BULLETIN OF THE
GREEK MATHEMATICAL SOCIETY
Volume 52, 2006 (61-76)

Class number in non Galois quartic and non abelian
Galois octic function fields over finite fields

Yves Aubry

Abstract

We consider a totally imaginary extension of a real extension of a rational
function field over a finite field of odd characteristic. We prove that the relative
ideal class number one problem for such non Galois quartic fields is equivalent
to the one for non abelian Galois octic imaginary functions fields. Then, we
develop some results on characters which give a method to evaluate the ideal
class number of such quartic function fields.
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1. Introduction

Let L be a totally imaginary extension of a function field K which is itself a real
extension of a rational function field k = Fy(z). This means that the infinite place
oo of k totally splits in the extension K/k and that this places have only one place
above each of them in the extension L/K. The determination of all such imaginary
fields L with L/k Galois and cyclic and with ideal class number one has been done
by S. Sémirat in [11]. The quartic bicyclic Galois case has been solved by X. Zhang
in [13] in odd characteristic and by the author and Dominique Le Brigand in [3] in
even characteristic.

We are interested here in the determination of all such non Galois quartic fields L
with ideal class number equal to one (which will be called the ideal class number one
problem), a problem which has been solved by K. Uchida in [12] and by S. Louboutin
in [8] in the number field case.

In section 2, we recall some definitions and some general results without any
assumption on the degrees of L/K and K/k. We give also an ambiguous classes
formula for cyclic extensions.

The author is very grateful to the “Institut de Mathématiques de Luminy” - C.N.R.S. - Marseille
- France for its hospitality during this work.
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In section 3, we suppose that L/K is quadratic. We give a result on the dyadic
valuation of the relative ideal class number of L. Then, we give a formula for it in
terms of a character y, which is a particular case of the Galois situation studied in
[10].

Section 4 is devoted to the quartic situation : L/K and K/k are supposed to
be quadratic. Firstly, we show, as K. Uchida and S. Louboutin for number fields
(see respectively [12] and [8]), that the relative ideal class number one problem for
such non Galois quartic fields is equivalent to the one for non abelian Galois octic
imaginary fields. Secondly, if we suppose furthermore that K has ideal class number
one, we give a method to evaluate the character x. Thirdly, we investigate the case
where L has ideal class number one.

2. Preliminaries
2.1. The general setting

Let K be an algebraic function field in one variable over a finite constant field F,
with ¢ elements (¢ odd) and let Sk be a non empty finite set of places (i.e. prime
divisors) of K (called places at infinity of K, the places not in Sk will be called finite
places). Let Ok be the ring of elements of K whose poles are in Sk. The ring O
is a Dedekind domain and we denote by Cl(Ok) its ideal class group and by ho, its
order, called the ideal class number of K.

Let L be a finite extension of K contained in a separable closure of K with constant
field F, and let St be the set of places of L which extend those in Sg. By analogy
with the number field case, the extension L/K is called real if the number of places
in Sy, is equal to |Sy| = [L : K] |Sk|, i.e. every place in Sk splits completely in
L. Otherwise, the extension is called imaginary, and totally imaginary if |Sy| = [Sk]|
(i.e. every place in Sk has only one place above it in L).

Let Op, be the ring of elements of L whose poles are in Sy. This ring is also the
integral closure of Ok in L.

Let k = F,(z) be a rational function field and S, = {co} be the place at infinity
of k corresponding to 1/x. Note that the “ring of integers” of k with respect to Sy is
Oy = Fy[z] the polynomial ring with coefficients in F,.

In this paper, all the functions fields will be supposed to have for exact constant
field F, with ¢ odd and will be contained in a separable closure of k = F,(z).

