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1 Data security and Arithmetic

Problem:

A −−→open B

↑
C

(A,m, B) 7→ (B, m,A)

The transfer of the message has to be
“secure”.

This has (at least) 3 aspects:
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• Reliability (engineers)

• Correctness (coding theory, engineers
and mathematicians)

• Authenticity, privateness (cryptogra-
phy, mathematicians, computer scien-
tists, engineers)

Solutions have to be simple, efficient and
cheap!
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There was a basic decision some sixty
years ago:
Messages are stored and transmitted as
numbers.

This makes it possible to apply

Arithmetic

to data security.
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We shall concentrate to the third aspect
which uses

ENCRYPTION

provided by cryptography.

This is, in the true sense of the word, a
classic discipline:
We find it in Mesopotamia and Caesar
used it.
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Encryption Devices
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The devices shown are examples for
symmetric procedures:
There is a common secret amongst the
partners which enables them to de- and
encrypt.

In principle they are used till today, in
refined versions.
The new standard is called AES.

Typically the historical examples are in-
volving secret services and military and
the information is exchanged amongst a
community in which each member is to
be trusted.
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This has changed dramatically becau-
se of electronic communication in public
networks.
So data security has become a public
challenge. There are millions of partners
in nets.
Key exchange necessary for symmetric
systems cannot be rely on personal trust
and communication.
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Solution:
PUBLIC KEY CRYPTOSYSTEMS
( Diffie-Hellman 1976)
Each member A of the network has two
keys:

• a private key sA produced by him-
self never leaving the private secure
environment

• a public key pA published in a direc-
tory.
pA is related to sA by a (known)
One-Way function.

For key exchange and for encryption/decryption
A uses both keys (and the public key of
the partner B if necessary).
There is no practically useable leakage
of information about sA, sB !
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BASIC IDEA:
One Way Functions

(Informal)Definition:
Let A and B be two finite sets of num-
bers and f a map from A to B.
f is a one way function if a computer
can calculate f (a) in ≤ 50 ms
but with very high probability (1−10−30)
it is impossible to find for given value
f (a) the argument a during the next
1000 years by using all known methods
and all existing computers.
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Here enters MATHEMATICS

• to construct candidates for one way
functions

• to bring them in such a shape that
computation is fast

• to analyze possible attacks

We shall concentrate us to systems ba-
sed on the Discrete Logarithm
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2 Abstract DL-Systems

Recall:
We want

• exchange keys

• sign

• authenticate

• (encrypt and decrypt)

with simple protocols
clear and easy to follow implementation
rules
based on secure crypto primitives
with a well understood mathematical
background.
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Assume that A ⊂ N is finite
and that B ⊂ Endset(A).

2.1 Key Exchange

Assume that the elements of B commu-
te:
For all a and b1, b2 ∈ B we have

b1(b2(a)) = b2(b1(a)).

Then we can use

A,B

for a key exchange system in the
following way:
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We fix a
(publicly known) base point
P0 ∈ A.
The members of the
crypto community
Qi choose si ∈ B
and publish
pi := si(P0).
Then
si(pj) = sj(pi)
is the shared secret of
Qi and Qj.
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The security depends (not only) on the
complexity to find from the knowledge
of randomly chosen a ∈ A and given
a1, a2 in B ◦ {a} all elements b ∈ B
with b(a) = a1 modulo

FixB(a2) = {b ∈ B; b(a2) = a2}.
The efficiency depends on the “size” of
elements in A,B and on the complexity
of evaluating b ∈ B.
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2.2 Signature Scheme of El Gamal-
Type

Again we assume that B ⊂ Endset(A).
In addition we assume that there are
three more structures:

1.
h : N→ B,

a hash function

2.
µ : A× A → C

a map into a set C in which equality
of elements can be checked fast

3.

ν : B ×B → D ⊂ Homset(A,C)

with

ν(b1, b2)(a) = µ(b1(a), b2(a)).
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Signature:
a ∈ A is given (or introduced as part as
the public key).

P chooses b and publishes b(a).
Let m be a message.
P chooses a random element k ∈ B.
P computes

φ := ν(h(m) ◦ b, h(k(a)) ◦ k)

in D.
P publishes

(φ,m, k(a)).

Verification:
V computes

µ(h(m)(b(a)), h(k(a))(k(a)))

and compares it with φ(a).
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2.3 The most popular realization

A ⊂ N a cyclic group
of prime order p
(with composition written multiplicative-
ly.
with a numeration.

Choose a0, a generator of A.
B = AutZ(A) ∼= (Z/p)∗
identified with {1, ..., p− 1}
by b(a) := ab.

C = A and µ = multiplication in A

ν = addition of endomorphisms
h = a hash function
from N to {1, ..., p− 1}.
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We translate the

Signature scheme: to this situation:
P chooses randomly and secretly, his
private key x ∈ {1, ..., p − 1} and
publishes his public key Y := ax

0 .

To sign a message m, P chooses a se-
cond random number k and computes

s := h(m)x + h(ak
0)k mod p.

The signed message consists of

(m, ak
0 , s)

To check the authenticity of (P,m) one
computes

S = as
0, T = Y h(m), H = a

h(ak
0)

0 .

and checks whether

S = T ◦H.
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The security considerations
for the crypto primitive
boil down to the complexity of the com-
putation of the
Discrete Logarithm:
For randomly chosen a1, a2 ∈ G com-
pute n ∈ N with

a2 = an
1 .

Challenge:
Construct
groups with numerations
of large prime order
such that the computation of the dis-
crete discrete logarithm has the requi-
red complexity.

Time or space needed (probabilistical-
ly) for the computation of the logarithm:
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polynomial in p.

Time and space needed to write down
the elements and the group law of G
and execute a group composition:
polynomial in log(p).
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2.4 Generic Systems

We use the algebraic structure “group”.
This allows “generic” attacks..

Shanks’ Baby-Step-Giant-Step
Method
(deterministic)
Take P, Q ∈ G.
Find k with Q = k · P .
Principle:
Looking up an element in an ordered set
is inexpensive.
Baby step: For i = 0, ..., S ≤ √

p
compute

(i · P, i).

