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Optimal and maximal singular curves

Yves Aubry and Annamaria Iezzi

Abstract. Using an Euclidean approach, we prove a new upper bound for
the number of closed points of degree 2 on a smooth absolutely irreducible pro-
jective algebraic curve defined over the finite field Fq . This bound enables us
to provide explicit conditions on q, g and π for the non-existence of absolutely
irreducible projective algebraic curves defined over Fq of geometric genus g,
arithmetic genus π and with Nq(g) + π − g rational points. Moreover, for q

a square, we study the set of pairs (g, π) for which there exists a maximal
absolutely irreducible projective algebraic curve defined over Fq of geometric
genus g and arithmetic genus π, i.e. with q+1+2g

√
q+π− g rational points.

1. Introduction

Throughout the paper1, the word curve will stand for a (non-necessarily
smooth) absolutely irreducible projective algebraic curve and Fq will denote the
finite field with q elements.

Let X be a curve defined over Fq of geometric genus g and arithmetic genus
π. The first author and Perret showed in [4] that the number �X(Fq) of rational
points over Fq on X satisfies:

(1) �X(Fq) ≤ q + 1 + g[2
√
q] + π − g.

Furthermore, if we denote by Nq(g, π) the maximum number of rational points
on a curve defined over Fq of geometric genus g and arithmetic genus π, it is proved
in [2] that:

Nq(g) ≤ Nq(g, π) ≤ Nq(g) + π − g,

where Nq(g) classically denotes the maximum number of rational points over Fq on
a smooth curve defined over Fq of genus g.

The curveX is said to bemaximal if it attains the bound (1). This definition for
non-necessarily smooth curves has been introduced in [2] and extends the classical
definition of maximal curve when X is smooth.

More generally (see [2]), X is said to be δ-optimal if

�X(Fq) = Nq(g) + π − g.
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Obviously, the set of maximal curves is contained in that of δ-optimal ones.
In [2], we were interested in the existence of δ-optimal and maximal curves of

prescribed geometric and arithmetic genera. Precisely, we proved (see Theorem 5.3
in [2]):

(2) Nq(g, π) = Nq(g) + π − g ⇐⇒ g ≤ π ≤ g +B2(Xq(g)),

where Xq(g) denotes the set of optimal smooth curves defined over Fq of genus g
(i.e. with Nq(g) rational points) and B2(Xq(g)) the maximum number of closed
points of degree 2 on a curve of Xq(g).

The quantity B2(Xq(g)) is easy to compute for g equal to 0 and 1 and also
for those g for which Nq(g) = q + 1 + g[2

√
q] (see Corollary 5.4, Corollary 5.5 and

Proposition 5.8 in [2]), but is not explicit in the general case.
The first aim of this paper is to provide upper and lower bounds for B2(Xq(g)).

For this purpose, we will follow the Euclidean approach developed by Hallouin and
Perret in [10] and recalled in Section 2. These new bounds will allow us to provide
explicit conditions on q, g and π for the non-existence of δ-optimal curves and to
determine some exact values of Nq(g, π) for specific triples (q, g, π).

Secondly, in Section 4, we will assume q to be square and, as in the smooth
case, we will study the genera spectrum of maximal curves defined over Fq, i.e. the
set of pairs (g, π), with g, π ∈ N and g ≤ π, for which there exists a maximal curve
defined over Fq of geometric genus g and arithmetic genus π.

2. Hallouin-Perret’s approach

Let X be a smooth curve defined over Fq of genus g > 0.
For every positive integer n, we associate to X a n-tuple (x1, . . . , xn) defined

as follows:

(3) xi :=
(qi + 1)− �X(Fqi)

2g
√

qi
, i = 1, . . . , n.

The Riemann Hypothesis, proved by Weil in positive characteristic, gives that

(4) �X(Fqi) = qi + 1−
2g∑
j=1

ωi
j ,

where ω1, . . . , ω2g are complex numbers of absolute value
√
q. Hence one easily gets

|xi| ≤ 1 for all i = 1, . . . , n, which means that the n-tuple (x1, . . . , xn) belongs to
the hypercube

(5) Cn = {(x1, . . . , xn) ∈ R
n| − 1 ≤ xi ≤ 1, ∀ i = 1, . . . , n}.