Now consider a real extension K/k of degree d and denote by Sk = {Py,---, P;}
the set of places of K above the infinite place oo of k. Let us consider finally a totally
imaginary extension L of K of degree n and denote by S, = {P1,---,P4} the set of
places of L above the P;’s. Our situation is the following one:
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Note that this data is equivalent to the data consisting of a degree n totally imag-
inary extension L/K of functions fields and a non empty finite set Sk = {Py,- -, Ps}
of places of K. Indeed, by Riemann-Roch theorem, we get the existence of a function
x € K such that K is a degree d extension of k(z) and such that the places of K over
oo are exactely Py, -+, Py.

Note also that if the imaginary extension L/k is Galois, K can also be described
as the fixed field of the inertia group of oo, that is the maximal real subfield of L (the
maximal subfield of L in which oo splits totally).

2.2. Units, regulators and class numbers

Let hr denotes the divisor class number of a function field F//F, that is the number
of rational points over F, of the Jacobian of the smooth projective algebraic curve
associated to F. We have the following well-known relation due to F.K. Schmidt:

dorhr =roshor,

where ho,. is the ideal class number of F' with respect to the set of places Sr, do,
is the ged of the degrees of the places of Sr and ro, is the index of the group of
principal divisors supported on Sg in the group of zero degree divisors supported on

Let Ro,. be the regulator of O (which corresponds to the R%K—regulator defined
in [10]). We have the following relation which can be considered here as a definition
of R@F:

__dorRo,
HP€SF degP

The analogue of Dirichlet unit theorem states that the two unit groups O7 and
O} of L and K (modulo Fy) are of rank |Sk|—1=|S|—1 = d—1. The point is that
these two abelian groups have the same rank. We can estimate the index Qp/x of
O3, in O3, analogue to the Hasse index in the number field case (see [2] for instance
for a proof):

TOp
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Proposition 1 Let L/K be totally imaginary. Then, we have:
(i) Qryx =[O} : O%] divides [L : K]#Sx—1,
(ii) Ro, /Ro, = [L: KI***~1/Qp k.

It is well-known that for any finite separable extension L/K of function fields,
the divisor class number of K divides that of L (in fact, the polynomial Pk (T") on
the numerator of the zeta function of K divides Pr(T), that of L, in Z[T], see for
example [2] for a proof). For totally imaginary extensions L/K, the result holds also
for ideal class numbers, as shown in the next proposition (see [9] for a proof with the
additional assumption that some finite place of K is totally ramified in L or some
infinite prime of K is inert in L).

Proposition 2 If L/K is a totally imaginary extension, i.e. if every place in Sk
has only one place above it in L, then the ideal class number ho, of K divides that
ho, of L. Define the relative ideal class number by

h(BL = h(’)L/h(’)K-

Proof. Let K©% denote the Hilbert class field of K with respect to O i.e. KO«
is the maximal unramified abelian extension of K in which every place of Sk splits
completely. The field LK ©* is contained in the Hilbert class field LOL of L and thus
[LK®* : L] divides [LO* : L] which is precisely the ideal class number of O

The isomorphism given by the restriction Gal(LK®% /L) — Gal(K°x /L N K9x)
defined by ¢ +— | o, gives us [LKOK : L] = [KOx : L N K9K].

Finally, we have L N K©% = K since first, the infinite places of K split in K% and
thus in L N K9« and secondly they are totally ramified or inert in L and thus in
LN K°x.

Thus, [LK9% : L] = [K9% : K] = he,, divides [L° : L] = ho, . |

2.3. The zeta function

Let us introduce now the zeta function (o, (s) of the Dedekind domain Ok by

1
Conls) = > 7y
I

where s € C, the field of complex numbers, where the sum ranges over the nonzero
ideals I of Ok, and where N(I) is the norm of the ideal I, that is, by definition the
number of elements of the residue class ring Ok /1.