Giant step:
Compute

Q− i · S · P
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.
Compare the two lists. If

i0 · P = Q− i1 · S · P
then

k = i0 + i1 · S.

Complexity:O(
√

p)

Disadvantage:

• needs O(
√

p) space
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Pollard’s ρ-Algorithm(probabilistic)1

Principle: Random walk in G closes with
high probability after

≈ 1.03
√

p

steps.
Controlled random walk (simplest ver-
sion) :
The result xi of the i−th step should
depend only on xi−1.
So partite G “randomly” into three sets
Tj of size ≈ p/3 and take

xi = P + xi−1 if xi−1 ∈ T1,

xi = Q + xi−1 if xi−1 ∈ T2,

xi = 2xi−1 if xi−1 ∈ T3.

There are efficient methods to detect
collisions.

1Pollard’s method is used for the “world record” w.r.t. Certicom challenge:
Compute DL in an 108-bit elliptic curve.
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Security hierarchy
We measure the complexity of a DL-
system by the function

Lp(α, c) := exp(C(logp)α(loglogp)1−α)

with 0 ≤ α ≤ 1 and c > 0.

Best case: α = 1:Exponential com-
plexity.

Worst case: α = 0: Polynomial
complexity

The case between...: 0 < α < 1:
The complexity is subexponential.
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2.5 Very special examples

Example 1:

G := Z/p .
Numeration:

f : G → {1, · · · , p}
given by

f (r + pZ) := [r]p

where [r]p is the smallest positive repre-
sentative of the class of r modulo p.
The function ⊕ is given by

r1 ⊕ r2 = [r1 + r2]p

which is easy to compute from the know-
ledge of ri.
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Security?
Given: b with b = e(n, a) = [na]p.
Solve

b = na + kp

with k ∈ Z.
The Euclidean algorithm solves this
in O(log(p)) operations in Z/p:
α = 0!
We do not get a secure Discrete Loga-
rithm System.
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Example 2: G = Z/p. Choose a pri-
me q such that p divides q − 1.
Choose ζ 6= 1 in Z/q with ζp = 1 (i.e.
ζ is a primitive p-th root of unity).
Numeration:For 1 ≤ i ≤ p define
zi := [ζi]q and for ī = i + pZ ∈ G

f (̄i) := [zi − z1 + 1]q.

Addition:
ai = f (xi + pZ) ∈ {1, cdots, q − 1}

a1 ⊕ a2 = [[ζx1+x2]q − z1 + 1]q.

= [(a1 + z1− 1)(a2 + z1− 1)− z1 + 1]q

e(n, 1) = n ◦ 1 = [zn
1 − z1 + 1]q.
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Security?
For fixed a and random b ∈ A find n in
N with

b = e(n, a) = n ◦ a = [an − z1 + 1]q.

This means:
For one fixed p-th root of unity and one
random p-th root of unity in the multi-
plicative group of Z/q one has to deter-
mine the exponent needed to transform
the fixed root of unity into the random
element.
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The best known method to compute this
discrete logarithm is subexponential
in q.
It usually is compared with factorizati-
on (this is no accident). Hence its secu-
rity is to be compared with RSA.
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Example 3:
A most important example:
Elliptic Curves
An elliptic curve E over a field K is a
regular plane projective cubic with at
least one rational point.
For simplicity we shall assume that char(K)
is prime to 6. Then we find an equation

E : Y 2Z = X3 + AXZ2 + BZ3

with A,B ∈ K and 4A2 + 27B2 6= 0.
A very special property of elliptic cur-
ves is that their points form an abelian
group.
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Elliptic curve with addition
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This addition is easily transformed into
formulas:
Given

P1 = (x1, y1) , P2 = (x2, y2)

then

P3 = (x3, y3) := P1 ⊕ P2

with (in general):

x3 = −(x1+x2)+ ((y1−y2)/(x1−x2))
2
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To use elliptic curves E for DL-systems
we have to solve the following diophan-
tine problem:
Find Fq and an elliptic curve E such
that the group of Fq− points has (al-

most) prime order of size ≈ 1060.

If we succeed we have to analyze attacks
using the structures introduced during
construction.
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The state of the art :
For “generic” elliptic curves over “gene-
ric” finite fields the complexity of the
computation of the Discrete Logarithm
in the group of rational points is expo-
nential.

But special elliptic curves are weak.
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2.6 Numeration by Algebraic Groups

We generalize and systematisize the ex-
amples.
Numerations by algebraic groups over
finite fields Fq where q is a power of a
prime l0.

In this lecture we shall give the mathe-
matical background.
In the next lecture we shall explain (down
to earth) what can be done in practice.
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2.6.1 Algebraic Groups

An algebraic group G over a field K is an algebraic reduced,
non-singular, noetherian scheme with an addition law, i.e. there
is a morphism (in the category of schemes)

m : G × G → G,

an inverse, i.e. a morphism

i : G → G,

and a neutral element, i.e. a morphism

e : Spec(K) → G,

satisfying the usual group laws:

m ◦ (idG ×m) = m ◦ (m× idG) (associativity),

m ◦ (e× idG) = pr2

where pr2 is the projection of Spec(K)× G to G, and

m ◦ (i× idG) ◦ δ = je

where δ is the diagonal map from G to G × G and je is the map
which sends G to e(Spec(K)).

Down to earth:
For all extension fields L of K the set G(L) (see below) is a group
in which the sum and the inverse of elements are computed by
evaluating morphisms which are defined over K and in which
the neutral element is the point

0 := e(Spec(K)) ∈ G(K).
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Example 1 corresponds to the additive
group Ga (see below), Example 2 to the
multiplicative group Gm, and Example
3 is an abelian variety of dimension 1.
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3 DL-systems and orders

3.1 Ideal class groups of orders

Remark:
Everything could be done much more
general, and for some (few) theoretical
and (even fewer) practical considerati-
ons this has to be done.

Let O be a (commutative) ring with
unit 1 without zero divisors.

Two ideals 2 A,B of O different from 0
can be multiplied:

A ·B = {Σai · bi; ai ∈ A, bi ∈ B}.
Clearly · is associative.

2A ⊂ O is an ideal of O if it is an O−module
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How to compute Ak with
a numeration?

