Theorem. (Theorem 3.2 and Corollary 3.3) Let X be a curve of genus

g ≥ 2 defined over Fq. We denote by α1, . . . , αg the real parts of its Frobenius

eigenvalues, that we consider as a statistical sample whose mean is given by

α :=
1

g

g
∑

i=1

αi and whose variance equals V (α) :=
1

g

g
∑

i=1

(αi − α)2.

(i) The difference between the right hand side and the left hand side of

the inequality (3) is a multiple of the variance of the αi’s:

2gq − 1

g

(

♯X(Fq)− (q + 1)
)2 − ♯X(Fq2) + (q2 + 1) = 4gV (α).
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(ii) We deduce
∣

∣

∣

∣

#X(Fq2)− (q2 + 1) +
1

g
(#X(Fq)− (q + 1))2

∣

∣

∣

∣

≤ 2qg.

Classical inequalities on the variance enable us to improve the previous

lower bound for odd genus g in an optimal way (see Theorem 3.4).

Let us now stress a link with a series of inequalities involving the coef-

ficients a1 and a2 of a q-Weil polynomial T 2g + a1T
2g−1 + a2T

2g−2 + · · · +
a2q

g−2T 2+a1q
g−1T + qg. We recall that to be a q-Weil polynomial is a well-

known necessary condition to be the characteristic polynomial of an abelian

variety defined over Fq as explained in Section 3.2.

When g = 2 (respectively g = 3, g = 4) Rück (respectively Haloui,

Haloui and Singh) have proved that a2 ≤ a2
1
(g−1)

2g
+ gq in [25] (respectively

[8], [9]). Actually, computations naturally related to the inequality (3) lead

to the following generalization of these three results for any value of g ≥ 2.

Theorem. (Theorem 3.9 and Proposition 3.7)

(i) If T 2g+a1T
2g−1+a2T

2g−2+ · · ·+a2q
g−2T 2+a1q

g−1T +qg is a q-Weil

polynomial then

(4) a2 ≤
a21(g − 1)

2g
+ gq.

(ii) Let X be a curve defined over Fq of genus g ≥ 2 and LX(T ) =

1 + a1T + a2T
2 + · · ·+ a2q

g−2T 2g−2 + a1q
g−1T 2g−1 + qgT 2g be its L-

polynomial. Then the inequality (4) obviously holds true. Moreover

the bound (4) is reached if and only (3) is an equality.

The case of equality in (3) will thus receive special attention in our

work. Let us point out another meaningful motivation to study this case of

equality. One could relate with the words of Serre on page 96 in [28]: “it

would be natural for curves to ask for many points, not only over Fq, but

also over several given extensions of Fq”. Indeed, if we fix the values of g,

q and N1, among the curves of genus g > 0 with N1 points over Fq, those

which reach equality in (3) have the largest number of points over Fq2 .

Recall that we have obviously ♯X(Fq2) ≥ ♯X(Fq) and following [22] a

curve satisfying ♯X(Fq2) = ♯X(Fq) is called a Diophantine-stable curve

(with respect to the extension Fq2/Fq). Inequality (3) gives an upper bound

on ♯X(Fq2) so we propose to call Diophantine-maximal with respect to the

extension Fq2/Fq and with respect to Inequality (3) any curve reaching this

bound. When the context is clear, we will only say Diophantine-maximal.
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Definition 1.1. A curve X defined over Fq of genus g > 0 is said to be a

Diophantine-maximal curve (or DM-curve for short) if

(5) ♯X(Fq2)− (q2 + 1) = 2gq − 1

g

(

♯X(Fq)− (q + 1)
)2
.

We will thus provide different characterizations of DM-curves. These

characterizations will prove useful to identify families of DM-curves such

as the Weil-maximal or Weil-minimal curves (see Example 2.3), to estab-

lish the stability of the notion of Diophantine-maximality by coverings (see

Proposition 2.11) or to obtain an upper bound of the genus of a DM-curve

depending only on q (see Proposition 2.10).

Proposition. (Proposition 2.1 and Proposition (2.9)) Let X be a curve

of genus g ≥ 1 defined over Fq. We denote by α1, . . . , αg the real parts of

the reciprocal roots of the L-polynomial of X. The following assertions are

equivalent

(i) X is a DM-curve,

(ii) all the αj’s are equal, that is the zeta function of X is of the form

ZX(T ) =
(1− 2αT + qT 2)g

(1− T )(1− qT )

(in this case, 2α is an integer and we have 2α = q+1−♯X(Fq)
g

),

(iii) the number of rational points of the Jacobian Jac(X) of X attains

the upper bound (6) given in [1]

♯ Jac(X)(Fq) = (q + 1 + τJac(X)/g)
g

where τJac(X) stands for the opposite of the trace of the Jacobian of

X, that is τJac(X) := −2

g
∑

j=1

αj.

The inequality (3) is strongly linked to the Ihara bound. For instance,

one can guess an elementary proof of (3) in the original proof of Ihara of

inequality (2) based upon Cauchy-Schwarz inequality. So it is quite natural

that we can relate the curves reaching the two bounds.

Proposition. (Proposition 4.1) Let X be a curve of genus g ≥ 1. The curve

X is Ihara-maximal (i.e. the Ihara inequality (2) becomes an equality) if and

only if X is both a Diophantine-maximal curve and a Diophantine-stable

curve.

We will obtain in Section 4 the list of Ihara-maximal curves of low genera

g and also for low values of q. Precisely, we give in Table 1 the complete list

up to isomorphism of Ihara-maximal curves when g ≤ 18, and in Remark
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4.6 when q ≤ 13, except (in both cases) when g = q = 7. For these values,

we know that there exists at least one Ihara-maximal curve, but we do not

know if there is unicity.

Whereas it is essentially a reformulation of a result of Fuhrmann and

Torres (Theorem 2 in [6]) we think it is worthwhile to highlight the following

theorem which provides an analogue of a theorem of Rück and Stichtenoth

where the Suzuki curves play the role of Hermitian curves as explained in

Subsection 4.2.

Theorem. (Theorem 4.4, reformulation of Theorem 2 in [6]) We consider

t ≥ 2 and q = 22t+1. Let X be a curve defined over Fq. Suppose that X

has genus g =
√
q(q−1)√

2
. Then X is Ihara-maximal if and only if X is Fq-

isomorphic to the Suzuki curve S which is the non-singular model of the

curve of equation yq − y = xq0(xq − x) where q0 = 2t.