The Hodge Index Theorem implies that the intersection pairing on the Neron-
Severi space over R of the smooth algebraic surface X×X is anti-Euclidean on the
orthogonal complement of the trivial plane generated by the horizontal and vertical
classes. Hallouin and Perret used this fact in [10] to obtain that the following matrix

Gn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 x1 · · · xn−1 xn

x1 1 x1
. . . xn−1

...
. . .

. . .
. . .

...

xn−1
. . .

. . . 1 x1

xn xn−1 · · · x1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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is a Gram matrix and thus is positive semidefinite (the xi’s are interpreted as inner
products of normalized Neron-Severi classes of the iterated Frobenius morphisms).

Now, a matrix is positive semidefinite if and only if all the principal minors are
non-negative. This fact implies that the n-tuple (x1, . . . , xn) has to belong to the
set

(6) Wn = {(x1, . . . , xn) ∈ R
n|Gn,I ≥ 0, ∀ I ⊂ {1, . . . , n+ 1}},

where Gn,I represents the principal minor of Gn obtained by deleting the rows and
columns whose indexes are not in I.

To these relations, which come from the geometrical point of view, one can add
the arithmetical contraints resulting from the obvious following inequalities pointed
by Ihara in [11]: �X(Fqi) ≥ �X(Fq), for all i ≥ 2. It follows that, for all i ≥ 2,

xi ≤
x1

q
i−1
2

+
qi−1 − 1

2gq
i−2
2

.

Setting

hq,g
i (x1, xi) = xi −

x1√
qi−1

−
√
q

2g

(
√
q
i−1 − 1

√
qi−1

)

one gets that the n-tuple (x1, . . . , xn) has to belong to the set

(7) Hq,g
n = {(x1, . . . , xn) ∈ R

n|hq,g
i (x1, xi) ≤ 0, for all 2 ≤ i ≤ n}.

For convenience, we set Hq,g
1 = R.

Remark 2.1. We have hq,g
i (x1, xi) = 0 if and only if �X(Fq) = �X(Fqi).

Finally we obtain (Proposition 16 in [10]) that if X is a smooth curve defined
over Fq of genus g > 0, then its associated n-tuple (x1, . . . , xn) belongs to Cn ∩
Wn ∩Hq,g

n , where Cn,Wn,Hq,g
n are respectively defined by (5), (6) and (7).

Fixing n = 1, 2, 3, . . ., we find compact subsets of R
n to which the n-tuple

(x1, . . . , xn) belongs. Hence we can obtain lower or upper bounds for �X(Fqi) by
noting that any lower bound for xi corresponds to an upper bound for �X(Fqi) and,
vice versa, any upper bound for xi corresponds to a lower bound for �X(Fqi).

Hallouin and Perret showed in [10] that, increasing the dimension n, the set
Cn ∩ Wn ∩ Hq,g

n provides an increasingly sharp lower bound for x1 (and hence an
increasingly sharp upper bound for �X(Fq)) if g is large enough compared to q.

Indeed, they first recovered, for n = 1, the classical Weil bound, that can be
seen as a first-order Weil bound :

�X(Fq) ≤ q + 1 + 2g
√
q.

For n = 2, they recovered the Ihara bound proved in [11] (to which they refered

as the second-order Weil bound): if g ≥ g2 :=
√
q(

√
q−1)

2 then

�X(Fq) ≤ q + 1 +

√
(8q + 1)g2 + 4q(q − 1)g − g

2
.

And for n = 3, they found a third-order Weil bound for g ≥ g3 :=
√
q(q−1)√

2
as

stated in Theorem 18 of [10]. But, thanks to Ivan Semeniuk who worked on this
question in his Master thesis, it appears that for some values of q and g ≥ g3, this
third-order Weil bound is not better than the second order one, and this implies
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that the bound given by Hallouin and Perret in Theorem 18 of [10] is not correct.
We corrected the bound and finally we find that, for g ≥ g3, we have:

�X(Fq) ≤ q + 1 +

⎛
⎝
√
a(q) + b(q)

g + c(q)
g2 − 1− 1

q − 1
gd(q)

1 + 2√
q

⎞
⎠ g

√
q,

where ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a(q) = 5 + 8√
q + 2

q + 1
q2

b(q) =
(q2−1)(3

√
q−1)(

√
q+1)

q
√
q

c(q) = (q−1)2(−4q
3
2 −4q

1
2 +q2−2q+1)

4q

d(q) =
(q−1)(q−2

√
q−1)

2
√
q .