In general this will be not possible.
Here are some minimal assumptions:

I) O is noetherian:
Every A is a finitely generated O−module.
A generating system of the product of
two ideals can be computed in finitely
many steps from generators of the fac-
tors.

But these systems become longer and
longer.
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II)O can be embedded into a
finitely generated algebra Õ
over an euclidean ring B
such that the transition

A 7→ A · Õ
preserves “enough” information.
Then ideals A have a base over B (as
Õ-modules), and by linear algebra over
B one can compute a base in products
of ideals.

But there are infinitely many possi-
ble choices of bases. So assume
III) There is a canonical basis for each
ideal and B has a numeration. Then one
can numerate ideals in O.
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Severe disadvantages:
The system is much too large.
It is insecure.
We have infinite sets.
(We have no group structure.)

Advantage and disadvantage:
We are near to the arithmetic of B and
we can compute with ideals if we can
compute in B.

42



Abstract Algebraic Geometry resp.
Commutative Algebra tells us:
There are more reasonable objects than
ideals (= rank-1-projective modules) over
O:

Isomorphy classes of projective
rank-1-modules
or, in fancy language,

Pic(O)

and factor- resp. subgroups.
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Definition:
Let A1, A1 be two O−modules in
Quot(O).
A1 ∼ A2 if there is an element
f ∈ Quot(O)∗ with

A1 = f · A2.

Let A be an ideal of O:
A is invertible iff there is an ideal Ã of
O such that

A · Ã ∼ O.

P ic(0) is the set of equivalence classes
of invertible ideals of O, it is an abelian
group.
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Try Pic(O) as groups into which Z/p
is to be embedded.

Immediate problem: The equivalence clas-
ses contain infinitely many ideals. How
to describe the elements in Pic(O) for
the computer?

So

1. Find a distinguished element in each
class (resp. a finite (small) subset of
such elements).

2. or: Find “coordinates” and additi-
on formulas directly for elements of
Pic(O).

We need:
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I)There has to be a very fast algorithm
to find these distinguished elements. Pos-
sible if

• we have “reduction algorithms”, or

• we can use the geometric background
of Pic(O) which leads to group
schemes resp. abelian varieties
(link to the first lecture.

Most interesting cases are those for which
both methods can be used!
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II)We want to embed Z/p into Pic(O)
in a bit-efficient way:
We need

• a fast method for the computation of
the order of Pic(O)

• (at least) a heuristic that with reaso-
nable probability this order is almost
a prime.

III) Discuss and, above all, exclude
attacks.
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”Generic attack” for DL-systems ba-
sed on Pic(O):

We have distinguished ideals: Prime ideals.

We have the arithmetic structure of B.

Since we have to be able to define redu-
ced elements (i.e. ideals) in classes we
have in all known cases a “size” of clas-
ses which behaves reasonable with re-
spect to addition.
This cries for ...
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Index-Calculus.

Principle:
We work in a group G .
Find a “factor base” consisting of rela-
tively few elements and compute G as
a Z−module given by the free abelian
group generated by the base elements
modulo relations.
Prove that with reasonable high proba-
bility every element of G can be writ-
ten (fast and explicitly) as a sum of ele-
ments in the factor base.
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The important task in this method is to
balance the number of elements in the
factor base to make the linear algebra
over Z manageable and to “ guarantee”
smoothness of enough elements with re-
spect to this base.

The expected complexity of this attack
is subexponential, i.e estimated by

LN (α, c) := exp(c(logN)α(loglogN)1−α)

mit 0 < α < 1 und c > 0 for a number
N closely related to | G | .
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3.2 Existing Systems

What is used today?
Only two examples:

• B = Z, and O is an order or a loca-
lization of an order in a number field

• B = F p[X ], and O is the ring of
holomorphic functions of a curve de-
fined over a finite extension field of
Fp.
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3.2.1 Number field case

Orders O in number fields were
proposed very early in the history of pu-
blic key cryptography (Buchmann-
Williams 1988).
We restrict ourselves to maximal orders
(i.e. the integral closure) OK of Z in
number fields K.
OK is a Dedekind domain, its class group
Pic(OK) is finite.
The size of ideals is given by their norm.
The Theorem of Minkowski states
that in every ideal class there are ideals
of “small” norm. The measure is given
by

gK := 1/2log | ∆K |
(∆K the discriminant of OK/Z).
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The background is the “Geometry of
numbers” (Minkowski).
By lattice techniques it is possible to
compute ideals of small norms in clas-
ses, and in these ideals one finds “small”
bases.

Most difficult part: To compute the or-
der of Pic(OK):
Uses analytic methods (L-series) in connec-
tion with most powerful tools from com-
putational number theory.

There is a (probabilistic) estimate:
The order of Pic(OK) behaves like exp(gK).
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Disadvantage: For given g there are
not many fields, and to have Pic(OK)
large the genus of K has to be large.

The parameter “genus” can be splitted
into two components:
n := [K : Q] and ramification locus of
K/Q.

If n is large the arithmetic in OK is
complicated (fundamental units, lattice
dimension ...)
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Most practical example :
K is an imaginary quadratic field of dis-
criminant −D.
So K = Q(

√−D. The expected size of
Pic(O) is ≈ √

D.

Theory of Gauß:
Pic(OK) corresponds to classes of
binary quadratic forms with discrimi-
nant D.

Multiplication of ideals corresponds to
composition of quadratic forms.
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Reduction of ideals corresponds to the
(unique) reduction of quadratic forms:
In each class we find (by using Euclid‘s
algorithm) a uniquely determined re-
duced quadratic form

aX2 + 2bXY + cY 2

with ac−b2 = D,−a/2 < b ≤ a/2, a ≤
c and 0 ≤ b ≤ a/2 if a = c.

The great disadvantage:
The index-calculus-attack works very ef-
ficiently:
(Under GRH:) The complexity to com-
pute the DL in Pic(OK) is

O(LD(1/2,
√

2 + o(1))).
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3.3 The geometric case

B = F p[X ], and O is the ring of ho-
lomorphic functions of a curve defined
over a finite extension field Fq of Fp.
Intrinsically behind this situation is a
regular projective absolutely irreducible
curve C defined over Fq whose field of
meromorphic functions F (C) is given
by Quot(O).

