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Abstract We obtain a polynomial-type upper bounds for the size and the number
of the integral solutions of Thue equations F(X,Y ) = b defined over a totally real
number field K , assuming that F(X, 1) has a root α such that K (α) is a CM-field.
Furthermore, we give an algorithm for the computation of the integral solutions of
such an equation.
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1 Introduction

Let F(X,Y ) be an irreducible binary form inZ[X,Y ]with deg F ≥ 3 and b ∈ Z\{0}.
In 1909, Thue [26] proved that the equation F(X,Y ) = b has only finitely many
solutions (x, y) ∈ Z

2. Thue’s proof was ineffective and therefore does not provide a
method to determine the integer solutions of this equation. Other non-effective proofs
of Thue’s result can be found in [7, Chap. X] and [20, Chap. 23].

In 1968, Baker [2], using his results on linear forms in logarithms of algebraic
numbers, computed an explicit upper bound for the size of the integer solutions of
Thue equations. Baker’s results were improved by several authors (see for instance
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[6,12,22]) but the bounds remain to be of exponential type and are thus not useful to
compute integer solutions of such equations. Nevertheless, computation techniques
for the resolution of Thue equations have been developed based on the above results [1,
13,21,27], and the solutions of certain parameterized families of Thue equations have
been obtained [14]. Furthermore, upper bounds for the number of integral solutions
of Thue equations have been given [4,5,9].

In the case where all roots of the polynomial F(X, 1) are non-real, we have a
polynomial-type bound provided by other methods [20, Theorem 2, p. 186], [11,23].
Győry’s improvement in [11, Théorème 1] holds in the case where the splitting field
of F(X, 1) is a CM-field, i.e., a totally imaginary quadratic extension of a totally real
number field. More precisely, Győry proved the following theorem:

Theorem 1 Let F(X,Y ) = a0Xn + a1Xn−1Y + · · · + anY n be the product of irre-
ducible forms G1(X,Y ), . . . ,Gl(X,Y )with integer coefficients such that the splitting
field of Gi (X, 1) is a CM-field (i = 1, . . . , l). Let m be a non-zero integer. Then, the
solutions (x, y) ∈ Z

2 to the equation F(X,Y ) = m satisfy

|x | ≤ 2|an|1− 2l−1
n |m| 1n , |y| ≤ 2|a0|1− 2l−1

n |m| 1n .

If G(X,Y ) is a non-trivial irreducible factor of F(X,Y ) over Z such that the splitting
field of G(X, 1) is of CM-type, then each integer solution (x, y) of F(X,Y ) = b
satisfies G(x, y) = b1 for some divisor b1 of b, and therefore Theorem 1 applies to
this equation and gives the following result:

Corollary 1 Suppose that F(X,Y ) = a0Xn + a1Xn−1Y + · · · + anY n is a form
with integer coefficients having an irreducible factor G(X,Y ) over Z such that the
splitting field of G(X, 1) is a CM-field. Let m be a non-zero integer. Then, the solutions
(x, y) ∈ Z

2 to the equation F(X,Y ) = m satisfy

|x | ≤ 2|an|1− 1
n |m| 12 , |y| ≤ 2|a0|1− 1

n |m| 12 .

In the same paper, Győry studied Thue equations defined over a CM-field L and also
gave ([11, Théorème 2]) a polynomial upper bound for the size of their real algebraic
integers’ solutions in L . This result, as we shall see in the next section, implies a result
similar to Corollary 1 but with a bound of exponential type.

In this paper, we consider Thue equations F(X,Y ) = b defined over a totally real
number field K . Simplifying Győry’s approach, we obtain (Theorem 2) polynomial-
type bounds for the size and the number of their integral solutions over K , assuming
that F(X, 1) has a root α such that the field K (α) is a CM-field. In case where the
splitting field is a CM-field, we are in the situation of [11, Théorème 2]. Whenever
all roots of the polynomial F(X, 1) are non-real and K �= Q, we obtain much better
bounds than those already known [23]. Moreover, whenever F(X, 1) has a real and
a non-real root, we obtain polynomial-type bounds that the Baker’s method was not
able to provide other than exponential bounds. Furthermore, the method of the proof
of Theorem 2 provides us with an algorithm for the determination of the solutions of
such equations.
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Thue equations and CM-fields 147

