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Abstract

The paper is devoted to the study of the weight distribution of irreducible
cyclic codes. We start from the interpretation due to McEliece of these weights
by means of Gauss sums. Firstly, a p-adic analysis using Stickelberger congru-
ences and Gross-Koblitz formula enable us to improve the divisibility theorem
of McEliece by giving results on the multiplicity of the weights. Secondly, in
connection with a conjecture of Schmidt and White, we focus on index 2 bi-
nary irreducible cyclic codes. We show, assuming the generalized Riemann
hypothesis, that there are infinitely many such codes. Furthermore, we con-
sider a subclass of this family of codes, called Quadratic Residue codes. The
parameters of these codes are related to class numbers of some imaginary
quadratic number fields. We give an elementary proof of the non-existence of
two-weight binary irreducible cyclic codes of index 2.

1 Introduction

Very recently, Wolfmann proved that a two-weight binary cyclic code is necessary
irreducible (see [Wolf]). On the other hand, it is well known that there exists two in-
finite class of irreducible cyclic codes with at most two nonzero weights: the subfield
codes and the semiprimitive ones. Apart from these two families, 11 exceptional
codes have been found by Langevin (see [Lan]) and Schmidt and White (see [S-W]).
It has been conjectured in this last paper that this is the whole story. We investigate
here this kind of questions.

In the first part of this article, we recall the interpretation due to McEliece of
the weights of an irreducible cyclic code by means of linear combinations of Gauss
sums. The McEliece theorem on the divisibility of the weights plays a significant
role in the study of weight distributions. In particular, Schmidt and White deduce
from it a necessary and sufficient condition for an irreducible cyclic code to be a
two-weight code.

In the second part, we use the Stickelberger congruences and the Gross-Koblitz
formula to obtain two new results that improve the theorem of McEliece. We study
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the functions that appear in the p-adic expansion of the weight of a codeword. The
estimation of their algebraic degree lead us to results on the divisibility concerning
the multiplicity of the weights by means of Ax and Katz theorems.

In the last part, we are interested in the conjecture of Schmidt and White on
irreducible cyclic codes c(p,m, v). Since they proved that it holds for index 2 codes
(conditionally on the Generalized Riemann Hypothesis), we focus our attention on
this class of codes. We prove that, conditionally on G.R.H., there are infinitely many
index 2 binary irreducible cyclic codes c(2,m, v) with v prime. This result can be
seen as an analogue of the Artin conjecture on primitive roots. Thus, this family of
codes seems to be interesting in view of the result of Schmidt and White. However,
combining a result of Langevin in [Lan] with an upper bound on the class number
of imaginary quadratic number fields derived from a result of Louboutin in [Lou],
we are enable to prove, and without assuming G.R.H., that there doesn’t exist any
two-weight index 2 irreducible cyclic code c(2,m, v) with v > 3 prime and v ≡ 3
(mod 4).

2 McEliece theorem

Let K be a finite field with p elements, p prime, and L be an extension of K of degree
[L : K] = m, of order say q. Let n be a divisor of q − 1 and write v = (q − 1)/n.
Let ζ be a primitive n-th root of unity in L. Consider the following map Φ:

Φ : L −→ Kn

a 7−→
(
TrL/K(aζ−i)

)n−1

i=0

where TrL/K is the trace of the field L over K. It is easy to see that the image
Φ(L) of L by Φ is an irreducible cyclic code, of length n, denoted c(p,m, v) in [S-W],
its dimension is equal to ordn(p) the multiplicative order of p modulo n. These are
the codes we are interested by. For an element t of L, let us denote by w(t) the
weight of Φ(t). The well known McEliece formula gives the weight of Φ(t) in term
of Gauss sums

w(t) =
n(p− 1)

p(q − 1)
(q −

∑
χ∈Γ\{1}

τL(χ)χ̄(t)) (1)

where Γ is the group of characters that are trivial over K∗ and ζ, see [S-W]. The
Gauss sum τL(χ) is implicitly defined with respect to the canonical additive charac-
ter, say µL, of L. By definition,

τL(χ) =
∑

x∈L∗
χ(x)µL(x).