C is the desingularisation of the projec-
tive closure of the curve corresponding
to O.
This relates Pic(O) closely with the points
of the Jacobian variety JC of C and
explains the role of abelian varieties in
crypto systems used today.
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Singularities
We assume that O is not integrally clo-
sed.
The generalized Jacobian variety of Cp

is an extension of JC by linear groups.
Examples:

1. Pic(Fq[X,Y ]/(Y 2−X3) corresponds
to the additive group.

2. Pic(F q[X,Y ]/(Y 2 + XY −X3)
corresponds to Gm

and (for a non-square d)

3. Pic(F q[X,Y ]/(Y 2 + dXY −X3)
corresponds to a non split one-dimensional
torus.
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4. More generally we apply scalar re-
striction (se next lecture) to Gm/Fq

and get higher dimension tori.
Example:
XTR uses an irreducible two-dimensional
piece of the scalar restriction of Gm/Fq6

to Fq.
Though there is an algebraic group
(torus) in the background the system
XTR seems not to use it: It uses tra-
ces of elements instead of elements in
the multiplicative group of of exten-
sion fields.
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3.3.1 Work of Rubin-Silverberg

To understand what is going on Silver-
berg and Rubin analyse rational para-
metrisations of (non-)split tori, are able
to explain related systems like LUC and
give a new system CEILIDH.
In addition they come to interesting que-
stions (conjectures) about tori (Vroskre-
senskii).
They also show limits of the method.
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3.3.2 Security?

We can get tori by two different me-
thods: By scalar restriction and by the
Generalized Jacobian of curves of geo-
metric genus 0 and arithmetic genus
larger than 0.

Question:
Can this structure be used (as in the
case of elliptic curves, see below ) for
attacks?
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Curves without singularities
The corresponding curve Ca is an affine
part of Cp = C.
The inclusion

Fq[X ] → O

corresponds to a morphism

CO → A1

which extends to a map

π : C → P1

where P1 = A1 ∪ {∞}. The canonical
map
φ : JC(F q) → Pic(O)
is surjective but not always injective:
Its kernel is generated by formal combi-
nations of degree 0 of points in π−1(∞).
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More precisely: Fq−rational divisors of
C are formal sums of points (over F̄q)
of C which are Galois invariant.
Two divisors are in the same class iff
their difference consists of the zeroes and
poles (with multiplicity) of a function
on C.
The points of JC are the divisor classes
of degree 0 of C.
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The theorem of Riemann-Roch implies
that

(C × . . .× C)/Sg (g = genus(C),

Sg the symmetric group in g letters)

is birationally isomorphic to JC :

We find a representative D′ in divisor
classes c of the form
D′ = D− g P∞ with D = Σi=1,···g aiPi
with ai ≥ 0. Now map
c 7→ [ΠPi∈CO

M
ai
Pi

].
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Most interesting case: The kernel of φ
is trivial.
Then we can use the ideal interpreta-
tion for computations and the abelian
varieties for the structural background:

• Addition is done by ideal multiplica-
tion

• Reduction is done by Riemann-Roch
theorem (replacing Minkowski’s theo-
rem in number field) on curves

but
the computation of the order of Pic(O)
and the construction of suitable curves
is done by using properties of abelian
varieties resp. Jacobians of curves.
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Example
Assume that there is a cover

ϕ : C → P1; deg ϕ = d,

in which one point (P∞) is totally ra-
mified and induces the place (X = ∞)
in the function field Fq(X) of P1.

Let O be the normal closure of Fq[X ]
in the function field of C.
Then φ is an isomorphism.

Examples for curves having such covers
are all curves with a rational Weierstraß
point, especially Cab-curves and most
prominently hyperelliptic curves in-
cluding elliptic curves
as well as superelliptic curves.
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Compared with the number theory case
we have won a lot of freedom:
The parameters are:

1. p = characteristic of the base field

2. n = degree of the ground field of Z/p

3. gC = g = the genus of the curve C
resp. the function field Quot(O).

There are about p3g·n curves of genus g
over Fpn.

Structural relation: Hasse-Weil

| JC(Fpn | ∼ png.

The key length is n log(p) · g.
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4 Hyperelliptic curves

Definition3

Assume that C is a projective irredu-
cible non singular curve of genus ≥ 1
with a generically étale morphism φ of
degree 2 to P1.
Then C is a hyperelliptic curve.
In terms of function fields this means:
The function field F (C) of C is a sepa-
rable extension of degree 2 of the ratio-
nal function field Fq(X). Let ω denote
the non trivial automorphism of this ex-
tension. It induces an involution ω on C
with quotient P1.
The fixed points of ω are called
Weierstraß points.

3Elliptic curves (g = 1) are included.
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Assume that we have a Fq-rational Wei-
erstraß point P∞.
We choose ∞ on P1 as φ(P∞). Then
the ring of holomorphic functions O on
C \ P∞ is equal to the integral closure
of Fq[X ] in F (C):

O = Fq[X,Y ]/fC(X,Y )

where fC(X,Y ) is a polynomial of de-
gree 2 in Y and of degree 2g + 1 in X .

Theorem: JC(Fq) = Pic(O).
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From the algebraic point of view we are
in a very similar situation as in the case
of class groups of imaginary quadratic
fields.
In fact: Artin has generalized Gauß ’s
theory of ideal classes of imaginary qua-
dratic number fields to hyperelliptic func-
tion fields connecting ideal classes of O
with reduced quadratic forms of discri-
minant D(f ) and the addition ⊕ with
the composition of such forms. This is
the basis for the Cantor algorithm
which can be written down “formally”
and then leads to addition formulas
or can be implemented as algorithm.
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Explicit formulas by T. Lange
Addition, deg u1 = deg u2 = 2

Input [u1, v1], [u2, v2], ui = x2 + ui1x + ui0, vi = vi1x + vi0

Output [u′, v′] = [u1, v1] + [u2, v2]
Step Expression Operations

1 compute resultant r of u1, u2: 1S, 3M
z1 = u11 − u21, z2 = u20 − u10, z3 = u11z1 + z2;
r = z2z3 + z2