At last, it is noteworthy that the Jacobian of a DM-curve is a power

of a simple abelian variety (see Proposition 2.5). In the same direction,

we will determine among the polynomials (T 2 + aT + q)2 ∈ Z[T ] which

ones correspond to the Jacobian of a genus-2 DM-curve X , and we will

characterize when the Jacobian of X is simple or splits into the power of an

ordinary or supersingular elliptic curve (Theorem 5.1). This classification

work will be the aim of Section 5. As a consequence we will deduce the

following existence result.

Proposition. (Proposition 5.2) Over any finite field there exists a non-

elliptic DM-curve.

2. Different characterizations of Diophantine-maximality

Let X be a curve defined over Fq of genus g ≥ 1 and Nn = ♯X(Fqn) be its

number of rational points over Fqn. It is well-known that the zeta function

of X

ZX,Fq
(T ) := exp

( ∞
∑

n=1

NnT
n

n

)

is a rational function

ZX,Fq
(T ) =

LX(T )

(1− T )(1− qT )
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where LX(T ), called the L-polynomial of X , is a polynomial in Z[T ] of

degree 2g. It has the form

LX(T ) =

g
∏

j=1

(1− ωjT )(1− ωjT )

where the inverse roots ωj of LX(T ) are algebraic integers such that |ωj| =√
q (the so-called Riemann Hypothesis for curves over finite fields). We also

denote by αj the real part of ωj , so that the L-polynomial of X can be

written

LX(T ) =

g
∏

j=1

(1− 2αjT + qT 2)

where |αj| ≤
√
q.

This polynomial can also be seen as the reciprocal polynomial of the

characteristic polynomial fJac(X) of the Frobenius endomorphism acting on

the Tate module of the Jacobian Jac(X) of X :

fJac(X) = T 2gLX(1/T ) =

2g
∏

j=1

(T − ωj)(T − ωj) =

g
∏

j=1

(T 2 − 2αjT + q).

So we will sometimes refer to the ωj’s as the Frobenius eigenvalues of X .

2.1. Characterization by the zeta function. An important point in

our work is the following proposition which characterizes the DM-curves in

terms of the real parts of its Frobenius eigenvalues.

Proposition 2.1. Let X be a curve of genus g defined over Fq. We denote

by α1, . . . , αg the real parts of its Frobenius eigenvalues. The curve X is a

DM-curve if and only if α1 = · · · = αg, that is if and only if its zeta function

is of the form

ZX(T ) =
(1− 2αT + qT 2)g

(1− T )(1− qT )
.

In this case, 2α is an integer and we have 2α = q+1−♯X(Fq)
g

.

Proof. It is well-known that we have:

♯X(Fq) = q + 1−
g
∑

j=1

(ωj + ωj) and ♯X(Fq2) = q2 + 1−
g
∑

j=1

(ω2
j + ωj

2).

Saying that X is a DM-curve is thus equivalent to saying that

−
g
∑

j=1

(ω2
j + ωj

2) = 2gq − 1

g

(

−
g
∑

j=1

(ωj + ωj)
)2
.
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But ωj+ωj = 2αj , so ω2
j +ωj

2 = 4α2
j−2q and thus the equality comes down

to g
∑g

j=1 α
2
j =

(
∑g

j=1 αj

)2
. But Cauchy-Schwarz equality holds if and only

if all the αj’s are equal, that is if and only LX has the claimed form.

If α denotes the common value of the αj’s, by the relation above we get

α = q+1−♯X(Fq)
2g

. Therefore 2α is both a rational number and an algebraic

integer, because it is the sum of the algebraic integers ω1 and ω1. We deduce

that 2α is an integer. �

Remark 2.2. It is straighforward that any elliptic curve E over Fq is a

DM-curve since N1 := ♯E(Fq) = q + 1 − (ω + ω) and N2 := ♯E(Fq2) =

q2 + 1− (ω2 + ω2) and thus (N1 − (q + 1))2 = (ω + ω)2 = q2 + 1+ 2q −N2.

Meanwhile the characterization of Proposition 2.1 gives again immediately

that any elliptic curve is a DM-curve.

Remark 2.3. As a consequence of the previous proposition, a Weil-maximal

curve i.e. a curve which reaches the Weil upper bound (respectively a Weil-

minimal curve i.e. a curve which reaches the Weil lower bound) over Fq is a

DM-curve. Indeed its only Frobenius eigenvalue is ω = −√
q (respectively

ω =
√
q).

Remark 2.4. A DM-curve curve of genus g ≥ 2 is not necessarily Weil-

maximal nor Weil-minimal: the curve X of genus 2 defined over F3 by the

equation y2 = (−1 − x − x3)(1 − x + x3) verifies N1 := ♯X(F3) = 2 and

N2 := ♯X(F9) = 20 so X is a DM-curve but is neither Weil-maximal nor

Weil-minimal.

2.2. Geometric condition.

Proposition 2.5. Let X be a curve of genus g defined over Fq. If X is a

DM-curve then the Jacobian of X is Fq-isogenous to a power of a Fq-simple

abelian variety.

Proof. Let fJac(X) be the characteristic polynomial of the Jacobian of X

fJac(X) =

g
∏

j=1

(T 2 − 2αjT + q)

where the αj’s are the real parts of its Frobenius eigenvalues. By Proposition

2.1 we know that if X is a DM-curve then the αj ’s are equal, which amounts

to saying that fJac(X) has the form

fJac(X) = (T 2 − 2αT + q)g.

The discriminant of T 2−2αT+q is non-positive by the Riemann Hypothesis,

so the polynomial fJac(X) is a power of a Q-irreducible polynomial.
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But it is well-known that any abelian variety A over Fq can factor

uniquely, up to Fq-isogeny, into a product of powers of non-Fq-isogenous

Fq-simple abelian varieties. And Tate stated in Theorem 2 (e) in [31] that

A is Fq-isogenous to a power of a Fq-simple abelian variety if and only if its

characteristic polynomial is a power of a Q-irreducible polynomial. So the

result follows. �

Remark 2.6. The reciprocal is false as we find many counterexamples in

the database [19]. For instance, one can consider the curve X of genus 2

defined over F5 by the equation y2 = x5 + 3x. Its Jacobian is simple as its

characteristic polynomial 1 + 25x4 is irreducible in Q[x]. But it turns out

that we have N1 = 2 and N2 = 26 so X is not a DM-curve.