In a similar way, we would like to find increasingly sharp lower bounds for x2

(possibly depending on x1), in order to provide new upper bounds for �X(Fq2).
From each of these bounds we will deduce a new upper bound for the number of
closed points of degree 2 on X and hence we will be able to make our equivalence
(2) more explicit.

3. Number of closed points of degree 2

Let X be a smooth curve defined over Fq of genus g. We recall that, if B2(X)
denotes the number of closed points of degree 2 on X, one has

B2(X) =
�X(Fq2)− �X(Fq)

2
.

3.1. Upper bounds. We are going to establish upper bounds for the number
B2(X) and then obtain upper bounds for the quantity B2(Xq(g)) defined as the
maximum number of closed points of degree 2 on an optimal smooth curve of genus
g defined over Fq.

3.1.1. First order. From the Weil bounds related to (4), we get �X(Fq2) ≤
q2+1+2gq and �X(Fq) ≥ q+1−2g

√
q. Hence an obvious upper bound for B2(X)

is:

(8) B2(X) ≤ q2 − q

2
+ g(q +

√
q) =: M ′(q, g).

We can consider M ′(q, g) as an upper bound for B2(Xq(g)) at the first order since
this bound is a direct consequence of the Weil bounds.

Using the quantity M ′(q, g), we have recorded in the following table some first-
order upper bounds for B2(Xq(g)) for specific pairs (q, g):

�����q
g

2 3 4 5 6

2 7 11 14 18 21
3 12 17 21 26 31
22 18 24 30 36 42

Table 1. First-order upper bounds for B2(Xq(g)) given by M ′(q, g).
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Unfortunately, the bound (8) is rather bad, so let us improve it.
We assume g to be positive and we consider B2(X) as a function of x1 and x2,

defined in (3), in the domain Cn ∩Wn ∩Hq,g
n to which x1 and x2 belong:

(9) B2(X) = g
√
q(x1 −

√
qx2) +

q2 − q

2

since �X(Fq) = q + 1− 2g
√
qx1 and �X(Fq2) = q2 + 1− 2gqx2.

We note that any lower bound for x2 implies an upper bound for B2(X), pos-
sibly depending on x1.

We are going to investigate the set Cn ∩Wn ∩Hq,g
n introduced in the previous

section for n = 2 (second order) and n = 3 (third order).
3.1.2. Second order. For n = 2 the set C2 ∩ W2 ∩ Hq,g

2 is given by the pairs
(x1, x2) ∈ R

2 which satisfy the following system of inequalities:

(10)

{
2x2

1 − 1 ≤ x2 ≤ 1

x2 ≤ x1√
q + q−1

2g .

Geometrically, it corresponds to the region of the plane 〈x1, x2〉 delimited by

the parabola P : x2 = 2x2
1− 1 and the lines Lq,g

2 : x2 = x1√
q +

q−1
2g and x2 = 1. More

precisely, depending on whether g < g2, g = g2 or g > g2, where g2 =
√
q(

√
q−1)

2 ,
the region can assume one of the following three configurations:

Table 2. The region C2 ∩W2 ∩Hq,g
2 , respectively for g < g2, g = g2 and g > g2.

The first inequality in the system (10)

(11) x2 ≥ 2x2
1 − 1,

yields the upper bound:

(12) B2(X) ≤ g
√
q(x1 −

√
q(2x2

1 − 1)) +
q2 − q

2
.

Using equation (3) for x1, we get the following bound for B2(X) as a function of
q, g and �X(Fq), which is a reformulation of Proposition 14 of [10]:

Proposition 3.1. Let X be a smooth curve of genus g > 0 over Fq. We have:

B2(X) ≤
q2 + 1 + 2gq − 1

g (�X(Fq)− (q + 1))2 − �X(Fq)

2
.
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Now let us assume that X is an optimal smooth curve of genus g > 0, that is
X has Nq(g) rational points. By Proposition 3.1, if we set

M ′′(q, g) :=
q2 + 1 + 2gq − 1

g (Nq(g)− (q + 1))
2 −Nq(g)

2
,

then we have:

B2(Xq(g)) ≤ M ′′(q, g).