Note that a change of additive character produces a permutation of weights. As in
[S-W], let us denote by θ the greatest integer such that, for all non trivial χ ∈ Γ, pθ

divides τL(χ). The famous Stickelberger theorem (see next section) claims

θ =
1

p− 1
min

0<j<v
S(jn)

where S(jn) is the sum of the p-digits of jn.
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Theorem 1 (McEliece) All the weights of the irreducible cyclic code c(p,m, v) are
divisible by pθ−1. Moreover, one of them is not divisible by pθ.

Sketch of the proof. It suffices to group together the terms of minimal p-adic
valuation in (1) to get the first part of the theorem. The second part comes from
the independence (modulo p) of the multiplicative characters of L.

A two-weight code is a code with two nonzero Hamming weights. In order to
classify the irreducible cyclic codes, we may assume that v divides (q−1)/(p−1) i.e.
n is a multiple of p− 1. In that case, the order of Γ is (q − 1)/n and the McEliece

formula appears as the Fourier inversion formula of the map t 7→ f(t) = qz(t)−n
p−1

,

where z(t) denotes the number of zero components of the codeword Φ(t). Moreover
if G denotes the group of order n in L∗, the map f(t) is defined over the quotient
group V = L∗/G. Let us set f := ordv(p), and since nv = pm − 1, f divides m and
we set m = fs.

Theorem 2 (Schmidt-White) The irreducible cyclic code c(p,m, v) is a two-weight
code if and only if there exists an integer k satisfying the three conditions

(1) k divides v − 1

(2) kpsθ ≡ ±1 (mod v)

(3) k(v − k) = (v − 1)ps(f−2θ)

Sketch of the proof. Using Fourier analysis, one can prove that

D = {t ∈ V | pθ divides w(t)}

is a difference set of order pf−2θ implying (3). This set or its complementary is a
(v, k, λ) difference set satisfying (1) & (2). Surprisingly, the three conditions are
sufficient.

Traditionally, one says that p is semiprimitive modulo v when −1 is in the
group generated by p in (Z/vZ)∗. In this case, all the Gauss sums are rationals,
θ = f/2, the code c(p,m, v) is a two-weight code with k = 1. Each of these assertions
characterizes the semiprimitivity.

3 p-adic weight formula

In this section, we p-analyse the function

f(t) =
∑

1 6=χ∈Γ

τL(χ)χ̄(t). (2)

The condition v | q−1
p−1

implies Γ ⊥ K∗ whence the algebraic integer f(t) is in fact
rational. Let us consider the p-adic expansion of f :

f(t) = pθ
+∞∑
i=0

fi(t)p
i (3)
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where each fi maps L into {0, 1, . . . , p− 1} the set of representatives of Fp. In the
first part of this section, we use the Stickelberbger’s congruences to determine the
algebraic degree of f0. In the second part, we will use the Gross-Koblitz formula to
give an upper bound on the degree of f1.

In what follows, the notations are those of Koblitz [Kob], see also [Kob] for the
case p = 2. We realize the finite field L as the quotient ring Zp[ξ]/(π), where ξ is
a (q − 1)-root of unity in an algebraic extension of Qp the field of p-adic numbers
and π is the root of Xp−1 + p. The Teichmüller character of L, denoted by ω, is the
multiplicative character of L defined by the relation

ω(ξ (mod π)) = ξ.

It is important to remark that t 7→ ω(t) (mod π) is nothing but the identity of
L∗. The Gross-Koblitz formula claims the existence of an additive character ψπ such
that, for any residue a modulo q − 1, the following holds:

τL(ω̄a, ψπ) = πS(a)
f−1∏
j=0

Γp(1− 〈 p
ja

q − 1
〉) (4)

where S(a) = a0 + a1 + . . .+ af−1 is the sum of the p-digits of a =
∑f−1

i=0 aip
i, 〈x〉 is

the fractional part of x, and Γp the p-adic gamma function defined by

∀k ∈ N, Γp(k) = (−1)k
∏

j<k, p6 |j
j, ∀s ∈ Zp, Γp(s) = lim

k→s
Γp(k).