Remark 2.7. The LMFDB database ([19]) provides1 the equations of many

hyperelliptic curves of genus 2 defined over F49 such that N1 = 36 and N2 =

2500. If we consider such a curve X , one can easily check that the equality

(5) is verified, so X is a DM-curve. By Proposition 2.1 we recover that the

L-polynomial of X is LX(T ) = (1− 7T +49T 2)2. If there existed an elliptic

curve E defined over F49 with L-polynomial LE(T ) = 1− (ω+ω)T + qT 2 =

1−7T+49T 2 we would have ♯E(F49) = 49+1−(ω+ω) = 43. But according

to the LMFDB database once again, such an elliptic curve does not exist. So

X is an example of a DM-curve whose Jacobian is a simple abelian surface.

Remark 2.8. Let X be a DM-curve of genus g defined over Fq with q = pa

and let fJac(X) = (T 2 − 2αT + q)g be its characteristic polynomial where

α = q+1−♯X(Fq)
2g

. Following the study of the isogeny classes of elliptic curves

over a finite field given by Waterhouse in Theorem 4.1 of [33], one can state

that the Jacobian of X is Fq-isogenous to a power of an elliptic curve if and

only if some one of the following conditions is satisfied:

(i) (2α, p) = 1 ;

(ii) a is even and 2α = ±2
√
q ;

(iii) a is even and p 6≡ 1 (mod 3) and 2α = ±√
q ;

(iv) a is odd and p = 2 or 3 and 2α = ±p
a+1

2 ;

(v) either (v.i) a is odd or (v.ii) a is even and p 6≡ 1 (mod 4) and α = 0.

2.3. Characterization by the number of points of the Jacobian.

Furthermore, the Jacobian of a DM-curve is maximal in the sense that it

reaches the following upper bound provided by Aubry, Haloui and Lachaud

1https://www.lmfdb.org/Variety/Abelian/Fq/2/49/ao_fr

https://www.lmfdb.org/Variety/Abelian/Fq/2/49/ao_fr
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in Theorem 2.1 of [1] for the number of rational points on an abelian variety

(6) ♯A(Fq) ≤ (q + 1 + τA/g)
g

where τA := −
∑g

j=1(ωj + ωj) = −2
∑g

j=1 αj is the opposite of the trace of

A, if we denote by ωj ’s the roots of the characteristic polynomial fA of A

and by αj ’s their real parts.

Theorem 2.1 of [1] also states that there is equality if and only if the αj’s

are equal. Since the characteristic polynomial fJac(X) of the Jacobian of X

is the reciprocal polynomial of the L-polynomial LX(T ) of X , Proposition

2.1 leads to the following statement.

Proposition 2.9. Let X be a curve of genus g defined over Fq. Then X

is a DM-curve if and only if the number of rational points of the Jacobian

Jac(X) of X attains the upper bound (6), namely

(7) ♯ Jac(X)(Fq) = (q + 1 + τJac(X)/g)
g.

2.4. Genus of a DM-curve. Ihara has shown that a curve defined over

Fq cannot be Weil-maximal if its genus is large with respect to q. Precisely,

he has proven that if X is a Weil-maximal curve defined over Fq of genus g

then g ≤ q−√
q

2
. In this subsection we will see that the genus of a DM-curve

defined over Fq is also bounded by a function of q.

Indeed Elkies, Howe and Ritzenthaler have given in [5] an explicit upper

bound on the genus of curves whose Jacobians are isogenous to a product

of powers of given abelian varieties expressed in terms of their Frobenius

angles. Precisely they proved in Theorem 1.1. of [5] that, if S is a finite

non-empty set of s real numbers θ with 0 ≤ θ ≤ π, and if the non-negative

Frobenius angles of X all lie in S then the genus g of X satisfies g ≤
23s2q2s log q and g < (

√
q + 1)2r(1+q−r

2
) where r = 1/2 if S = {0} and

r = ♯(S ∩ {π}) + 2
∑

θ∈S\{0,π}⌈ π
2θ
⌉ otherwise.

As a consequence we obtain the following bounds.

Proposition 2.10. Let X be a DM-curve defined over Fq of genus g. Then

g ≤ 23q2 log q.

Moreover, when we write LX(T ) = (1 + 2αT + qT 2)g then

(i) If 2α > 0 then g < (
√
q + 1)4( q

2+1
2q2

).

(ii) If 2α = 2
√
q then g ≤ q−√

q

2
.

(iii) If 2α = −2
√
q then g ≤ (

√
q+1)2

2
√
q

.

Proof. By Proposition 2.1 we know that if X is a DM-curve then fJac(X)

only admits one root ω and its conjugate, and we have 2α = −(ω + ω).
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The theorem of Elkies, Howe and Ritzenthaler quoted above applies easily

as S is reduced to one element. So s = 1 and we obtain the general bound

g ≤ 23q2 log q.

(i) When 0 < 2α < 2
√
q we know that the real part of ω lies between −√

q

and 0, so the unique nonnegative Frobenius angle θ satisfies −π/2 < θ < 0.

We deduce 1
2
< π

2θ
< 1, so r = 2⌈ π

2θ
⌉ = 2.

(ii) If 2α = 2
√
q then ω = −√

q and we recognize the case where the

curve is Serre-maximal which is solved by Ihara.

(iii) If 2α = −2
√
q then ω =

√
q and θ = 0. This time the curve is

Serre-minimal. We deduce that r = 1/2 and Theorem 1.1 of [5] gives g ≤
(
√
q+1)2

2
√
q

. �

2.5. In coverings. Let Y −→ X be a non-constant morphism of curves

over Fq. We know that if Y attains the Weil upper bound (or the Weil lower

bound), the same holds for X (see Theorem 5.2.1. of [28]). More generally,

it is proved in Corollary 13 of [3] that if Y −→ X is a finite flat morphism

between two varieties over a finite field, then the reciprocal polynomial of

the characteristic polynomial of the Frobenius endomorphism on the i-th

étale cohomology group of X divides that of Y . In particular, if Y −→ X is

a non-constant morphism of curves, the L-polynomial LX(T ) of X divides

the L-polynomial LY (T ) in Z[T ]. We can deduce the following statement.

Proposition 2.11. Let Y −→ X be a non-constant morphism of curves

over Fq. If Y is a DM-curve then X is also a DM-curve.

Proof. If Y is a DM-curve, then by Proposition 2.1 the real parts of the

eigenvalues of the Frobenius on Y are all equal. Since LX(T ) divides LY (T )

the same holds for X . �

3. DM-defect of a curve

In this section we introduce the DM-defect of a curve over a finite field

as a measure of how far a curve is from being Diophantine-maximal, that

is of how far the inequality (3) is from the case of equality.

3.1. Definition and first properties. To define the DM-defect we natu-

rally consider the difference between the right hand side and the left hand

side of the inequality (3) and we normalize in order to work with integers.