Unique factorization of ideals in Ok implies the following Euler product represen-

tation: .
N

PeSpec(Ok)—{0}
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where Spec(Ok) is the set of prime ideals of Ok.
In a same way, we define the zeta function (o, (s) of the Dedekind domain Oy,
and we have:

CoL(s) = 11 (1 - N(lP)s)_l - I I] (1 - N(lp)s)_l'

PeSpec(O1)—{0} PeSpec(Ox)—{0} P[P

2.4. Ambiguous classes in cyclic extensions

If we suppose that the extension L/K is cyclic, then we can prove the following
ambigous classes formula in the same way as the one in lemma 4.1. p. 307 of [6] for
number fields.

Lemma 3 Let L/K be a cyclic extension of Galois group G, Cp, = Cl(OL) be the
ideal class group of Or, CY be the ambiguous ideal class group (the subgroup of Cr,
of elements fized under G) and e(L/K) = [[pgs, e(P)[Ipes, e(P)f(P) where e(P)
and f(P) stand for the ramification index e(P | P) and residual degree f(P | P) of
any place P in L over P. Then,

hoKe(L/K3

[L: K][Of : NpjxL* N O3]

where Ny i denotes the norm of L over K.

Proof. The proof given in [6] for number fields also holds in the function field case.
The point is the use of corollary 2 p. 192 of [5] which gives that:

HY(G,05) 1
HI(G,og) [L: K] II 16r]

PeSk

where G'p denotes the decomposition group of P in the cyclic extension L/K, which
has order e(P)f(P). This gives the contribution of the places at infinity in the
definition of e(L/K). O

3. The relative ideal class number for L/K quadratic

In this section, we suppose that the imaginary extension L/K is quadratic.

3.1. On the dyadic valuation of the relative ideal class number

Proposition 4 Let L/K be an imaginary quadratic extension and K/k be a real
extension of the rational function field k = Fy(x). Let ty x be the number of finite
places (i.e. not in Sk ) ramified in L/K. Then, 2'2/5~" divides hg, .
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Proof. By the ambiguous class formula (lemma 3), we have:

hOK otL/ k+HiSk
205 Npyw L N O]’

Gal(L/K
[

since e(L/K) = [ pgs,. ¢(P)[1pcs, e(P)f(P) = 2"/5 x 245k Moreover, we clearly
we have
(9;{2 C NL/KL* NO%

since [L : K] = 2. Thus, [Of : N,k L* N O%] divides [0} : O32]. But
(05 : 032] = [F : F2.270(Ok) = 289K

since the rank rk(O}) of the finitely generated group O3 is equal to #Sx — 1 by
Dirichlet’s theorem and since the non zero squares in a finite field of odd character-
istic have index 2 in its multiplicative group. Thus 2¢2/5x~1hy - divides the order of
CLGal(L/ K) Which divides itself the ideal class number ho, by Lagrange theorem on
group order, hence the result. O

3.2. Relative ideal class number and L-functions

The following investigation is actually a particular case of Galois extensions dealt
with in [10] but we will write the things explicitly because of the simplicity of the
purpose.

As the prime ideals P of Ok are inert, ramified or splits in L/K, we see imme-
diately that the norm N(p) of p | P is equal to N(P)?, N(P) or N(P). Thus, we
obtain:

COL (3) = COK (S)LOK (SaX) (3)

Lo =TI (-3)

PeSpec(Ok)—{0}

where

with x(P) = —1, 0, 1 according as P is inert, ramified or splits in L/K.

To obtain a relation between the zeta function (o, (s) of Ok and its class number
ho, , one can define the zeta function of the function field K by:

1 -1
where P ranges over all the places (i.e. prime divisors) of K. Then, we have

_ N Ui
) =Couls) TT (1= ipp) =200 = g iogsy @

PeSk
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A residue calculus gives us (see [9]):
—h
o (5) = MO0 (1 )5 158S 1y 0(55%),
and thus we obtain

Proposition 5 Let L/K be an imaginary quadratic extension and K/k be a real
extension of degree d of the rational function field k = Fy(x). Then, we have:

ho, = Qr/x2' Lo, (0,X)
Proof. The equality follows from (5) and proposition 1. |

Proposition 6 Let L/K be an imaginary quadratic extension and K/k be a real
extension of the rational function field k = Fy(x). Then, Lo, (s,x) is a polynomial
in ¢~ of degree O = 2(gr, — gk ) + j, with j = ${P; € Sk | P; inert in L/K} and
where gr, and gi are the genus of the functions fields L and K.