3.1 The function f0.

The first approximation of the p-adic gamma function:

Γp(1−
a

q − 1
) ≡ Γp(1 + a0) ≡ (−1)1+a0a0! (mod p)

gives the famous Stickelberger’s congruences

τL(ω̄a, ψπ) ≡ R(a)(−1)S(a)πS(a) (mod pπS(a))

where R(a) is essentialy the product of factorials of the digits of a

R(a) = (−1)f
f−1∏
i=0

ai! .

By definition, the parameter θ satisfies (p−1)θ = min0<j<v S(jn). We introduce
the set

J = {j | S(jn) = (p− 1)θ},
so that

f0(t) ≡
∑
j∈J

R(jn)tjn (mod p).

Using any K-basis of L, the function f0 becomes a mapping from Kf into K. Since
all the exponents jn have a constant p-ary weight equal to θ, the algebraic degree of
f0 is less or equal to θ. The previous theorem of McEliece claims that the weights
of an irreducible cyclic code of parameter θ are divisible by pθ−1. The next theorem
specifies the multiplicities of the weights.
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Theorem 3 Let w0 p
θ−1 be a weight of an irreducible cyclic code of parameter θ.

The number of codewords of weight of the form w pθ−1 with w ≡ w0 (mod p) is
divisible by pdf/θe−1.

Proof. The codeword Φ(t) has weight w(t) = w pθ−1 with w ≡ w0 (mod p) if and
only if f0(t) ≡ w0 (mod p). By Ax theorem (see [Ax]) the number of solutions is
divisible by pdf/θe−1.

Example 4 The weights of the binary [23, 11] Golay code are : 0, 8, 12 and 16
whence θ = 3 and Theorem 3 claims that the number of codewords of weight 12 is
divisible by 2d11/3e−1 = 8. According to [MWS], this number is 56× 89.

Remark 5 In the case of a two-weight code, the condition (3) of the theorem of
Schmidt and White implies a divisibility by a large power of p. It seems very inter-
esting to study the function f0 by means of the tools exposed in [A-S].

3.2 The function f1

All along this subsection, we assume that p = 2. The first values of the 2-adic gamma
function are: Γ2(0) = 1, Γ2(1) = −1, Γ2(2) = +1, Γ2(3) = −1, and Γ2(4) = 3 ≡ −1
(mod 4). In particular,

Γ2((1− 〈 a

q − 1
〉) ≡ Γ2(1 + a0 + a12) ≡ (−1)1+a0+a0a1 (mod 4)

and we get the congruence

τL(ω̄a, ψ) ≡ (−1)Q(a)2S(a) (mod 22+S(a)) (5)

where Q(a) = f +a0a1 +a1a2 + . . .+af−1a0. To improve our approximation of f(t),
we introduce the set Υ = {k ∈ N | 1 ≤ k < v, S(kn) = θ + 1} and the partition
Jε = {j ∈ J | Q(jn) ≡ ε (mod 2)}. We have

f0(t) + 2f1(t) ≡
∑
j∈J0

ωjn(t)−
∑
j∈J1

ωjn(t) + 2
∑
k∈Υ

ωkn(t) (mod 4).

The Boolean function f1 depend on the sets Υ and J1 but also of the “carry
function” g(t) corresponding to the relation∑

j∈J

ωjn(t) ≡ f0(t) + 2g(t) (mod 4).

By classical 2-adic tricks, we get:

g(t) =
1

2
(

∑
j∈J

ωjn(t)− (
∑
j∈J

ωjn(t))2)

≡
∑
j<j′

ω(j+j′)n(t) (mod 2).

Reducing modulo 2, gluing all pieces together, we get:

f1(t) =
∑
j<j′

t(j+j′)n +
∑
j∈J1

tjn +
∑
k∈Υ

tkn
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Theorem 6 Let w0 2θ−1 be a weight of a binary irreducible cyclic code. The number
of codewords with weight of the form w 2θ−1 with w ≡ w0 (mod 4) is divisible by

2b
f−3θ

2θ
c.