Definition 3.1. Let X be a curve of genus g ≥ 1 defined over Fq. The

DM-defect of X , denoted by δDM(X), is defined by

δDM (X) = 2qg2 − (♯X(Fq)− (q + 1))2 − g
(

♯X(Fq2)− (q2 + 1)
)

.
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The following theorem aims to give different expressions of δDM in terms

of the real parts αj ’s of the eigenvalues ωj’s of the Frobenius endomorphism

on X . It will prove useful to give alternative and elementary proofs of (3)

and to obtain other bounds on δDM .

Theorem 3.2. Let X be a curve of genus g ≥ 1 defined over Fq and let

α1, . . . , αg be the real parts of its Frobenius eigenvalues. Then we have:

(i)

δDM(X) = 4



g

g
∑

i=1

α2
i −

(

g
∑

i=1

αi

)2


 .

(ii) If we set σ1 =

g
∑

i=1

αi and σ2 =
∑

1≤i<j≤g

αiαj then we have

δDM(X) = 4
(

(g − 1)σ2
1 − 2gσ2

)

and

(iii)

δDM (X) = 4
∑

1≤i<j≤g

(αi − αj)
2 .

(iv) If we consider (αi)1≤i≤g as a statistical sample whose mean is given

by E(α) :=
1

g

g
∑

i=1

αi and whose variance equals V (α) :=
1

g

g
∑

i=1

(αi −E(α))2,

then we have

δDM(X) = 4g2V (α).

Proof. (i) If we still denote by ωj’s the Frobenius eigenvalues of X , we get

from the definition of the DM-defect:

δDM(x) = 2qg2 −
(

−
g
∑

j=1

(ωj + ωj)
)2 − g

(

−
g
∑

j=1

(ω2
j + ωj

2)
)

which implies that

δDM(x) = 2qg2 − 4
(

g
∑

j=1

αj

)2
+ g

g
∑

j=1

(

4α2
j − 2q

)

and the result follows.

(ii) and (iii) are direct consequences of (i).

(iv) If we factorize the equality (i) by 4g2 we get 4g2
(

1

g

g
∑

i=1

α2
i −

(1

g

g
∑

i=1

αi

)2
)

,

and we recognize E(α2)−E(α)2, that is a classical formulation of the vari-

ance of α. Note that the equality (iii) is also a well-known expression for

the variance of α (see Section 2.4 in [23] for example). �
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The previous theorem gives alternative and elementary proofs of the

Hallouin-Perret bound (3) which simply reads δDM(X) ≥ 0. It also provides

an interpretation of this bound in terms of non-negativity of the variance of

the sample (αj). From points (i) or (iv) one can also immediately deduce an

upper bound on δDM and then a symmetric formulation which completes

inequality (3).

Corollary 3.3. Let X be a curve of genus g ≥ 2 defined over Fq. We have

δDM(X) ∈ [0, 4qg2]

that is

(8)

∣

∣

∣

∣

#X(Fq2)− (q2 + 1) +
1

g
(#X(Fq)− (q + 1))2

∣

∣

∣

∣

≤ 2qg.

Let us exploit the variance formulation of δDM . It is a classical statistical

problem to give bounds for the variance of a sample (αj)1≤j≤g of elements

in a range [αmin;αmax]. In [17] (see Lemma 1) Kaiblinger and Spangl state

that we always have

V (α) ≤ 1

4
(αmax − αmin)

2,

and that, if g is odd the bound can be improved this way

V (α) ≤ 1

4

(

1− 1

g2

)

(αmax − αmin)
2.

Lemma 1 in [17] also indicates that when g is even this upper bound on

V (α) is reached if and only if half of the values αj equal −
√
q whereas the

other half equal
√
q. When g is odd, the upper bound is reached if and only

if (g−1)/2 or (g+1)/2 values equal −√
q whereas the others equal

√
q. We

deduce the following theorem.

Theorem 3.4. Let X be a curve of genus g ≥ 2 defined over Fq and let

α1, . . . , αg be the real parts of its Frobenius eigenvalues.

(i) If g is even then

(9) −2qg ≤ #X(Fq2)− (q2 + 1) +
1

g
(#X(Fq)− (q + 1))2

and equality holds if and only if g/2 values αj equal −√
q whereas

the others equal
√
q.

(ii) If g is odd then

(10) −2q

(

g − 2

g

)

≤ #X(Fq2)− (q2 + 1) +
1

g
(#X(Fq)− (q + 1))2

and equality holds if and only if (g − 1)/2 or (g + 1)/2 values αj

equal −√
q whereas the others equal

√
q.
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Remark 3.5. The necessary conditions on the αj ’s established in the previ-

ous proposition help us to find, with the help of the LMFDB database ([19]),

curves of genus 2 which reach the lower bound. Let us give some examples

when g is even. For instance the (Diophantine-stable) hyperelliptic curve X

of equation y2 = x5 + 4x defined over F5 satisfies #X(Fq) = #X(Fq2) = 6

and we can check the equality #X(Fq2)−(q2+1)+ 1
g
(#X(Fq)− (q + 1))2 =

−2qg. We have also found examples when q = 7, q = 8 or q = 11. For the

case q = 9 the necessary conditions lead us to N1 = 10, N2 = 46, and

to an isogeny class which does not contain any Jacobian according to the

LMFDB database2. For the case q = 13 one can find (at least) two hyperel-

liptic curves of genus 2 with equations y2 = x5 +12x and y2 = x6 +2x3 +8

such that α1 = −
√
13 and α2 =

√
13. We thus have N1 = 14, N2 = 118 and

the lower bound is reached.

Remark 3.6. We are indebted to Christophe Ritzenthaler for pointing out

the following example of a non-elliptic curve of odd genus which reaches

the lower bound. We take q = 49 and we consider a generator a of the

multiplicative group F∗
q. Thus the curve of equation x4 + a43x3y+ a36x3z +

a27x2y2+a10x2yz+a31x2z2+a9xy3+a47xy2z+a6xyz2+a19xz3+a9y4+6y3z+

a46y2z2 + a22yz3 + 6z4 = 0 has genus 3 and is such that N1 = 2108 whereas

N2 = 36, and so we can check #X(Fq2)−(q2+1)+ 1
g
(#X(Fq)− (q + 1))2 =

−2q(g − 2
g
). The curve is obtained by twisting the curve of equation x4 +

y4 + z4 = 0 so that it only changes one elliptic factor.

3.2. Weil polynomials and Diophantine maximal curves. In this sub-

section we relate the topic of DM-curves with the question of determin-

ing whether a polynomial f(T ) = 1 + a1T + a2T
2 + · · · + a2q

g−2T 2g−2 +

a1q
g−1T 2g−1 + qgT 2g ∈ Z[T ] can be the reciprocal polynomial of the char-

acteristic polynomial of a dimension g abelian variety over Fq. We provide

necessary conditions in terms of the two first coefficients a1 and a2 and in

terms of δDM .