Proof. Equations (3) and (4) implies:

-1
o, () _ cu(s) Mresic (1= wb7) — ate)
Conle) "W (1 ) T

Loy (57X) = LOC(S)

-1
e
PeSk N(P)®

—T1 - Ille leSlblllly ()f tlle IlllIIleIatOIS Of t:he Zeta
II@ES[ ( N(p)* )

function of the functions fields L and K shown in [2] implies that ({/Cx)(s) is a
polynomial in ¢~* of degree 2(g;, — gk ). The extension K/k being totally real, the
infinite places of K have degree 1 and for P € Sk we get: 1 — ﬁ =1—¢q *. The
result follows from the fact that N(P;) = N(P;)? if and only if P; is inert in L/K.

O

where Lo (s) =

Now, we extend y multiplicatively to the nonzero ideals of Og. If I is a nonzero
ideal of O, define the degree of I by N(I) = ¢¥°8!. For any integer i, consider as in
[4], the sum

s00=3 X
deg I=i
where the sum ranges over all nonzero ideal I of Ok of degree i. Remark that we
have Sy(x) = 1.
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Consider the sum Z?:o Si(x) with 9 defined in proposition 3.2. This sum is finite
since there exist only finitely many ideals in O of fixed degree.
We have:

Proposition 7 Let 0 be as in proposition 3.2. We have
17}
LOK O X = ZSZ
=0

Proof. In the following, the sums range over nonzero ideals I of Ok.

_ Cx(P) N
LOK(S7X) - H (1 N(P)5>

PeSpec(Ok)—{0}

S x() _ 5~ x)

s sdegl

—~ N(I) — q*dee

SDIDIE IS WD I
=0 deg I=1 qls = 0 ZS deg I=1

= > (@)=Y _(a7%)'Six),
i=0 i=0

where the last equality holds by proposition 3.2. |

4. The quartic case

4.1. The relation with the Galois closure

Lemma 8 let L/K be an imaginary quadratic extension and K/k be a real quadratic
extension. If L/k is non Galois then the Galois closure of L is a dihedral octic function
field (i.e. [L: k] =8 and Gal(L/k) ~ Dy the dihedral group of order §).

Proof. The Galois closure N of L is just the compositum of L and its conjugate
L’ by the non trivial element of the Galois group Gal(L/K). The function field N
has degree 8 over k, is not abelian and has more than one subfield of degree 4 over k,
which excludes the quaternionic case. O

Thus, we are in the following situation, where all the extensions are quadratic:
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—

L r N+

|

K

N

E

/
\ k

where L’ is the conjugate of L.

Lemma 9 Let L/ K be imaginary quadratic, K/k be real quadratic, L/k be non Galois
and N be the Galois closure of L. Then, we have the following relation between their
zeta functions:

Cn () /G (8) = (Co(s) /G ().

Proof. Since the extension N/K is abelian, we can show as in [3] (see also chapter
14 of [10]) that we have the factorization:

(N (8)/Cre(8) = (Co(s) /Cre (8))(Crr (8)/Cre (8)) (Cove () /Cre ()

which implies that:

(v (8)/Cn+ (s) = (CL(5)/Cre (8))(Cr (5) /Ci ()

But the functions fields L and L', with L’ the conjugate of L under Gal(K/k), have
the same zeta function. Then, the result follows. O

We are now in position to give a relation between the relative ideal class numbers
of N and L:

Proposition 10 Let L/ K be imaginary quadratic, K/k be real quadratic, L/k be non
Galois and N be the Galois closure of L. Then we have:

_ Qn/N+ ,, _
hoN: 2/ (hoL)Q'

Proof. We have seen that for any function field 1, we have:

o () = —MOO Ing)F 1585514 O(s55),
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Considering the function A, (s) = Co,(s)/s*9% 71, we get by lemma 4.1

(Aow/Ao,. )(0) = (R0, /A0, ) (0)

since §Sny — #1Sv+ = 1S, — Sk = 0. Thus, we obtain:

Jf(;ihg]v = (g(iih@)z.