1u10;
2 compute almost inverse of u2 modulo u1 (inv = r/u2 mod u1):

inv1 = z1, inv0 = z3;
3 compute s′ = rs ≡ (v1 − v2)inv mod u1: 5M

w0 = v10 − v20, w1 = v11 − v21, w2 = inv0w0, w3 = inv1w1;
s′1 = (inv0 + inv1)(w0 + w1)− w2 − w3(1 + u11), s′0 = w2 − u10w3;
if s′1 = 0 see below

4 compute s′′ = x + s0/s1 = x + s′0/s′1 and s1: I, 2S, 5M
w1 = (rs′1)

−1(= 1/r2s1), w2 = rw1(= 1/s′1), w3 = s′21w1(= s1);
w4 = rw2(= 1/s1), w5 = w2

4, s′′0 = s′0w2;
5 compute l′ = s′′u2 = x3 + l′2x

2 + l′1x + l′0: 2M
l′2 = u21 + s′′0 , l′1 = u21s

′′
0 + u20, l′0 = u20s

′′
0

6 compute u′ = (s(l + h + 2v2)− k)/u1 = x2 + u′1x + u′0: 3M
u′0 = (s′′0 − u11)(s′′0 − z1 + h2w4)− u10 + l′1 + (h1 + 2v21)w4 + (2u21 + z1 − f4)w5;
u′1 = 2s′′0 − z1 + h2w4 − w5;

7 compute v′ ≡ −h− (l + v2) mod u′ = v′1x + v′0: 4M
w1 = l′2 − u′1, w2 = u′1w1 + u′0 − l′1, v′1 = w2w3 − v21 − h1 + h2u

′
1;

w2 = u′0w1 − l′0, v′0 = w2w3 − v20 − h0 + h2u
′
0;

total I, 3S, 22M
Special case s = s0

4′ compute s: I, M
inv = 1/r, s0 = s′0inv;

5′ compute u′ = (k − s(l + h + 2v2))/u1 = x + u′0: S
u′0 = f4 − u21 − u11 − s2

0 − s0h2;
6′ compute v′ ≡ −h− (l + v2) mod u′ = v′0: 2M

w1 = s0(u21 + u′0) + h1 + v21 + h2u
′
0, w2 = s0 + v20 + h0;

v′0 = u′0w1 − w2;
total I, 2S, 11M
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Doubling, deg u = 2
Input [u, v], u = x2 + u1x + u0, v = v1x + v0

Output [u′, v′] = 2[u, v]
Step Expression odd even

1 compute ṽ ≡ (h + 2v) mod u = ṽ1x + ṽ0:
ṽ1 = h1 + 2v1 − h2u1, ṽ0 = h0 + 2v0 − h2u0;

2 compute resultant r =res(ṽ, u): 2S, 3M 2S, 3M
w0 = v2

1 , w1 = u2
1, w2 = ṽ2

1 , w3 = u1ṽ1, r = u0w2 + ṽ0(ṽ0 − w3);; (w2 = 4w0) (see below)
3 compute almost inverse inv′ = invr:

inv′1 = −ṽ1, inv′0 = ṽ0 − w3;
4 compute k′ = (f − hv − v2)/u mod u = k′1x + k′0: 1M 2M

w3 = f3 + w1, w4 = 2u0, k′1 = 2(w1 − f4u1) + w3 − w4 − v1h2; (see below)
k′0 = u1(2w4 − w3 + f4u1 + v1h2) + f2 − w0 − 2f4u0 − v1h1 − v0h2;

5 compute s′ = k′inv′ mod u: 5M 5M
w0 = k′0inv′0, w1 = k′1inv′1;
s′1 = (inv′0 + inv′1)(k

′
0 + k′1)− w0 − w1(1 + u1), s′0 = w0 − u0w1;

If s1 = 0 see below
6 compute s′′ = x + s0/s1 and s1: I, 2S, 5M I, 2S, 5M

w1 = 1/(rs′1)(= 1/r2s1), w2 = rw1(= 1/s′1), w3 = s′21w1(= s1);
w4 = rw2(= 1/s1), w5 = w2

4, s′′0 = s′0w2;
7 compute l′ = s′′u = x3 + l′2x

2 + l′1x + l′0: 2M 2M
l′2 = u1 + s′′0 , l′1 = u1s

′′
0 + u0, l′0 = u0s

′′
0 ;

8 compute u′ = s2 + (h + 2v)s/u + (v2 + hv − f)/u2: S, 2M S, M
u′0 = s′′0

2 + w4(h2(s′′0 − u1) + 2v1 + h1) + w5(2u1 − f4);
u′1 = 2s′′0 + w4h2 − w5;

9 compute v′ ≡ −h− (l + v) mod u′ = v′1x + v′0: 4M 4M
w1 = l′2 − u′1, w2 = u′1w1 + u′0 − l′1, v′1 = w2w3 − v1 − h1 + h2u

′
1;

w2 = u′0w1 − l′0, v′0 = w2w3 − v0 − h0 + h2u
′
0;

total I, 5S, 22 M I, 5S, 22 M
Special case s = s0

6′ compute s and precomputations: I,2M I,2M
w1 = 1/r, s0 = s′0w1, w2 = u0s0 + v0 + h0;

7′ compute u′ = (f − hv − v2)/u2 − (h + 2v)s/u− s2: S S
u′0 = f4 − s2

0 − s0h2 − 2u1;
8′ compute v′ ≡ −h− (su + v) mod u′: 2M 2M

w1 = s0(u1 − u′0)− h2
2u
′
0 + v1 + h1, v′0 = u′0w1 − w2;

total I, 3S, 13M I, 3S, 14M
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4.1 Non hyperelliptic curves of ge-
nus 3

Picard curves
or more generally
plane curves of genus 3
given by

Y 3 + f1(X)Y = f (X)

with deg(f ) = 4
have an efficient arithmetic too! (cf. e.g.
work of Flon-Oyono).
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4.2 Index-Calculus

As in the analogous situation in number
theory there exists a subexponential at-
tack based on the index-calculus princi-
ple.
But there is one essential difference:
Recall: In the number field case the sub-
exponential function was a function in
| D | and so of the order of the class
group.
Due to Weil the analogue would be qg.
But in the known index-calculus algo-
rithm one cannot look at q and g as
independent variables.
For instance: If g = 1 fixed then we
do not get a subexponential attack for
q →∞!.
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The attack:
The ideal classes of S can be represen-
ted by two polynomials of degrees boun-
ded by g.
Choose as factor base for the index-calculus
attack the ideal classes which can be re-
presented by polynomials of small de-
grees.