Recall that a q-Weil number is an algebraic integer such that its image

under every embedding has absolute value
√
q and that a monic polynomial

of Z[T ] is called a q-Weil polynomial if all its roots are q-Weil numbers. The

Honda-Tate theorem (see [30]) establishes a bijection between the simple

abelian varieties over Fq up to isogeny and the q-Weil numbers up to con-

jugation so that a well-known necessary condition for f is to be a q-Weil

polynomial.

2https://www.lmfdb.org/Variety/Abelian/Fq/2/9/a_as

https://www.lmfdb.org/Variety/Abelian/Fq/2/9/a_as
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When g = 2 Rück has proved in Theorem 1.1. of [25] that a necessary

condition is that a2 ≤ a2
1

4
+ 2q. In the same direction, Haloui has proved in

[8] that for g = 3 a necessary condition is that a2 ≤ a2
1

3
+ 3q. Haloui and

Singh have also proved in [9] that if g = 4 a necessary condition is given by

a2 ≤ 3
8
a21 + 4q. We will propose a generalization of this series of necessary

condition for any g.

We start expliciting relations between the coefficients a1, a2 and the de-

fect δDM in the case where f(T ) is the L-polynomial of a curve X .

Proposition 3.7. Let X be a curve defined over Fq of genus g ≥ 2 and

with DM-defect δDM . For any j ∈ {1, . . . , g} we also note αj for the real

part of the inverse root ωj of the L-polynomial LX(T ) = 1 + a1T + a2T
2 +

· · ·+ a2q
g−2T 2g−2 + a1q

g−1T 2g−1 + qgT 2g. We have

(11)

g
∑

j=1

α2
j =

a21 + δDM

4g
.

and we deduce

(12) a2 ≤
a21(g − 1)

2g
+ gq

with equality if and only if X is a DM-curve.

Proof. For the first point we express equality (i) in Theorem 3.2 in terms of

the coefficient a1 which satisfies a1 = −2
∑g

j=1 αj.

For the second point we start from equality (ii) in Theorem 3.2. We use

a1 = −2σ1 and a2 = gq + 4σ2 to get 2ga2 + δDM = (g − 1)a21 + 2g2q and

thus a2 = a21(g− 1)/2g+ gq− δDM/2g. But δDM is non-negative and equals

zero if and only if the curve is Diophantine-maximal. �

Remark 3.8. Let us point out a geometric interpretation in the euclidean

space Rg if we associate to a a curveX the point PX of coordinates (αj)1≤j≤g.

Thanks to the Riemann Hypothesis we know that this point belongs to

the closed ball B∞(0,
√
q). Now we fix the value of a1. A way to translate

Proposition (3.7) is to say that the point PX belongs to the affine plane P of

equation
∑g

j=1 xj = −a1
2
as well as to the sphere S of equation

∑g

j=1 x
2
j =

a2
1
+δ

4g
. Since the radius r :=

√

a2
1
+δ

4g
of S is greater than or equal to the

distance d := |a1|
2
√
g
from the origin to the plane P, we deduce that the

intersection of S and P is nonempty. Moreover, d = r if and only if δDM = 0.

In other words, X is a DM-curve if and only if P is tangent to S.

Now, we just assume that f is a q-Weil polynomial. If we still denote by

αj the real parts of its complex roots ωj and by δDM the variance of the αj’s,
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the equality (11) remains valid. But the variance stays non-negative and we

thus obtain the following generalization of the results of Rück, Haloui and

Haloui and Singh.

Theorem 3.9. If T 2g + a1T
2g−1 + a2T

2g−2 + · · ·+ a2q
g−2T 2 + a1q

g−1T + qg

is a q-Weil polynomial then

a2 ≤
a21(g − 1)

2g
+ gq.

4. Ihara-maximal curves

This section is devoted to the study of curves whose number of rational

points reaches the Ihara bound (2), which will be called Ihara-maximal

curves.

4.1. A characterization of Ihara-maximal curves. As stated in Propo-

sition 4.1 below, the Ihara-maximal curves will appear as the curves which

are both Diophantine-maximal and Diophantine-stable.

Proposition 4.1. Let X be a curve of genus g ≥ 1 defined over Fq. The

following assertions are equivalent.

(i) X is a Ihara-maximal curve.

(ii) X is both a DM-curve and a DS-curve .

(iii) ZX(T ) =
(1−2αT+qT 2)g

(1−T )(1−qT )
where α = 1

4
−

√
(8q+1)g2+(4q2−4q)g

4g
.

Proof. For the first implication (i) ⇒ (ii), it is sufficient to notice that the

original proof of Ihara ([16]) rests on three inequalities, namely a quadratic

inequality, the arithmetic inequality N1 ≤ N2 and the Cauchy-Schwarz in-

equality g
∑g

j=1 α
2
j ≥

(
∑g

j=1 αj

)2
, where the αj’s are the real parts of the

Frobenius eigenvalues of X . When X is Ihara-maximal, they all become

equalities. But the equality N1 = N2 defines the Diophantine-stability. And

the Cauchy-Schwarz inequality becomes an equality if and only if the αj’s

are all equal, which characterizes DM-curves by Proposition 2.1.

To prove (ii) ⇒ (iii) one can notice that N2−(q2+1) = 2gq− 1
g

(

N1−(q+

1)
)2
. HenceN1 = N2 impliesN1 = q+1+1

2

(

√

(8q + 1)g2 + (4q2 − 4q)g − g
)

.

Thus one can use Proposition 2.1 to obtain the claimed form for the zeta

function of X .

Finally, if (iii) is verified we are again in the context of Proposition 2.1

and then the knowledge of the value α = q+1−♯X(Fq)
2g

enables to determine

N1 and to conclude that X is Ihara-maximal. �
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Remark 4.2. As a straightforward application we identify a family of Ihara-

maximal curves. Indeed, for t ≥ 1 and q = 22t+1 let us consider the Deligne-

Lusztig curve of Suzuki type (called Suzuki curve from now), associated to

the Suzuki group Sz(q), that is the curve defined over Fq as the non-singular

model S of the plane curve given by the equation yq−y = xq0(xq−x) where

q0 = 2t. It is well-known (see Proposition 4.3 of [10] or [11] or [12]) that this

curve has genus g =
√
q(q−1)√

2
, satisfies LS(T ) = (1+

√
2
√
qT + qT 2)g and has

q2 + 1 rational points over Fq and over Fq2 .