We illustrate our result by giving two examples of infinite families of Thue equations
F(X,Y ) = b satisfying the hypothesis of Theorem2: Firstwe consider Thue equations
over some totally real subfields K of cyclotomic fields N such that the splitting field L
of F(X, 1) over K is contained in N . In this case, L is an abelian extension of K . Next,
we give a family of equations F(X,Y ) = b such that F(X, 1) has a root α for which
K (α) is a biquadratic CM-field. These families contain equations such that F(X, 1)
has also real roots, and therefore the onlymethod for having upper bound for the size of
their solutions is the Baker’s method which provides only bounds of exponential type.
Finally, we give two examples of determination of solutions of equations satisfying
the hypothesis of Theorem 2, using our algorithm.

2 New bounds

We introduce a few notations. Let K be a number field. We consider the set of absolute
values of K by extending the ordinary absolute value | · | of Q and, for every prime
p, by extending the p-adic absolute value | · |p with |p|p = p−1. Let M(K ) be an
indexing set of symbols v such that | · |v , v ∈ M(K ), are all of the above absolute
values of K . Given such an absolute value | · |v on K , we denote by dv its local degree.
Let x = (x0 : . . . : xn) be a point of the projective space Pn(K ) over K . We define
the field height HK (x) of x by

HK (x) =
∏

v∈M(K )

max{|x0|v, . . . , |xn|v}dv .

Let d be the degree of K . We define the absolute height H(x) by H(x) = HK (x)1/d .
For x ∈ K , we put HK (x) = HK ((1 : x)) and H(x) = H((1 : x)). If G ∈
K [X1, . . . , Xm], then we define HK (G) and H(G) of G as the field height and the
absolute height, respectively, of the point whose coordinates are the coefficients of G
(in any order). For an account of the properties of heights, see [15,16,25]. Furthermore,
we denote by OK and NK the ring of integers of K and the norm relative to the
extension K/Q, respectively. Finally, for every z ∈ C, we denote, usually, by z̄ its
complex conjugate.

We prove the following theorem:

Theorem 2 Let K be a totally real number field of degree d. Let b ∈ OK \ {0} and
F(X,Y ) ∈ OK [X,Y ] be a form of degree n ≥ 2. Suppose that F(X, 1) has a root α
such that K (α) is a CM-field. Then the solutions (x, y) ∈ O2

K of F(X,Y ) = b satisfy

H(x) < �1 and H(y) < �2

for the following values of �1 and �2. If the coefficients of Xn and Y n are ±1, then

�1 = �2 = 32H(b)1/nH(F)1+1/nNK (b)2/d .
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If only the coefficient of Xn is ±1, then

�1 = 29H(b)1/nH(F)2+1/nNK (b)4/d and �2 = 32H(b)1/nH(F)1+1/nNK (b)2/d .

If both the coefficients of Xn and Y n are �= ±1, then

�1 = 29H(b)1/nH(�)2n+1NK (b)4/d H(a0)NK (a0)
4(n−1)/d

and

�2 = 32H(b)1/nH(�)n+1NK (b)2/d H(a0)NK (a0)
2(n−1)/d ,

where a0 is the coefficient of Xn and � a point of the projective space with 1 and the
coefficients of F(X,Y ) as coordinates. Furthermore, the number of integral solutions
over K to the equation F(X,Y ) = b is at most

72 · 4dnNK (b)2n .

In case where b is a unit of OK , this number is at most 2wn, where w is the number
of the roots of unity in K (α).

The proof of this result is relied on the following property of CM-fields. A non-
real algebraic number field L is a CM-field if and only if L is closed under the
operation of complex conjugation and complex conjugation commutes with all the
Q-monomorphisms of L into C ([3], [10, Théorème 1], [17, Lemma 2]).

When K = Q and the splitting field of F(X, 1) over Q is an abelian totally imag-
inary extension, the hypothesis on complex conjugation is obviously satisfied. If the
coefficient of Xn is ±1, it is interesting to notice that our bounds are essentially inde-
pendent of the degree of the form F(X,Y ). Thus, in case where H(F) and H(b) are
not too large, an exhaustive search can provide the integer solutions we are looking
for.