Enge-Stein:
For g/ log(q) > t the discrete logarithm
in the divisor class group of a hyperellip-
tic curve of genus g defined over Fq can
be computed with complexity bounded
by L1/2,qg[ 5√

6
((1 + 3

2t)
1/2 + ( 3

2t)
1/2)].

This is for large genus a strong result.
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Gaudry has a result much more serious
for practical use: For hyperelliptic cur-
ves of relatively small genus (in practice:
g ≤ 9) there is an index-calculus attack
of complexity

O(q2(log(q))γ)

with “reasonable small” constants.

Principle:
Use prime divisors of small degree (e.g.
1) as factor base.
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“Result”: Orders related to cur-
ves with rational Weierstraß points
of genus ≥ 4 or closely related
abelian varieties should be avoided!

State of the art: We have only three
types of rings O which avoid serious
index-calculus attacks and for which Pic(O)
in manageable:
MAXIMAL ORDERS BELONGING TO
CURVES OF GENUS 1,2,3 (and even
g = 3 is a little bit in danger)!
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5 Galois Operation

5.1 Find a Curve!

The tasks are:
Find a finite field k, a curve C defined
over k and a prime number p dividing
| Pic(OC) |, a point P0 ∈ Pic(OC)
such that we get a secure DL-system.
The determination of P0 is not difficult
if C is known.
To find (k, C) one uses the following
strategy:

• Prove (e.g. by analytic number theo-
ry techniques) that good pairs occur
with a reasonable large probability.

• Choose random (k, C) and count the
elements in Pic(OC).
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The second task is solved by determi-
ning the characteristic polynomial of the
Frobenius automorphism Π acting on
vector spaces related to the geometry
of C and JC :
Computation of the L-series of
C/k.
Examples for representation spaces are
spaces of holomorphic differentials or mo-
re generally of differentials with prescri-
bed poles and cohomology groups.
De Rham cohomology, étale cohomolo-
gy and crystalline cohomology are espe-
cially interesting.
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Methods:

• l-adic Methods:
Use étale cohomology for small pri-
me numbers l: (Schoof’s algorithm)

• p-adic Methods: Use p−adic analy-
sis and cohomology theories
(Satoh, Gaudry-Harley-Mestre, Ked-
laya, Lauder-Wan, Gerkmann)

Result: Efficient counting of
points on elliptic curves over all fini-
te fields, points on hyper(super-)elliptic
curves over fields of small characteristic
and (!) on random curves of genus 2
(Gaudry) in cryptographic relevant ran-
ges.
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Counting on special curves

• Assume a curve is defined over a small
field.
Make a constant field extension, use
naive counting methods or exponen-
tial algorithms to compute the L-series
over the ground field.
It is easy to determine it over exten-
sion fields.

• Reduction of global curves with real
or complex multiplication.
This method works very well for hy-
perelliptic curves genus 1,2,3.
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5.1.1 Open Problems

1. Find an efficient algorithm to count
points on random curves of genus 3
( not necessarily hyperelliptic) over
random fields.

2. Does a computable global CM/RM-
structure affect security?

3. Especially: Does the existence of en-
domorphisms with small norm allow
attacks?
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5.2 Scalar Restriction

One example to use the
extra structure:
Frobenius endomorphism
is the scalar restriction.
It is applied to curves which are not de-
fined over prime fields.
It can be used to transfer DL’s in many
elliptic curves to DL’s in Jacobians of
curves for which the index-calculus me-
thod works.

It seems to be clear that it does not
work for random curves or for extensi-
ons of large prime degree (which is not
a Mersenne prime).
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Principles:
Variant 1: Let L be a finite Galois ex-
tension of the field K.
Assume that C is a curve defined over
L, D a curve defined over K and

ϕ : D × L → C

a non constant morphism defined over
L.
Then we have a correspondence map

φ : Pic0(C) → Pic0(D)

φ := NormL/K ◦ ϕ∗.
Assumption: ker(φ) is small.
Then the (cryptographically relevant)
part of Pic0(C) is mapped injectively
into Pic0(D) and we have a transfer of
the DL-problem in Pic0(C) into a (pos-
sibly easier) DL-problem.
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It seems that this variant works
surprisingly well if C is a (hyper-)elliptic
curve not defined over K in characteri-
stic 2.
cf. work of Galbraith, Smart, Hess, Gau-
dry,Diem,...
Key word: GHS attack

It relates the DL-problem to the highly
interesting theory of fundamental groups
of curves over non algebraically closed
ground fields.

It certainly would be worth while to stu-
dy this approach for non projective cur-
ves like curves of genus 0 with singula-
rities.
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Variant 2:
Again assume that C is defined over L.
We apply scalar restriction from L to
K to the (generalized) Jacobian varie-
ty of C and get a [L : K]−dimensional
(group scheme) Abelian variety A over
K.
Now we look for curves D in K−simple
factors B of A.
As B is a factor of Jac(D) we can hope
to transfer the DL-problem from Jac(C)
to Jac(D).

It is not clear whether this variant can
be used in practise.
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But it leads to interesting mathematical
questions:

•Which group schemes have curves of
small genus as sub schemes?

• Investigate the Jacobian of modular
curves!

•Which curves have the scalar restric-
tion of an abelian variety (e.g. an el-
liptic curve) as Jacobian?

To the last question: Bouw, Diem and
Scholten have found families of such cur-
ves!
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5.3 Bilinear Structures

We shall use properties of abelian va-
rieties with Galois action to build up
a bilinear structure related to our DL-
system in special cases.