So this curve is Diophantine-stable, and Proposition (2.1) ensures the

Diophantine-maximality. A Suzuki curve is thus Ihara-maximal.

4.2. An analog of a theorem of Rück and Stichtenoth. Ihara has

proved in [16] that a Weil-maximal curve X defined over Fq has a genus

less than or equal to
√
q(
√
q−1)

2
. Indeed, the Ihara bound N∗

2 := q + 1 +

(
√

(8q + 1)g2 + 4qg(q − 1) − g)/2 becomes sharper than the Weil-bound

N∗
1 := q + 1 + 2g

√
q for g > g2 :=

√
q(
√
q−1)

2
. Hallouin and Perret have

proposed an even sharper bound N∗
3 (see [7] and [2]) valid when g ≥ g3 :=√

q(q−1)√
2

, which implies that the genus of a Ihara-maximal curve is less than

or equal to g3.

And in this direction they provide (Theorem 14 of ([7])) an increasing

sequence (gn)n≥1 of integers and a sequence of upper bounds N∗
n(g) such

that N∗
n(g) is a valid bound for #X(Fq) when the genus g of the curve

is greater than or equal to gn. The bounds are proven to be sharper and

sharper (see point 18 of Theorem 14 in ([7])) and the following expression

for gn is established: gn =
√
qn+1

n
∑

k=1

1
√
qk

cos

(

kπ

n+ 1

)

.

Let us now come back to the case of theWeil bound. Rück and Stichtenoth

have characterized the Weil-maximal curves of maximal genus the following

way.

Theorem 4.3. (Rück and Stichtenoth, [26]) We suppose that q is a

square and we consider a curve X defined over Fq. Suppose that X has genus

g =
√
q(
√
q−1)

2
. Then X is Weil-maximal if and only if X is Fq-isomorphic

to the Hermitian curve whose equation is x
√
q+1 + y

√
q+1 + z

√
q+1 = 0.

We notice that it is possible to obtain an analogue of this result for

Ihara-maximal curves by reformulating a maximality theorem of Fuhrmann

and Torres (Theorem 2 in [6]) for Suzuki curves. This theorem asserts that

if t ≥ 1, q = 22t+1 and q0 = 2t then any curve of genus g = q0(q − 1) and

such that #X(Fq) = q2 + 1 is isomorphic to the Suzuki curve. It is thus

sufficient to verify (with a tedious but straightforward computation) that in
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this setting q2 + 1 equals the Ihara-bound to obtain the following analogue

of the Rück and Stichtenoth theorem.

Theorem 4.4. (Reformulation of Theorem 2 in [6]) We consider

t ≥ 1 and q = 22t+1. Let X be a curve defined over Fq. Suppose that X

has genus g =
√
q(q−1)√

2
. Then X is Ihara-maximal if and only if X is Fq-

isomorphic to the Suzuki curve S which is the non-singular model of the

curve of equation yq − y = xq0(xq − x) where q0 = 2t.

4.3. Determination of Ihara-maximal curves for small values of g

or q.

Proposition 4.5. We give in the Table 1 the complete list, up to isomor-

phism, of Ihara-maximal curves defined over Fq of genus g ≤ 18, except for

the case g = 7. In this case, we know that q = 7 and that there exists at

least one Ihara-maximal curve, but we do not know if there is unicity.

g q N1 = N2 LX(T ) Ihara-maximal curve Weil-max

2 5 1 + 2T + 2T 2 y2 + y = x3 + x

1 3 7 1 + 3T + 3T 2 y2 = x3 + 2x+ 1

4 9 1 + 4T + 4T 2 y2 + y = x3 ×
4 14 (1 + 3T + 4T 2)3 x4 + x2y + xy3 + x+ y2 = 0

4 14 (1 + 3T + 4T 2)3 x4 + x2y2 + y4 + x2y + xy2+
3 +x2 + xy + y2 + 1 = 0

9 28 (1 + 3T )6 x4 + y4 + z4 = 0 ×
6 16 65 (1 + 8T + 16T 2)6 x5 + y5 + z5 = 0 ×
7 7 36 (1 + 4T + 7T 2)7 There exists at least one curve:

the fibre product
y31 = 5(x+ 2)(x+ 5)/x
y3
2
= 3x2(x+ 5)/(x+ 3)

10 25 126 (1 + 10T + 25T 2)10 x6 + y6 + z6 = 0 ×
14 8 65 (1 + 4T + 8T 2)14 y8 − y = x2(x8 − x)

Table 1. List (up to isomorphism) of all Ihara-maximal
curves of genus g ≤ 18 except for g = 7.

We also provide in each case the number N1 = N2 of rational points

over Fq (and Fq2), the L-polynomial of the curve, an equation of an affine

model of the curve and we indicate with a × in the sixth column whether

the curve is Weil-maximal.
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Proof. With the help of a Python program we first list all the couples (g, q)

for which (q−√
q)/2 ≤ g and for which (8q+ 1)g2+ 4qg(q− 1) is a square.

We also list the corresponding values of N1(= N2).

Some of these couples can be discarded because the Ihara bound is

greater than a known upper bound of Nq(g). We sum up in Table 2 these

discarded couples with the helpful references (obtained for the most part

thanks to ManyPoints [32]).

g 4 6 8 8 8 10 10 15 16 16 18 18
q 8 9 11 11 19 5 16 25 4 13 29 41
Ihara bound 29 40 56 29 88 36 87 161 45 102 204 270
Up. bound 25 38 55 88 84 33 86 160 38 101 203 258
on Nq(g)
Reference [27] [14] [18] [18] [29] [14] [14] [14] [29] [18] [14] [28]

Table 2. List of discarded cases in proof of Proposition 4.5

Let us now treat the remaining cases with the help of Proposition 4.1 which

ensures that a curve is Ihara-maximal if and only if it is both Diophantine-

maximal and Diophantine-stable. The case of curves of genus one is easily

handled as such a curve is always Diophantine-maximal (see Remark 2.2)

and as Bars, Lario and Vrioni provide in Proposition 3.1 in [4] the only

isomorphism classes of Diophantine-stable curves.

When g = 3 and q = 4, we should have N1 = N2 = 14. In [4] the authors

indicate the two only isomorphism classes of Diophantine-stable curves for

the extension F16/F4.

When (g, q) = (3, 9), (6, 16) or (10, 25) we notice that g =
√
q(
√
q− 1)/2

and that the candidate curve must be Weil-maximal. So by the Theorem of

Rück and Stichtenoth quoted in Subsection 4.2 we know that we deal with

an Hermitian curve.