Finally, it should be noticed that in case K = Q, Corollary 1 provides a better
upper bound than Theorem 2. Furthermore, if F(X,Y ) is irreducible and K �= Q,
then [11, Théorème 2] gives upper bounds similar to Theorem 2. Suppose K �= Q

and F1(X,Y ) is a non-trivial irreducible factor of F(X,Y ) over OK of degree ν such
that the splitting field of F1(X, 1) is of CM-type. Then each solution (x, y) ∈ O2

K of
F(X,Y ) = b satisfies F1(x, y) = b1 for some divisor b1 of b. Note that we do not
know the height of b1. For this we use [12, Lemma 3] which yields a unit ε ∈ Ok

having

H(b1ε
ν) ≤ NK (b1)

1/d exp{cνRK },

where c is an explicit constant and RK the regulator of K . Thus, we have F1(εx, εy) =
b1εν and therefore, using [11, Théorème 2], we obtain upper bounds for H(x) and
H(y)with an extra factor which is exponential in respect of RK and hence it is clearly
worse than that of Theorem 2.
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Thue equations and CM-fields 149

3 Examples

In this section, we give two examples in order to illustrate our result. We denote by
F∗(X,Y ) the homogenization of a polynomial F(X) ∈ C[X ].
Example 1 Let p be a prime with p ≡ 1 (mod 4) and ζp a pth primitive root of unity
inC. Then the quadratic fieldQ(

√
p) is a subfield ofQ(ζp). The fieldQ(ζp) is a cyclic

extension of Q with Galois group Gal(Q(ζp)/Q) 	 (Z/pZ)∗.
Let α ∈ Z[ζp] be a primitive element of the extension Q(ζ )/Q(

√
p) and

α1, . . . , αm , with m = (p − 1)/2, all the distinct conjugates of α over Q(
√
p). The

largest real field contained in Q(ζp) is Kp = Q(ζp + ζ̄p) which is a totally real
number field. Let β ∈ Kp be a primitive element of the extension Kp/Q(

√
p) and

β1, . . . , βn , where n = (p − 1)/4, all the distinct conjugates of β over Q(
√
p). Then

the polynomial

F(X) = (X − α1) · · · (X − αm)(X − β1) · · · (X − βn)

belongs to Q(
√
p)[X ] and has real and non-real roots. Furthermore, we have

Q(
√
p)(ai ) = Q(ζp) which is a CM-field. Consequently, for every non-zero b ∈

Z[(1+√
p)/2], the Thue equation F∗(X,Y ) = b satisfies the hypothesis of Theorem

2. Note that this equation satisfies also the hypothesis of [11, Théorème 2].
Then, using [25, Theorem 5.9, p. 211] and [25, Lemma 5.10, p. 213], Theorem 2

gives the following upper bound for the heights of solutions x, y ∈ Z[(1 + √
p)/2]:

H(x) < 2(3p+17)/4(H(α)2H(β))(3p+1)/6H(b)4/3(p−1)NQ(
√
p)(b)

and

H(y) < 2(3p+13)/2(H(α)2H(β))5(p−1)/6H(b)4/3(p−1)NQ(
√
p)(b)

2.

If we consider the particular case where 	p(X) is the p-th cyclotomic polynomial,
then [11, Section 2] implies that the maximum of the absolute heights of all algebraic
integers x, y ∈ Kp with 	∗

p(x, y) = 1 is < 2(p−1)/2. Theorem 2 improves this result
by yielding the bound 32.

Example 2 Let d be a positive integer ≥ 2 and r = m+n
√
d , wherem, n are integers

such that m > 0 and m2 − n2d > 0. The minimal polynomial of r over Q is

M(X) = X2 − 2mX + m2 − dn2.

Then, the polynomial

P(X) = M(−X2) = X4 + 2mX2 + m2 − dn2

is the minimal polynomial of
√−r over Q. Since m > 0 and m2 − n2d > 0, their

roots are not real and so Q(
√
d,

√−r) is a CM-field. If Q(X) ∈ Z[√d][X ] \ Z, then
we set
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150 Y. Aubry, D. Poulakis

F(X) = (X2 + (m + n
√
d)Y 2)Q(X).

So, for every non-zero b ∈ Z[√d], the Thue equation F∗(X,Y ) = b over K = Q(
√
d)

satisfies the hypothesis of Theorem 2. Suppose that Q(X) is monic and deg Q = q >

0. By [15, Remark B.7.4], we have

H(F) ≤ 4H(m + n
√
d)H(Q).