Thus, proposition 1 and §Sy+ = 2SSk give us:
B - QNN+ ( ho, )2
On 2 Qr/x/

Now, we show that, under the hypothesis of the proposition, we have Qp,x = 1.
Suppose on the contrary that Qr/x = 2 (by proposition 1, it is 1 or 2) and let us show
that this implies that L/k is Galois. If Qr/x = 2, we can write L = K (\/x) with ex
a fundamental unit of Q. Consider tbe constant field f}xterisions K :~K~®Fq F . for
K =k,K,L and N. The extension L/k is Galois since L = K(\/ex), K /k is real and
the norm Ny 7 (ex) is a square in K (see lemma 4.3 (i)). Moreover, the extension
N /k is Galois of Galois group Dy x Z/2Z and thus N /k is Galois of Galois group the
dihedral group Dy. Hence L is the fixed field of N by a normal subgroup H of order
2 of D4. Thus:

L=LNnN=NIx{1} n N{1}x2/2Z _ NHXZ/2Z

Since H is a normal subgroup of Dy this implies that H x Z/2Z is a normal subgroup
of Dy x Z/2Z and we obtain that L/k is Galois, which is in contradiction with our
hypothesis. Finally, the Hasse index Qr,/x = 1 and the proposition is proved. 0

The Hasse index Qn/n+ is equal to 1 or 2 according to proposition 1. Thus,
remarking that relative class numbers are integers, we have the following corollary.

Corollary 11 Let L/K be imaginary quadratic, K/k be real quadratic, L/k be non
Galois and N be the Galois closure of L. Then we have:

ho, =1<=hy, =1.

In other words, the relative ideal class number one problem for imaginary quartic
non Galois function field having a real subquadratic field is equivalent to the one in
the octic Galois dihedral case.

In fact, it remains to consider the general octic Galois case since the quaternionic
case can be set aside by the following proposition.
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Proposition 12 Let N/N*T be imaginary, Nt /k be real with N/k Galois with Galois
group Qs the quaternionic group of order 8. Then, hy,  is even.

Proof. By proposition 3.1, it suffices to show that the number ¢/ y+ of finite ramified
places in N/N is at least 2. But since the extension N/k is quaternionic, this implies
that the extension N*/k is biquadratic (i.e. Gal(N T /k) ~ Z/2Z x Z/2Z). Combined
with the fact that N T /k is real , this implies that there is at least two finite places
ramified in NT /k. But they are also ramified in N/N* since the subgroup of order 2
of Qg is contained in all the non trivial ones and thus any inertia group contains this
group. Hence, any place ramified in N /k is ramified in N/NT. O

4.2. A formula for quartic extensions with principal real quadratic
subfield

We are interested now in the case where L/k has degree 4 with hp, = 1. Thus,
we suppose that L/K is imaginary quadratic and that K/k is real quadratic and we
assume furthermore that O is a principal domain, i.e. that hp, =1 (since hp, =1
implies that ho,. = 1 by proposition 2). Now, let us study the symbol x(P) previously
defined (recall that L has odd characteristic).

Suppose that K = k(y/m) with m = mg € F,[X] a square-free polynomial. Since
we assume that the place oo splits in K /k, then m is necessarily a polynomial of even
degree with leading coefficient a square in F7.

Suppose that L = K(\/M) with M = M}, € Ok square-free in Og.

Let P = 7Ok be a principal prime ideal of O generated by 7. Let p € F,[X] be
such that P | p, that is such that P N F,[X] = pF,[X].