If g = 14 and q = 8, it is remarkable that g =
√
q(q−1)/

√
2, so Theorem

4.4 ensures that in this case a Ihara-maximal curve is a Suzuki curve.

Finally, Özbudak, Temür and Yayla provide in [24] a fibre product of

Kummer extensions which is an example of Ihara-maximal curve of genus

7 defined over F7 and such that N1 = 36. �

Remark 4.6. If we refer to the discussion of Subsection 4.2 and to Theorem

14 in [7], we know that a curve of genus g > g3 cannot be Ihara-maximal. It

enables us to proceed in the same way to obtain the list of Ihara-maximal

curves defined over Fq for q ≤ 13.
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This time we list all the couples (g, q) for which (q − √
q)/2 ≤ g ≤

√
q(q − 1)/

√
2, q ≤ 13 and for which (8q + 1)g2 + 4qg(q − 1) is a square.

In comparison with the proof of Proposition 4.5 the only additional case is

that of the couple (g, q) = (25, 13) which would lead to a curve with 144

rational points. But it is known that in this context N1 ≤ 142 (see [18]).

Thus the complete list, up to isomorphism, of Ihara-maximal curves de-

fined over Fq for q ≤ 13 of genus g ≥ 1, except for the case q = 7, is

given by the eight curves of Table 1 corresponding to the couples (g, q) ∈
{(1, 2), (1, 3), (1, 4), (3, 4), (3, 9), (7, 7), (14, 8)}.

Remark 4.7. For low values of g, the first case we do not know how to

treat is the one of a possible curve of genus g = 19 defined over F19 and

such that N1 = N2 = 153. For low values of q, we are reduced to study the

existence of curves of genus 24 defined over F16 with N1 = N2 = 161.

5. Abelian surfaces isogenous to Jacobians of DM-curves

We focus in this section on abelian surfaces which are isogenous to

Jacobians of genus-2 DM-curves. Recall that by Proposition 2.1, the L-

polynomial of such a curve reads (1 + aT + qT 2)2, and so the characteris-

tic polynomial of the Jacobian of such a curve expresses (T 2 + aT + q)2.

The next result will answer the natural question: among the polynomials

(T 2 + aT + q)2, which ones do correspond to the characteristic polynomial

of the Jacobian of a DM-curve?

The proof will be based upon successive works which aim to describe the

characteristic polynomials which can be associated to abelian and Jacobian

surfaces. Maisner and Nart have characterized in [20] when a q-Weil polyno-

mial of degree 4 corresponds to an abelian surface defined over Fq and when

this abelian surface is simple. Furthermore, Howe, Nart and Ritzenthaler

have determined in [15] when simple abelian surfaces are isogenous to a

Jacobian and also when the isogeny class of a square of an ordinary elliptic

curve contains a Jacobian. Finally, we will make use of the characterization

of abelian surfaces whose isogeny class contains the product of two super-

singular elliptic curves given in characteristic 2 by Maisner and Nart ([21]),

in characteristic 3 by Howe ([13]) and in greater characteristic by Howe,

Nart and Ritzenthaler ([15]). When the abelian surface is not simple, we

use the characterization of Waterhouse (see [33]) of a polynomial of degree

2 arising as the characteristic polynomial of an elliptic curve. Putting all

of this together, one obtains the following characterization of DM-curves of

genus 2 related to the structure of their Jacobians.
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Theorem 5.1. Let q = pn be a power of a prime p. We consider a polyno-

mial f(T ) = (T 2 + aT + q)2 ∈ Z[T ] (which amounts to saying that a ∈ Z).

Then f(T ) is the characteristic polynomial of a Jacobian of a DM-curve

defined over Fq if and only if one of the following conditions holds.

1) Simple abelian surface case

(1.1) n is even and p ≡ 1 (mod 4) and a = 0.
(1.2) n is even and p ≡ 1 (mod 3) and a = ±√

pn.

In these cases, f(T ) is the characteristic polynomial of a simple abelian surface
defined over Fq which is supersingular and isogenous to the Jacobian of a DM-
curve.

2) Split ordinary case

|a| ≤ 2
√
q, (a, p) = 1 and a2 − 4q /∈ {−3,−4,−7}.

In this case, f(T ) is the characteristic polynomial of an abelian surface defined
over Fq which is isogenous to E × E where E is an ordinary elliptic curve and
its isogeny class contains the Jacobian of a DM-curve.

3) Split supersingular case

(3.1) p = 2 and n > 1:
(i) n odd and a = 0.
(ii) n odd and a = ±√

2pn.
(iii) n even and a = 0.

(iv) n even and a = ±p
n

2 .

(v) n ≥ 4 even and a = ±2p
n

2 .

(3.2) p = 3:

(i) n ≥ 3 odd and a = 0.
(ii) n even and a verifies one of the following conditions:

(a = 0) or
(

a = ±p
n

2

)

or
(

a = ±2p
n

2 and n ≥ 4
)

.

(3.3) p > 3:

(i) n even and a = ±2p
n

2 .

(ii) n even, p 6≡ 1 (mod 3) and a = ±p
n

2 .
(iii) n odd and a = 0.
(iv) n even, p 6≡ 1 (mod 4) and a = 0.

In all these cases, f(T ) is the characteristic polynomial of an abelian surface

defined over Fq which is isogenous to E × E where E is a supersingular elliptic

curve and its isogeny class contains the Jacobian of a DM-curve.

Proof. Throughough the proof we will consider a square polynomial f(T ) =

(T 2 + aT + q)2 = T 4 + (2a)T 3 + (a2 + 2q)T 2 + (2a)qT + q2 ∈ Z[T ]. By

Rück’s result (see [25]) we know that f is a q-Weil polynomial if and only

if |a| ≤ 2
√
q and 4|a|√q ≤ a2 + 4q.
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(1) Let us first consider the case of simple abelian surfaces. Theorem 2.9

in [20] provides necessary and sufficient conditions for a q-Weil polynomial

f(T ) = T 4 + a1T
3 + a2T

2 + qa1T + q2 ∈ Z[T ] to be the characteristic

polynomial of a simple abelian surface defined over Fq.

This theorem classifies such surfaces in four families called mixed (M),

ordinary (O) and supersingular (SS1) and (SS2). This classification involves

the integer ∆ = a21 − 4a2 + 8q, but when f(T ) = (T 2 + aT + q)2 we have

∆ = 4a2 − 4(a2 + 2q) + 8q = 0. In our case ∆ is a square and so the cases

(M) and (O) are discarded. It is not possible to fulfill the conditions of the

cases (SS1) or (SS2), except when a = 0, n is even and p ≡ 1 (mod 4) or

when a = ±√
q, n is even and p ≡ 1 (mod 3). For these values we check

that f(T ) = (T 2 + aT + q)2 does correspond to a Weil polynomial thanks

to Rück’s result.