Thus, Theorem 2 yields the following upper bounds for the height of integral solutions
of the above equations over K :

H(x) < 213+1/q H(b)1/2q(H(m + n
√
d)H(Q))2+1/q NK (b)2,

H(y) < 27+1/q H(b)1/2q(H(m + n
√
d)H(Q))1+1/q NK (b).

Note that in case where the splitting field of F(X) is not a CM-field, [11, Théorème
2] cannot be applied. Furthermore, Baker’s method can provide only bounds of expo-
nential type.

4 Proof of Theorem 2

Write

F(X,Y ) = a0(X − α1Y ) · · · (X − αnY ).

First, we consider the case where a0 = ±1. If a0 = −1, we replace F(X,Y ) by
−F(X,Y ) and b by −b and then we may suppose that a0 = 1. By our hypothesis,
there is j such that K j = K (α j ) is a CM-field.

Let x, y ∈ OK such that xy �= 0 and F(x, y) = b. We set b j := x − α j y. Since K
is a totally real number field, we have x − ᾱ j y = b̄ j . Setting ρ j = b̄ j/b j , we obtain
the system

x − α j y = b j , x − ᾱ j y = ρ j b j .

Eliminating b j from the above two equations, we get x = Ay where we have set

A = ᾱ j − α jρ j

1 − ρ j
.

We have

H(A) ≤ H(ᾱ j − α jρ j )H(1 − ρ j ) ≤ 4H(α j )
2H(ρ j )

2.

Since α j is not real, using [18], we deduce H(α j ) < 2H(F)1/2. It follows that

H(A) ≤ 16H(F)H(ρ j )
2.
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Thue equations and CM-fields 151

Substituting in the equation F(x, y) = b, we deduce that

yn F(A, 1) = b,

and thus

H(y)n ≤ H(F(A, 1))H(b) ≤ (n + 1)H(F)H(A)nH(b).

Using the bound for H(A), we obtain

H(y)n ≤ (n + 1)16nH(b)H(F)n+1H(ρ j )
2n . (1)

Next, we shall compute a bound for the height of ρ j . We denote by G j the set of
Q-embeddings σ : K j → C. Since K j is a CM-field, [10, Théorème 1] yields that
the complex conjugation commutes with all the elements of G j . Further, K j is closed
under the operation of complex conjugation whence we get ᾱ j ∈ K j and so b̄ j ∈ K j .
Thus, for every σ ∈ G j , we have σ(b̄ j ) = σ(b j ). It follows that

|σ(ρ j )| = |σ(b̄ j )|
|σ(b j )| = |σ(b j )|

|σ(b j )| = 1.

Let I j (X) be the minimal polynomial of ρ j overQ and C j (X) be the characteristic
polynomial of ρ j relative to the extension K j/Q. Then, we have

C j (X) = I j (X)[K j :Q(ρ j )].

The elements α j , ᾱ j are algebraic integers of K j and so b j , b̄ j are algebraic integers
of K j . It follows that the polynomial

� j (X) =
∏

σ∈G j

σ(b j )(X − σ(ρ j )) =
∏

σ∈G j

σ(b j )C j (X) = NK j (b j )I j (X)[K j :Q(ρ j )]

has integer coefficients. We denote by m j the least common multiple of the denomi-
nators of the coefficients of I j (X). Then, we deduce that

m
[K j :Q(ρ j )]
j

∣∣NK j (b j ).

Since NK j (b j )|NK j (b), we get

m
[K j :Q(ρ j )]
j

∣∣NK j (b).
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As we saw above, all the conjugates ρ j1, . . . , ρ jμ (μ ≤ dn), of ρ j are of absolute
value 1. By [16, p. 54], we have

H(ρ j ) =
(
m j

μ∏

i=1

max{1, |ρ j i |
)1/[Q(ρ j ):Q]

= m
1/[Q(ρ j ):Q]
j .

Thus, we deduce

HK j (ρ j )
∣∣NK j (b) (2)

whence

H(ρ j ) ≤ NK (b)1/d . (3)

Combining the inequalities (1) and (3), we get

H(y) ≤ 32H(b)1/nH(F)1+1/nNK (b)2/d .

We have

H(x) ≤ H(A)H(y) ≤ 16H(F)H(ρ j )
2H(y)

whence we obtain

H(x) ≤ 29H(b)1/nH(F)2+1/nNK (b)4/d .