Definition. If Q) is an element of O, we define the symbol [%] tobe0ifQ e P, 1
if Q is congruent to a square modulo P, and —1 otherwise.

Lemma 13 We have
x(P) = |

]

M
P
Proof. The result follows from the fact that M is square-free in Ok O

Lemma 14 If n € F [X] and if p is not inert, we have:
n n
= (%)
n

where () is the quadratic character on Fo[X] defined to be 0 if p | n, 1 if n is
congruent to a square modulo p, and —1 otherwise.
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N(P)—1 N(p)—1

Proof. We have [5] = n~ 2 modP and (3) = n~ 2 modp. But N(P) =
N(p) = q°&? if p is not inert. i

Let Gal(K/k) = {Id,o}. We set o(m) = 7, and Tr will denote the trace of K/k.
The following theorem is an analogue of the one that holds in the number field case
(see [7]).

Theorem 15 (i) If p splits in K/k then [%£] = [(TM)] = (w) and [2L][ ] =

Y P (m)IL(7)
(1)
. o ) i
(i) If p is inert in K/k then [ |= <T)
(iii) If p is ramified in K/k then [%] = (£ ;M))‘

Proof. (i) First, let us remark that if p splits in K/k then Tr(w) ¢ (7). Indeed,
Tr(n) € (w) iff # € (w) iff (7) = (7) iff p does not split.

Now, Tr(M#) = M7 + Mr = M(w +7) + n(M — M) = M Tr(r) mod 7. Thus,
Tr(m) Tr(M7) = M(Tr(r))? mod 7 and

{Tr(w) Tr(Mir)} _ [M(’I‘I‘(TF))Q}
(m) (m) )
But Tr(m) Tr(M7) € F,[X] thus by lemma 4.2 we get:

Tr(m) Tr(M7) _ Tr(r) Tr(MT)
| J=( )

() p
" M(TH(m)*] _ (Trla) Tr(M7)
o el Gl
Since Tr(r) ¢ () we obtain [#] = [%] = (W) Furthermore, we can show

easily that: -
Gl
(m)dL(7) p
(ii) If p is inert, we have Ok /pOx = Ok /mOk which is an extension of degree
2 of Fy[X]/(p) ~ Fyaesr = Fy(p). We have in this case M = M4**" mod pO.
Furthermore, we can easily show that, if n € F[X], then

(%) =n""" "D/ mod(p)

Then, we have

S
g

MMy _ 9 = ety = = e (M

| mod pOk.
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(iii) By the property of the different, we know that (7) divides the different Do, /¥, [x

and that Do, /r,[x] is the greater common divisor of all ideal (f, («)) where a is an
integral generator of K over k and f is the irreducible polynomial for « over k (see
[5]). Since far(X) = X2 — Tr(M)X + N(M), we have fi,(M) = M — M and thus
Do, ¥, 1x] divides M — M. Hence, M — M € (m) and 2Tr(M) = 2M + 2M =
AM +2(M — M) = AM mod(r). Thus, [X4] = [44] = [2TM)] — (2Tx(M)y 0 Jemma

(m) (p)
4.2. O

This theorem provides us with a method for calculating x (P) for any nonzero prin-
cipal prime ideal P of O, hence for calculating S;(x), hence Lo, (0, x) by proposition
3.2, hence hg, by proposition 3.2.

4.3. Principal Non Galois quartic extension

The ideal class number one problem for bicyclic quartic Galois extension is treated
in [13] and [3] according as the characteristic of k is odd or even. The case of cyclic
quartic Galois extension L/k is derived from [11] which solved the prime power cyclic
case. We now investigate the non Galois quartic case.

Consider, as in the previous section, a quartic function field extension L/k with
L/K imaginary quadratic and K/k real quadratic. We set also K = k(y/m) with
m € F,[X] a square-free polynomial, Gal(K/k) = {Id,o} and L = K(v/M) with
M € Ok square-free in Og.