Moreover, Howe, Nart and Ritzenthaler have given in Theorem 1.2 of [15]

necessary conditions on a Weil polynomial to be the characteristic polyno-

mial of a simple abelian surface defined over Fq which is not isogenous to

a Jacobian. Since a2 = a2 + 2q the condition a2 < 0 of Table 1.2 of [15]

is never satisfied. We conclude that in the considered cases f(T ) is indeed

the characteristic polynomial of a simple abelian surface A isogeneous to a

Jacobian. This concludes the case (1) concerning simple abelian surfaces.

(2) If (a, q) = 1 then by Deuring and Waterhouse the polynomial T 2 +

aT + q is the characteristic polynomial of an ordinary elliptic curve E and

thus (T 2 + aT + q)2 is the characteristic polynomial of an abelian surface

isogenous to E ×E. Moreover, by Theorem 2.3 of [15], E ×E is isogeneous

to the Jacobian of a curve X if and only if a2− 4q is neither −3 nor −4 nor

−7. In this case, we know that LX(T ) = (T 2 + aT + q)2 and so X is indeed

a DM-curve by Proposition 2.1.

(3) It remains to consider abelian surfaces which are isogenous to the

product of two supersingular elliptic curves.

(3.1) We first treat the characteristic 2 case. Maisner and Nart have

given in Table 1 (respectively Table 2) in [21] the list of the 6 (respectively

15) isogeny classes of abelian surfaces in characteristic 2 that contain the

product of two supersingular elliptic curves over F2n when n is odd (re-

spectively even), together with the numbers of F2n-isomorphism classes of

supersingular curves of genus 2 whose Jacobian lies in each isogeny class.

Theirs tables involve the couples (a1, a2) = (2a, a2 + 2q).
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The cases in Table 1 and Table 3 for which the condition a2 =
a2
1

4
+ 2q

holds are the following:






















(a1, a2) = (0, 2q) for odd n > 1 (so a = 0),
(a1, a2) = (±2

√
2q, 4q) for odd n > 1 (so a = ±√

2q),
(a1, a2) = (0, 2q) for even n (so a = 0),
(a1, a2) = (±2

√
q, 3q) for even n (so a = ±√

q), and
(a1, a2) = (±4

√
q, 6q) for even n > 2 (so a = ±2

√
q).

So when n and a fulfill one of these conditions we know that there exists an

elliptic curve E such that E × E is isogeneous to the Jacobian of a curve

and admits f(T ) = (T 2+aT + q)2 as characteristic polynomial. We manage

to prove that this elliptic curve is supersingular with Deuring-Waterhouse

theorem ([33]).

(3.2) We now deal with the characteristic 3 case. In this context, Howe

has determined all the polynomials that occur as characteristic polynomials

of abelian surfaces and whose isogeny class contains the Jacobian of a curve

of genus 2 (see Theorem 1.1 in [13]). We can identify among them the only

polynomials which are square polynomials f(T ) = (T 2 + aT + q)2:














f(T ) = (T 2 + q)2 for odd n ≥ 3 (so a = 0),
f(T ) = (T 2 + q)2 for even n (so a = 0),
f(T ) = (T 2 ±√

qT + q)2 for even n (so a = ±√
q),

f(T ) = (T 2 ± 2
√
qT + q)2 for even n ≥ 4 (so a = ±2

√
q).

What is left is to show that in any case the corresponding abelian surface

is not simple (for this it is sufficient to check that none of the condition of

the case (S) is satisfied) and that T 2 + aT + q is indeed the characteristic

polynomial of a supersingular elliptic curve (for this we check |a| ≤ 2
√
q and

one of the conditions (2), (3), (4) or (5) of Deuring-Waterhouse theorem

(Theorem 4.1 in [33]).

(3.3) The case of characteristic p > 3 will be a conclusion of works

undertaken by Howe, Nart and Ritzenthaler. In this setting, Theorem 2.4

of [15] asserts that there is a Jacobian isogeneous to the product of two

supersingular elliptic curves defined over Fq if and only if the squares of

the traces of the Frobenius of the curves are equal. One can deduce that if

E is a supersingular elliptic curve then the isogeny class of E × E always

contains the Jacobian of a DM-curve. Once again, Theorem 4.1 of [33] gives

the conditions on a we have to verify to be sure that E is a supersingular

elliptic curve. �

Recall that any curve of genus 1 is a DM-curve. As a consequence, there

exists a DM-curve whatever the base field. What about the question for

non-elliptic curves? The previous theorem brings the following answer.



REFERENCES 23

Proposition 5.2. Over any finite field there exists a non-elliptic DM-curve.

More precisely, there exists a DM-curve of genus 2 defined over Fq if and

only if q > 2, and there exists a DM-curve of genus 3 over F2.

Proof. Maisner, Nart and Howe have provided in [20] a complete description

of the curves of genus 2 defined over F2 up to F2-isomorphism and quadratic

twist. None of the couples (a1, a2) given in Table 2 in [20] satisfies the

condition a2 = a2/4 + 2q, so there is no DM-curve of genus 2 over F2.

Now we assume that q > 2, and we first consider the case of characteristic

2. When q = 4, Table 7 of [20] shows (first row and last column) the existence

of a curve such that a1 = 0 and a2 = 8 =
a21
4
+ 2q so the existence of a DM-

curve of genus 2 over F4 is established.

If q = 2n with n ≥ 3, the choice a = 3 gives |a| ≤ 2
√
q and fulfills the

conditions (a, p) = 1 and a2 − 4q 6∈ {−3,−4,−7} of point (2) of Theorem

5.1. Thus the polynomial (T 2 + 3T + q)2 is the characteristic polynomial

of an abelian surface (isogenous to E × E where E is an ordinary elliptic

curve) whose isogeny class contains the Jacobian of a DM-curve of genus 2

defined over Fq.

Finally in the case of characteristic greater than or equal to 3 one can

take a = 2, so once again the conditions of point (2) of Theorem 5.1 are

fulfilled, and so there exists a DM-curve of genus 2 defined over Fq.

For the remaining case q = 2, the LMFDB database ([19]) provides

a genus-3 DM-curve, namely3 the pointless curve defined by the equation

x4 + x2y2 + x2yz + x2z2 + xy2z + xyz2 + y4 + y2z2 + z4 = 0 which admits

14 points over F4. �
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