Assume that the DL-system A, ◦ is gi-
ven and that there is a group A′ in which
we can compute “as fast“ as in A.
Assume moreover that (B, ◦) is another
DL system and that a map

Q(a1, a2) : A× A′→ B

is computable in polynomial time (this
includes that the elements in B need
only O(log | A |) space
with
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• for all n1, n2 ∈ N and random ele-
ments a1, a

′
2 ∈ A× A′ we have

Q(n1◦a1, n2◦a′2) = n1·n2◦Q(a1, a
′
2)

• Q(., .) is non degenerate and hence
for random a′ ∈ A′ we have
Q(a1, a

′) = Q(a2, a
′) iff a1 = a2 .

Then we call (A,Q) a DL-system with
bilinear structure.
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There are two immediate consequences:

• The DL-system (A, ◦) is at most as
secure as the system (B, ◦).

• Assume moreover that A = A′.
Given a (random) element a
and a1, a2, a3 ∈ N◦a one can decide
in polynomial time (in log | B |)
whether (simultaneously)

a1 = n1◦a, a2 = n2◦a, a3 = (n1·n2)◦a
holds.

This are negative aspects of bilinear DL-
systems but very interesting protocols
due to Joux (tripartite key exchange)
and Boneh-Franklin use such structures
in a positive way.
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6 Tate Duality of Abelian Va-
rieties

In this section we shall discuss a bilinear
structure on points of order p inside of
the rational points of the Jacobian va-
riety of a curve C with a rational point
P0 defined over a finite field k of cha-
racteristic l0 with values in the Brauer
group of a local field which can wea-
ken our system in some cases.

We distinguish now two cases:
1.) p = l0 and
2.) p 6= l0
and begin our discussion with the first
case. We follow closely a paper of Rück
[Ru].
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6.1 The Artin-Schreier case

We use the following result about alge-
braic function fields with positive cha-
racteristic( Serre 1956):

Proposition 1 Let k be a field of cha-
racteristic p, C a projective curve of
genus g defined over k and Ω1(C) the
k−vector space of holomorphic diffe-
rentials on C. Then there is an iso-
morphismus from Pic0(C)[p] into Ω1(C)
given by the following rule:
Choose a divisor D with p · D = (f )
where f is a function on C. Then the
divisor class D̄ of D is mapped to the
holomorphic differential df/f .(We ha-
ve to use that char(K)= p!)
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Next we describe differentials by their
power series expansion at P0.
Let t be a local parameter of C at P0.
Let (a0, a1, ..., a2g−2)(f ) be the tupel
whose coordinates are first coefficients
of the power series expansion of

(∂f/∂t)/f

at P0. Hence we have to evaluate a func-
tion at a point. The problem is that the
degree of f is very large.
The Riemann-Roch theorem implies that
(a0, a1, ..., a2g−2)(f ) determines df/f
completely . Hence

Φ : Pic0(C)[p] → k2g−1

given by

D̄ 7→ (a0, a1, ..., a2g−2)(f )

is an injective map.
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Hence: Φ transfers the DL- problem from
Pic0(C)[p] into k2g−1 with its additive
group structure. As remarked in exam-
ple 1 this means that the DL-system is
broken if the computation of Φ can be
done in polynomial time.
We leave this as an open problem for a
moment and go to the second case:

6.2 The Kummer case

We begin by discussing a more general
situation.
Let K be a field with absolute Galois
group GK and A a principally polari-
zed abelian variety over K, p prime to
char(K).
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By µp we denote the group of p-th roots
of unity in the separable closure Ks of
K (regarded as GK module).
We have the exact sequence of GK−modules
(Kummer sequence)

0 → A(Ks)[p] → A(Ks)
·p→ A(Ks) → 0.

Application of Galois cohomology gives
the exact sequence

0 → A(K)/pA(K)
δ→ H1(GK, A(Ks)[p])

α→ H1(GK, A(Ks))[p] → 0.
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Next we use that A(Ks)[p] is as GK−module
self dual (since A is principally polari-
zed) and so we can use the cup product
to get the Tate-pairing

<,>K : A(K)/pA(K)×H1(GK, A(Ks))[p]

→ H2(GK, µp)

given by

< P+pA(K), γ >K= δ(P+pA(K))∪α−1(γ).

H2(GK, µp) is a very important group
for the arithmetic of K, it is isomorphic
to H2(GK, K∗

s )[p] and hence consists of
the elements of order dividing p of the
Brauer group Br(K) of K.
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The information we can get out of the
Tate-pairing depends on the informati-
on given by the Brauer group and on its
degree of non-degeneracy.

For instance if K = k is a finite field
the Brauer group is {0}.
The situation changes if we take K as
an l−adic field with residue field k.

Theorem 1 (Tate)
<,>K is non-degenerate.

Hence for principally polarized abelian
varieties over l-adic fields we have trans-
ferred the DL- problem in A(K)[p] to
the corresponding problem in Br(K)[p]
provided that we can evaluate the pai-
ring in polynomial time.

97



This means especially that we can des-
cribe and compute in H1(GK, A(Ks))[p]
and Br(K)[p].
Let us assume that K contains the
p−th root of unity ζp,, i.e.
p | (q − 1).
Standard calculations with cohomology
groups yield:
Let Lp be a ramified extension of K of
degree p.

Corollary 1 There is a non-degenerate
pairing

<,>: A(K)/p·A(K)×Hom(G(Lp/K), A(K)[p])

→ Br(K)[p]

induced by the Tate pairing.
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6.3 Application to Jacobian Va-
rieties over Finite Fields

We continue to assume that k is a finite
field of order q = l

f
0 and thatp is a prime

dividing q − 1. Let C be a projective
curve defined over k and let A be its
Jacobian. We lift (C, A) to (C̃, Ã) over
an l-adic field K with residue field k and
apply Corollary 1 to Ã.