The quantity M ′′(q, g) can hence be seen as a second-order upper bound for
B2(Xq(g)).

We obtain the following proposition, as an easy consequence of (2):

Proposition 3.2. Let g > 0. If π > g + M ′′(q, g), then no δ-optimal curves
defined over Fq of geometric genus g and arithmetic genus π exist.

In the following table, we have used the quantity M ′′(q, g) to get upper bounds
for B2(Xq(g)) for specific pairs (q, g) (we used the data about Nq(g) available in
[15]).

�����q
g

2 3 4 5 6

2 1 2 3 4 5
3 3 3 3 5 7
22 5 0 4 5 3

Table 3. Second-order upper bounds for B2(Xq(g)) given by M ′′(q, g).

3.1.3. Third order. If we now increase the dimension to n = 3, new constraints
for x1, x2, x3 arise in addition to those of the system (10). Indeed, the set C3∩W3∩
Hq,g

3 is given by the triples (x1, x2, x3) ∈ R
3 which satisfy the following system of

inequalities: ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2x2
1 − 1 ≤ x2 ≤ 1

−1 + (x1+x2)
2

1+x1
≤ x3 ≤ 1− (x1−x2)

2

1−x1

1 + 2x1x2x3 − x2
3 − x2

1 − x2
2 ≥ 0

x2 ≤ x1√
q + q−1

2g

x3 ≤ x1

q + q2−1
2g

√
q .

Let us consider the projection of C3 ∩W3 ∩ Hq,g
3 on the plane 〈x1, x2〉, that is

the set {(x1, x2) ∈ R
2 : (x1, x2, x3) ∈ C3 ∩W3 ∩Hq,g

3 }. It is easy to show that this
set is given by the pairs (x1, x2) ∈ R

2 which satisfy:

(13)

⎧⎪⎨
⎪⎩

2x2
1 − 1 ≤ x2 ≤ 1

−1 + (x1+x2)
2

1+x1
≤ x1

q + q2−1
2g

√
q

x2 ≤ x1√
q + q−1

2g .

The equation which corresponds to the second inequality in the system (13):

(14) x2
2 + 2x1x2 −

(
1

q
− 1

)
x2
1 −

(
1

q
+ 1 +

q2 − 1

2g
√
q

)
x1 − 1− q2 − 1

2g
√
q

= 0
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represents in the plane 〈x1, x2〉 a hyperbola Hq,g that passes through the point

(−1, 1). For g ≥ g3 =
√
q(q−1)√

2
, the hyperbola Hq,g intersects the parabola at least

at three points. Hence we can have the following two configurations for the region
of the plane which corresponds to the system (13):

Table 4. The projection of C3 ∩W3 ∩Hq,g
3 on the plane < x1, x2 > respec-

tively for g < g3 and g > g3.

We remark that for g ≥ g3 we have a better lower bound for x2 as a function
of x1 (compared to the bound (11)), which is given by the smallest solution of the
quadratic equation (14) in x2:

x2 ≥ −x1 −
√

1

q
x2
1 +

(
1

q
+ 1 +

q2 − 1

2g
√
q

)
x1 + 1 +

q2 − 1

2g
√
q

Thus, by (9), we get a new upper bound for B2(X), in function of q, of g and of
x1:

B2(X) ≤ g
√
q(1 +

√
q)x1 + gq

√
1

q
x2
1 +

(
1

q
+ 1 +

q2 − 1

2g
√
q

)
x1 + 1 +

q2 − 1

2g
√
q

+
q2 − q

2
.

(15)

Using equation (3) for x1 in (15), we get a new upper bound for B2(X) as a
function of q, g and �X(Fq):

Proposition 3.3. Let X be a smooth curve of genus g ≥
√
q(q−1)√

2
over Fq. We

have:

B2(X) ≤
√
1/4 (�X(Fq))

2
+ α(q, g)�X(Fq) + β(q, g)

−
(1 +

√
q)

2
�X(Fq) +

q2 + 1 +
√
q(q + 1)

2
,

(16)
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where{
α(q, g) = − 1

4 ((2q
√
q + 2

√
q)g + q3 + q + 2)

β(q, g) = 1
4 (4q

2g2 + 2
√
q(q3 + q2 + q + 1)g + q4 + q3 + q + 1).