Suppose now that a0 �= ±1. Write F(X, 1) = a0Xn + a1Xn−1 + · · · + an . Then
a0αi is a root of f (X) = Xn+a1Xn−1+a2a0Xn−2+· · ·+ana

n−1
0 and thus a0αi is an

algebraic integer. Denote by F1(X,Y ) the homogenization of f (X). If (x, y) ∈ O2
K is

a solution to F(X,Y ) = b, then (a0x, y) is a solution to F1(X,Y ) = ban−1
0 . Denote

by � a point in the projective space with 1 and the coefficients of F as coordinates.
Then we have H(F1) ≤ H(�)n , and finally we obtain

H(y) ≤ 32H(b)1/nH(�)n+1NK (b)2/d H(a0)NK (a0)
2(n−1)/d

and

H(x) ≤ 29H(b)1/nH(�)2n+1NK (b)4/d H(a0)NK (a0)
4(n−1)/d .

Now suppose that b is a unit in OK . Then inequality (2) implies that H(ρ j ) = 1
and so Kronecker’s theorem yields that ρ j is a root of unity. Let w be the number of
the roots of unity in K j . Then we have w choices for A (for the roots of unity �= ±1)
and, since y is real, the equation yn F(A, 1) = b gives us at most 2w choices for
y. Considering also the solutions of the equation with xy = 0, we deduce that the
number of integral solutions to the equation F(X,Y ) = b is at most 2wn. Finally,
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suppose that b is not a unit in OK . Using [24, Lemma 8B], we obtain that the number
of elements ρ j ∈ K j with H(ρ j ) ≤ NK (b)1/d is bounded by

36 · 4dnNK (b)2n

and so the result follows.

5 An algorithm

In this section, we give an algorithm for the computation of the integral solutions to
F(X,Y ) = b based on the proof of Theorem 2.

SOLVE-THUE-1
Input: A totally real number field K , a form F(X,Y ) ∈ OK [X,Y ] with F(X, 1)

monic, b ∈ OK \ {0} and α a root of F(X, 1) such that K (α) is a CM-field.
Output: The integral solutions of F(X,Y ) = b over K .

(1) Compute the set 
 of all the elements ρ ∈ K (α) \ K having the absolute values
of all their conjugates equal to 1 and HK (α)(ρ)|NK (α)(b). If b is a unit of OK ,
then the set 
 consists of all the roots of unity of K (α) which does not belong to
K .

(2) Compute the set � of elements ξ of K of the form

ξ = ᾱ − αρ

1 − ρ
,

where ρ ∈ 
.
(3) Compute the set S of elements y ∈ OK such that there is ξ ∈ � ∪ {(ᾱ + α)/2}

with

yn F(ξ, 1) = b.

(4) Output the solutions (x, y) ∈ O2
K to F(X,Y ) = b with y ∈ S and the solutions

(x, y) ∈ O2
K with xy = 0.

Proof of Correctness. Let (x, y) ∈ O2
K be a solution to F(X,Y ) = b with xy �= 0.

We set x − αy = β and ρ = β̄/β. From the proof of Theorem 2, we have x = yA,

where

A = ᾱ − αρ

1 − ρ
,

and so yn F(A, 1) = b. Since x, y ∈ K , we get A ∈ K . Furthermore, by (2) we have
that HK (α)(ρ) divides NK (α)(b). Moreover, we have seen that either ρ /∈ K or ρ = −1
(and in this case A = (ᾱ + α)/2). Finally, if b is a unit, then we have that H(ρ) = 1
and so ρ is a root of unity in K (α).

Note that there are algorithms for the computation of the elements of a number field
of bounded height [8] and for the computation of roots of unity in a number field [19,
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Annexe C]. As far as we know, there are no implementations for such algorithms. The
other computations can be carried out by a computational system such as MAGMA
or MAPLE.

Remark 1 By [16, p. 54], the leading coefficient m of the minimal polynomial of ρ is
equal to HK (α)(ρ). Thus, mρ ∈ OK .

Finally, we give two examples of Thue equations that satisfy the hypothesis of
Theorem 2 for which we use the previous algorithm to determine all the integral
solutions, the first one having a right-hand side a unit but not the second one.

Example 3 The only solutions of the equation

(X2 + Y 2)(X2 − √
2XY + Y 2) = 1

over Z[√2] are (X, Y ) = (±1, 0), (0,±1).