Proof. Let a + 2b + · · · be the 2-adic decomposition of w0. The weight of Φ(t) is
of the form w pθ−1 if and only if t is a solution of the system

f0(t) = a, f1(t) = b.

The result is a consequence of the theorem of Katz in [Kat] since the algebraic
degrees of f0 and f1 are respectively less or equal to θ and 2θ.

Example 7 A sufficient condition to obtain a non trivial result is n > 1 and 5θ < f .
The first instance is the [11, 10]-code (v = 93, θ = 2), and the second is the [6765, 20]-
code (v = 155, θ = 4).

4 Binary Irreducible Cyclic Codes

4.1 Primes which generate squares and index 2 codes

Is there infinitely many primes p such that 2 generates the squares modulo p ? Before
answering this question, recall that the Artin conjecture asserts that 2 is a primitive
root for infinitely many primes (the conjecture is proved by Hooley assuming the
Generalized Riemann Hypothesis). In other words, there is infinitely many primes
p such that the order of 2 modulo p is equal to p− 1.

We consider here an analogue question : is there infinitely many primes p such
that 2 generates exactly the squares modulo p ? We can give an another formulation
of this question : is there infinitely many primes p such that the order of 2 modulo
p is equal to p−1

2
or equivalently such that 2 has index 2 modulo p ? Indeed, it is

equivalent since the group (Z/pZ)∗ is cyclic and since the subgroup of squares has
index 2 (p odd).

Consider the set

H(x) := ]{p ≤ x | p prime and ordp(2) =
p− 1

2
}.

Murata has proved (see [Mur]) that G.R.H. implies that for every ε > 0,

H(x) =
3

8
δπ(x) +O

(2εx log log x

log2 x

)
,

where

δ =
∏

` prime

(
1− 1

`(`− 1)

)
is the Artin constant.

Then, under G.R.H., we can conclude positively to our question: there is in-
finitely many primes p such that 2 has index 2 modulo p.

Recall that a code c(p,m, v) is said to have index 2 if the multiplicative order of
p modulo v is equal to ϕ(v)/2, where ϕ is the Euler function. In particular, we have
shown that:
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Proposition 8 Conditionally on G.R.H., there are infinitely many index 2 binary
irreducible cyclic codes c(2,m, v) with v prime.

Remark 9 Recall that an index 2 binary irreducible cyclic codes c(2,m, v) with
v prime has at most three different nonzero weights. Thus, this codes are good
candidates to be two-weight codes. By the way, we can state that, conditionally on
G.R.H., there are infinitely many binary codes with at most three different nonzero
weights.

4.2 The residue quadratic case

For the study of a special class of three-weight codes, Langevin in [Lan] introduced
more restrictive conditions on our integer v which lead us to the quadratic residue
case for v, namely the index 2 case with the additional conditions that v is an odd
prime greater than 3 with v ≡ 3 (mod 4). In other words, the integer v satisfies
the QR-case if:

(i) v is a prime greater than 3,

(ii) ordv(p) = v−1
2

,

(iii) v ≡ 3 (mod 4).

This case is of particular interest because of an explicit relation between the class
number h of the imaginary quadratic number field Q(

√
−v) and the Gauss sums

(see [Lan]).
An irreducible cyclic c(p,m, v)-code with v satisfying the QR-conditions is called

a QR-code. Recall that for such a code, the order of p modulo v divides m and the
quotient is denoted by s (see section 2). We have:

Theorem 10 There does not exist two-weight binary QR-code.

Proof. By theorem 3.3 of [Lan], we know that the code c(p,m, v) has at most two
weights if and only if

v + 1

4
= phs. (6)

The previous relation implies that:

4phs ≡ 1 (mod v).

If p = 2, we have that phs+2 is 1 modulo v, which implies that the order of p modulo
v divides hs + 2. But, by hypothesis, we have ordv(p) = (v − 1)/2. Then, taking
the logarithm in (6), we have the inequalities:

v − 1

2
≤ hs+ 2 = log(

v + 1

4
) + 2. (7)

implying v = 7.
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