As before, if we set

M ′′′(q, g) :=

√
1/4 (Nq(g))

2
+ α(q, g)Nq(g) + β(q, g)

−
(1 +

√
q)

2
Nq(g) +

q2 + 1 +
√
q(q + 1)

2
,

(17)

where α(q, g) and β(q, g) are defined as in Proposition 3.3, we have

B2(Xq(g)) ≤ M ′′′(q, g).

By (2), we get the following proposition:

Proposition 3.4. Let us assume that g ≥
√
q(q−1)√

2
.

If π > g+M ′′′
q (g), then no δ-optimal curves defined over Fq of geometric genus

g and arithmetic genus π exist.

In the following table, using the quantity M ′′′(q, g), we give upper bounds for

B2(Xq(g)). As M ′′′(q, g) only makes sense when g ≥
√
q(q−1)√

2
, some boxes of the

table have been left empty.

�����q
g

2 3 4 5 6

2 0 0 1 1 1
3 2 1 2 3
22 4 1

Table 5. Third-order upper bounds for B2(Xq(g)) given by M ′′′(q, g).

Using Proposition 3.1 and Proposition 3.3, we can sum up Table 3 and 5 in the
following one:

�����q
g

2 3 4 5 6

2 0 0 1 1 1
3 3 2 1 2 3
22 5 0 4 4 1

Table 6. Upper bounds for B2(Xq(g)).
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3.2. Lower bound for B2(X). In a similar way, we can look for lower bounds
for B2(X). From the Weil bounds related to (4), we have �X(Fq2) ≥ q2 + 1 − 2gq
and �X(Fq) ≤ q + 1 + 2g

√
q so that

(18) B2(X) ≥ q2 − q

2
− g(q +

√
q).

It is easy to show that the right-hand side of (18) is positive if and only if g < g2 =√
q(

√
q−1)

2 .
We can consider inequality (18) as a lower bound for B2(X) at the first order,

as it is a direct consequence of the Weil bounds. Geometrically, it is also clear
that we will not obtain better lower bounds at the second or at the third order.
Indeed, looking at the graphics in Table 2 and Table 4, we remark that, in some
cases and for some values of x1, a better upper bound for x2 is given by the line
Lq,g
2 . But we have seen in Remark 2.1 that if the pair (x1, x2) is on the line Lq,g

2 ,
then �X(Fq) = �X(Fq2), which means B2(X) = 0.

For g < g2, the inequality (18) implies the following lower bounds for B2(Xq(g)):

�����q
g

2 3 4 5

7 2
23 7
32 12
11 27 13
13 45 29 12
24 80 60 40 20

Table 7. Lower bounds for B2(Xq(g)).

Hence we get from the equivalence (2) and the inequality (18) the following
proposition:

Proposition 3.5. Let g <
√
q(

√
q−1)

2 .

If g ≤ π ≤ g + q2−q
2 − g(q +

√
q), then there exists a δ-optimal curve defined

over Fq of geometric genus g and arithmetic genus π.

3.3. Some exact values for Nq(g, π). We can use the previous results to
provide some exact values of Nq(g, π) for specific triples (q, g, π).

Proposition 3.6. Let q be a power of a prime number p. We have:

(1) Nq(0, π) = q + 1 + π if and only if 0 ≤ π ≤ q2−q
2 .

(2) If p does not divide [2
√
q], or q is a square, or q = p, then

Nq(1, π) = q+[2
√
q]+π if and only if 1 ≤ π ≤ 1+

q2+q−[2
√
q]([2

√
q]+1)

2 .
Otherwise,

Nq(1, π)=q+[2
√
q]+π−1 if and only if 1≤π ≤ 1+

q2+q+[2
√
q](1−[2

√
q])

2 .

(3) If g <
√
q(

√
q−1)

2 and g ≤ π ≤ q2−q
2 − g(q +

√
q − 1) then

Nq(g, π) = Nq(g) + π − g.
(4) N2(2, 3) = 6.
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(5) N2(3, 4) = 7.
(6) N22(4, 5) = 14.