Lemma 16 (i) The estension L/k is Galois if and only if the norm Ny (M) =
o(M)M is a square in K. Moreover, N, (M) is a square in K if and only if
Ng (M) is a square in k or Ngp(M)/m is a square in k.

(ii) If ho, = 1 then at least one of the infinite places Py or Py of K is ramified
in L.

Proof. (i) It is easily seen that L/k is Galois if and only if o(M)/M is a square
in K which is equivalent to Ng (M) is a square in K. Moreover, if Ng /(M) =
(a(z) + b(z)y/m)? = a(z)? + b(z)?*m + 2a(z)b(x)+/m and since it lies in k, we get the
equivalence.

(ii) As remarked in [11], the constant field extension (an@L .L)/L has degree
0o, and is contained in the Hilbert class field of L, thus dp, divides hp,. Since
0o, = ged(deg Py, deg Py) where Py and Py are the infinite places of L, we obtain
that at least one of these degrees is equal to one (L/K is not supposed to be Galois)
and thus the corresponding place is ramified. ]
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Proposition 17 With the notations above, if we suppose that ho, =1 and that the
genus gx of K is non zero then the cardinality of the finite base field ¥ is less than
or equal to 5.

Proof. Since the function field L is an extension of the function field K, it follows
that the numerator polynomial Pk (T) of the zeta function of K divides that of L (see

[2] for a proof). This means that the relative divisor class number h; = II;IL( ((11)) can be
written as a product h; = Hfigf TIK )(1 — w;) with w; complex numbers of modulus

v/q (Riemann Hypothesis). Thus, we have the following lower bound:
hZ > (\/ai 1)2(gL7gK) _ (\/ai 1)2(9K71)+degDiﬂ?L/K

where deg Diff /i is the degree of the different of L/K (the last equality comes from
Riemann-Hurwitz theorem).

Moreover, using the Schmidt relation, we obtain the following lower bound for the
ideal class number of L:

Qr/x
2

2
[T degPi(y/q — 1) +desDitte i (6)

=1

ho, > hog

But now, if we suppose that hp, = 1 then by proposition 2, we obtain that hp, =
1 and by lemma 4.3, (ii), we obtain that degDiff;/x # 0 (which implies that
deg Diff /i > 2 since it is even by the Riemann-Hurwitz theorem). Thus, the in-
equality becomes :

(Va-1)" <2

with a > 2 which gives the bound on gq. 0

Remarks. For ¢ = 5, the inequality (6) implies that gr, = 2, g = 1, deg Diff /i =
2, degP; = degP2 = 1 (the two places that ramify in L/K are P; and P») and
Qr/x = 1. We have just finitely many cases to consider. Recall that the 2-rank

rk2(CL(OF)) = dimg, CI(OF)/ Cl(OF)?

of the ideal class group Cl(Op) of a quadratic function field F = k(v/m) in odd
characteristic is given by (see [1]): rk2(Cl(OF)) = n—1— pp if m has an irreductible
factor of odd degree and k2 (Cl(OF)) = n — up otherwise, where n is the number of
monic irreducible polynomial factors of m and pp is equal to 0 or 1 according as F'/k
is imaginary or real.

Thus, for a real quadratic function field extension F'/k, we have that the ideal
class number hp,. is odd if and only if m is an irreducible polynomial of even degree
(with leading coefficient a square in F;) or m is the product of two monic irreducible
polynomials of odd degree. Since we have found that the genus gx must be equal
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to 1 for ¢ = 5 and since g = degigﬁ for a real quadratic function field k(y/m), we
obtain that the polynomial m must have degree 4.

Then, the results of subsection 3.2 combined with those of subsection 4.2 provide
us a method for calculating class numbers in the remain cases given by 4.3.

For ¢ = 3, unfortunately, the inequality (6) doesn’t give us any bound on the
genus.
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