Proof The complex number i is a root of X2 + 1 and K = Q(
√
2, i) is a CM-field.

The roots of unity lying in K \ Q(
√
2) are ±i . Next, we compute

ξ± = −i − i(±i)

1 − (±i)
= ±1.

Thus, we have the equations y42(2 ± √
2) = 1. If there is y ∈ Z[√2] satisfying one

of these equations, then 2 is a unit in Z[√2], which is a contradiction since its norm
is not equal to ±1. Furthermore, the solutions (x, y) ∈ O2

K with xy = 0 are (±1, 0)
and (0,±1).

Example 4 Consider the form

F(X,Y ) = (X2 + (3 − 2
√
2)Y 2)(X2 − 4XY + √

2Y 2) ∈ Z[√2][X,Y ].

Then the only solutions of the equation F(X,Y ) = 3
√
2−4 overZ[√2] are (X,Y ) =

(0,±1).

Proof The given equation belongs to the family of equations of Example 2. Thus,
we shall use the above algorithm for the determination of their solutions. First, we
remark that the equation F(X, 0) = 3

√
2−4 has no solution over Z[√2] and the only

solutions of F(0,Y ) = 3
√
2 − 4 over Z[√2] are Y = ±1.

Set y = i
√
3 − 2

√
2 and K = Q(y). We have NK (6 − 4

√
2) = 16. We shall

compute all the elements ρ ∈ K \Q(
√
2) with HK (ρ)|16 and having all the absolute

values of their conjugates equal to 1.
If HK (ρ) = 1, then ρ is a root of unity in K \ Q(

√
2). Since there are no roots of

unity in K other than ±1, we consider the case where HK (ρ) > 1. Let HK (ρ) = 2ε ,
where ε = 1, 2. By Remark 1, we have ρ = α/2ε , where α ∈ OK . Using MAGMA,
we get the following integral base for K :

ω0 = 1, ω1 = y, ω2 = 1

2
(y2 − 1), ω3 = 1

4
(y3 + y2 − y − 1).
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Since all the conjugates of ρ have absolute value 1, we obtain the two equalities:

((a0 − 2a1) + a1
√
2)2 + (2 − √

2)((a2 − 2a3) + a3
√
2)2 = 22ε,

and

((a0 − 2a1) − a1
√
2)2 + (2 + √

2)((a2 − 2a3) − a3
√
2)2 = 22ε .

It follows that

(a0 − 2a2)
2 + 2a22 + 2(a1 − 3a3)

2 + 2a23 = 22ε (4)

and

2a0a2 − 4a22 + 8a1a3 − 14a23 − a21 = 0. (5)

From (3) and (4), we deduce that a0, a1, a2 and a3 are even. Furthermore, we have
4|a1.

Suppose that ε = 1. If a2 or a3 is not zero, then the left-hand side of (3) is >4
which is a contradiction. Hence a2 = a3 = 0. Similarly, we deduce that a1 = 0. Then
a0 = ±2 and so ρ ∈ Q which is not the case.

Suppose next that ε = 2. Putting ai = a′
i (i = 0, 1, 2, 3), we have

(a′
0 − 2a′

2)
2 + 2a′

2
2 + 2(a′

1 − 3a′
3)

2 + 2a′
3
2 = 4. (6)

If a′
0 − 2a′

2 �= 0, then (5) implies that a′
1 = a′

2 = a′
3 = 0 and so ρ ∈ Q which is

a contradiction. Then a′
0 = 2a′

2. If a
′
3 = 0, then (5) implies that a′

1 = ±1 and so
a1 = ±2. Since 4|a1 we obtain a contradiction. Thus a′

3 = ±1. If a′
1 − 3a′

3 = 0, then
a1 = ±6 and so 4 does not divide a1 which is a contradiction. Finally suppose that
a′
2 = 0. It follows that a′

1 − 3a′
3 = ±1. Thus, we have

(a0, a1, a2, a3) = (0, 8, 0, 2), (0,−8, 0,−2), (0, 4, 0,−2), (0,−4, 0, 2).

We see that these values do not satisfy (4). Finally, we have (ȳ+ y)/2 = 0 and we see
that the equation Y 4F(0, 1) = 3

√
2 − 4 has no solution in Q(

√
2). Hence the result

follows.
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