Proof. Items (1) and (2) are Corollary 5.4 and Corollary 5.5 in [2]. Item (3)
is given by Proposition 3.5.

We have that N2(2, 3) ≥ N2(2) = 6 and B2(X2(2)) = 0, by Table 6. Hence (4)
follows from Proposition 3.4 which says that N2(2, 3) < N2(2) + 1. Items (5) and
(6) can be proven in a similar fashion.

�

Remark 3.7. Using the construction given in Section 3 of [2], we can easily
show that Nq(g, π + 1) ≥ Nq(g, π). This fact implies, for instance, that we have

also Nq

(
0, q2−q

2 + 1
)
= q + 1 + q2−q

2 .

4. Genera spectrum of maximal curves

Let X be a curve defined over Fq of geometric genus g and arithmetic genus π.
We recall that X is a maximal curve if it attains bound (1), i.e

�X(Fq) = q + 1 + g[2
√
q] + π − g.

This definition extends the classical definition of a smooth maximal curve.
An easy consequence of Proposition 5.2 in [2] is that if X is a maximal curve,

then its normalization X̃ is a smooth maximal curve. Moreover, the zeta function
of a maximal curve X is given by (see Prop. 5.8 in [2]):

ZX(T ) = ZX̃(T )(1 + T )π−g =
(qT 2 + [2

√
q]T + 1)g(1 + T )π−g

(1− T )(1− qT )
.

We have seen in the previous section that, for π large enough compared to g,
no maximal curves of geometric genus g and arithmetic genus π exist.

Hence, a related question concerns the genera spectrum of maximal curves
defined over Fq, i.e. the set of pairs (g, π), with g, π ∈ N and g ≤ π, for which there
exists a maximal curve over Fq of geometric genus g and arithmetic genus π:

Γq :={(g, π) ∈ N× N : there exists a maximal curve defined over Fq

of geometric genus g and arithmetic genus π}.
The analogous question in the smooth case has been extensively studied in

the case where q is a square. For q square, Ihara proved that if X is a maximal

smooth curve defined over Fq of genus g, then g ≤
√
q(

√
q−1)

2 (see [11]) and Rück
and Stichtenoth showed that g attains this upper bound if and only if X is Fq-
isomorphic to the Hermitian curve (see [14]). Moreover, Fuhrmann and Garcia
proved that the genus g of maximal smooth curves defined over Fq satisfies (see [8])

(19) either g ≤
⌊
(
√
q − 1)2

4

⌋
, or g =

√
q(
√
q − 1)

2
.

This fact corresponds to the so-called first gap in the spectrum genera of Fq-
maximal smooth curves. For q odd, Fuhrmann, Garcia and Torres showed that

g =
(
√
q−1)2

4 occurs if and only if X is Fq-isomorphic to the non-singular model of

the plane curve of equation y
√
q+y = x

√
q+1

2 (see [7]). For q even, Abdón and Torres
established a similar result in [1] under an extra condition that X has a particular
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Weierstrass point. In this case, g =
√
q(

√
q−2)

4 if and only if X is Fq-isomorphic to

the non-singular model of the plane curve of equation y
√
q/2+· · ·+y2+y = x(

√
q+1).

Korchmáros and Torres improved (19) in [12]:

(20) either g ≤
⌊
q −√

q + 4

6

⌋
, or g =

⌊
(
√
q − 1)2

4

⌋
, or g =

√
q(
√
q − 1)

2
.

Hence the second gap in the spectrum genera of Fq-maximal smooth curves is also

known. In the same paper, non-singular Fq-models of genus
⌊
q−√

q+4

6

⌋
are provided.

Let us now consider maximal curves, possibly with singularities. We assume q
to be a square and we want to study the discrete set Γq.

Let X be a maximal curve defined over Fq of geometric genus g and arithmetic

genus π. As remarked above, the normalization X̃ of X is a maximal smooth curve,
hence g satisfies (20). Moreover, g and π satisfy the following inequality:

Proposition 4.1. Let q be a square. There exists a maximal curve defined over
Fq of geometric genus g and arithmetic genus π if and only if Nq(g) = q+1+2g

√
q

and

(21) g ≤ π ≤ g +
q2 + (2g − 1)q − 2g

√
q(2

√
q + 1)

2
.

Proof. The proposition follows directly from the equivalence (2), from the
fact that a maximal curve has a maximal normalization and that the number of
closed points of degree 2 on a smooth maximal curve of genus g over Fq is given by

(see Prop. 5.8 of [2]):
q2+(2g−1)q−2g

√
q(2

√
q+1)

2 . �
Remark 4.2. The right-hand side of (21), which can be written as

(−q −√
q + 1)g +

q2 − q

2
,

is a linearly decreasing with respect to g. Hence it attains its maximum value for
g = 0 (this also means that the number of closed points of degree 2 on a maximal
smooth curve is a decreasing function of the genus). So we also get a bound for the
arithmetic genus π in terms of the cardinality of the finite field:

(22) π ≤ q(q − 1)

2
.

Geometrically, we have shown that the set Γq is contained in the triangle (OAB)
(see Figure 1) of the plane 〈g, π〉 delimited by the lines g = 0, π = (−q−√

q+1)g+
q2−q

2 and g = π.

We observe that maximal curves over Fq with geometric genus g =
√
q(

√
q−1)

2
are necessarily smooth and thus isomorphic to the Hermitian curve.

Furthermore, the bound (22) is sharp. Indeed the singular plane rational curve
provided in [9] is an example of a maximal curve defined over Fq with arithmetic

genus π = q(q−1)
2 .

Hence, using Proposition 3.6, the inequalities (20), Proposition 4.1 and Remark
4.2, we can state the following theorem:

Theorem 4.3. Let q be a square and X be a maximal curve defined over Fq

with geometric genus g and arithmetic genus π.

If we set g′ :=
√
q(

√
q−1)

2 , g′′ :=
⌊
(
√
q−1)2

4

⌋
and g′′′ :=

⌊
q−√

q+4

6

⌋
, then we have:
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(1) 0 ≤ g ≤ g′ and g ≤ π ≤ q(q−1)
2 and also π ≤ g +

q2+(2g−1)q−2g
√
q(2

√
q+1)

2 .
In other words Γq is contained in the set of integral points inside the
triangle (OAB) of the following figure.

(2) The point B = (g′, g′) belongs to Γq and the set of points{
(0, π) , with 0 ≤ π ≤ q2−q

2

}
is contained in Γq.

(3) If g = g′ then g ≤ g′′ and the set of points defined by {(g′′, π) , with

g′′ ≤ π ≤ (−q −√
q + 1)g′′ + q2−q

2

}
is contained in Γq.

(4) If g = g′ and g = g′′, then g ≤ g′′′ and the set of points{
(g′′′, π) , with g′′′ ≤ π ≤ (−q −√

q + 1)g′′′ + q2−q
2

}
is contained in Γq.

We can illustrate Theorem 4.3 with the following figure (in which the aspect
ratio has been set to 0.025 for readability):

Figure 1. The set Γq is contained in the set of integral points inside the

triangle (OAB). The dots correspond to the pairs (g, π) that we have proved

to be in Γq . The rest of the set Γq has to be contained in the colored trapezoid.

We conclude the paper by considerations on coverings of singular curves.
If f : Y → X is a surjective morphism of smooth curves defined over Fq and

if Y is maximal then X is also maximal. This result is due to Serre (see [13]).
We prove here that the result still holds without the smoothness assumption on
the curves but with the assumption that the morphism is flat. Remark that the
divisibility of the numerators of the zeta functions in a flat covering proved in [5]
for possibly singular curves and in [6] for possibly singular varieties does not yield
the result.

Theorem 4.4. Let f : Y → X be a finite flat morphism between two curves
defined over Fq. If Y is maximal then X is maximal.

Proof. Let us denote by gX and πX (respectively gY and πY ) the geometric
genus and the arithmetic genus of X (respectively of Y ). As Y is maximal, we have

�Y (Fq) = q + 1 + gY [2
√
q] + πY − gY .
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From Remark 4.1 of [3] we know that

|�Y (Fq)− �X(Fq)| ≤ (πY − gY )− (πX − gX) + (gY − gX)[2
√
q].

So we obtain:

�X(Fq) ≥ �Y (Fq)− (πY − gY ) + (πX − gX)− (gY − gX)[2
√
q]

= q + 1 + gX [2
√
q] + πX − gX .

Hence X is also maximal. �
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