Now we invest what is known about
the Brauer group of K. We use that
Br(K)[p] is cyclic of order p and that
it is generated be cyclic algebras (σ, a ·
NL/K(L∗)(cf. second lecture) where L/K
is a cyclic extension of degree p and σ
is a generator of its Galois group.
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Proposition 2 (Lichtenbaum) Let
τ be a generator of G(Lp/K). Let P1, P2

be points of Ã(K) with P2 a point of
order p. Let ϕ be the homomorphism
of G(Lp/K) to JC(k)[p] mapping τ to
P2. Represent Pi−P0 by coprime di-
visors Di in the divisor class group,
and let f2 be a function on C̃ with di-
visor p ·D2.
Then

< P1+p·Ã(K), ϕ >= f2(D1)·NLp/K/(L∗).
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Ã(K)[p] is isomorphic to A(k)[p], Ã(K)/p·
A(K) is isomorphic to A(k)/p · A(k)
and K ∗ /N(Lp/K)(L∗p) is isomorphic
to k∗/k∗p, so:

Corollary 2 There is a non-degenerate
pairing

<,>k: A(k)/p·A(k)×A(k)[p]) → k∗/k∗p

given by the the following rule:
Let P1, P2 be points of Ã(k) with P2
a point of order p. Represent Pi−P0
by coprime divisors Di in the divisor
class group of C, and let f2 be a func-
tion on C with divisor p ·D2.
Then

< P1+p·JC(k), P2 >= f2(D1)·k∗/k∗p.
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As in the additive case we can transfer
the DL-problem in JC(k)[p] to the dis-
crete logarithm in a group related to k
provided that we can compute f1(D2)
fast enough.
But there are two crucial differences: In
the multiplicative case we end up in the
multiplicative group of k, and in this
group only sub exponential attacks are
known, and secondly we can transform
the original Tate duality pairing into a
computable version only under the con-
dition that k contains the p−th roots
of unity. This last condition is rather
difficult to satisfy (or easy to avoid).
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6.4 Computation of the duality
pairing

In both cases the computation of the
Tate-Lichtenbaum pairing boils down to
the evaluation of a function f on C at
a divisor E of C. The problem is that
the degree of the zero- resp. pole divi-
sor of f and the degree of the negative
(and positive ) part of D are very large
(about p) and so a direct approach to do
this evaluation is not possible. The way
out was found by V. Miller for elliptic
curves (applied to the Weil pairing).
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We use the theory of Mumford‘s The-
ta groups which explicitly describes ex-
tensions of (finite subgroups of) abelian
varieties by linear groups.
We restrict ourselves to the multiplica-
tive case.
The basic step for the computation is:
For given positive divisors A1, A2 of de-
gree g find a positive divisor A3 of de-
gree g and a function h on C such that

A1 + A2 − A3 − gP0 = (h).

We can assume that this step can be do-
ne fast for otherwise we could not use
JC for DL-systems.
As measure for the complexity of our al-
gorithm we shall take the needed amount
of such steps.
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We recall that we have a canonical bira-
tional morphism, φg, between the g-fold
symmetric product of C and JC .
Let S be a subset of JC(k). A divisor E
of C is called prime to S if it is prime
to all divisors in φ−1(s); s ∈ S.
Now assume that S is a finite subgroup
of JC , and that E is prime to S.
Define the following group law on
S × k∗ :

(s1, a1)◦(s2, a2) := (φg(A3), a1a2·h(E))

where A3, h are computed as above with
Ai = φ−1(si).
The assumption for E guarantees that
h(E) ∈ k∗. The degree of h is at most
g, and so the evaluation is polynomial
in g · log | k |.
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We apply this in the following situation:
D̄ is an element of order p in JC(k)
and D ∈ D̄ is a divisor of the form
D = A − gP0 where A is a positive
divisor of degree g on C. Furthermore
E is a divisor of degree 0 on C which is
prime to the group generated by D̄ in
JC(k).
Then the p−fold application of ◦ gives
the result

(0, f (E))

where f is a function on C with (f ) =
pD.
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This is easily seen by induction for eva-
luating the application of ◦ l times gives

(φg(Al−1), hl−1(E))

with a positive divisor Al−1 of degree
g and a function hl−1 whose divisor is
equal to

lA− Al−1 − (l − 1)gP0.

Since D̄ is a p−torsion point Ap−1 equals
gP0 and so hp−1 has the divisor pA −
lgP0.

Now we can use the group structure on
< D̄ > ×k∗ and apply the square- and
multiply algorithm to evaluate f at E
in O(log(p)) addition steps.
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CONSEQUENCE:
We can reduce the discrete logarithm
in A(K)/pA(K) to the discrete loga-
rithm in Br(K)p with the costs O(log(|
Fq(µp) |).

Remark:
In general the conditions that K and
hence the residue field Fq contains p−th
roots of unity and that A has points
of order p rational over Fq which are
cryptographically interesting will not be
satisfied at the same time.
For elliptic curves we can formulate this
more precisely:
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Proposition 3 Let E be an elliptic
curve defined over Fq and p a prime.
Let π be the Frobenius automorphis-
mus of Fq.
Then Z/p can be embedded into E(Fqf )

iff the trace of πf is congruent to qf +
1 modulo p and the corresponding dis-
crete logarithm in E(Fqf ) can be re-

duced to the discrete logarithm in µp

in the field Fqfm where m is the smal-

lest integer such that the trace of πfm

becomes congruent to 2 modulo p.

Sometimes one can enforce these condi-
tions (after a small extension).
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Corollary 3 Assume that there is an
endomorphism η of A with

•
< P0 + pA(k), η(P0) >= ζp

• η can be computed in polynomial
time.

Then the decision problem related to
P, Q,R reduces in polynomial time to
the equality test of < R+pA(k), η(P0) >
and < P + pA(k), η(Q) > in k.
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Example 1 Let E be a supersingular
elliptic curve and assume that Fq has
odd degree over Z/p. Assume moreo-
ver that there is an endomorphism of
E which is not contained in Z · idE
and whose restriction to the points of
order p can be computed in polynomi-
al time (e.g. E : Y 2 = X3 − X and
η : X 7→ −X,Y 7→ √−1Y ). Then
the conditions of the corollary are sa-
tisfied.
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7 Classical Discrete Logarithms:
Computing in Brauer groups

7.0.1 Cyclic Algebras

c ∈ Br(K)p can be identified with al-
gebras C over K which become isomor-
phic to the p× p−matrices after tenso-
rizing with some cyclic extension field L
of degree p, i.e. we can determine c by
a pair

(σ, a)

with < σ >= G(L/K) and a ∈ K∗/NL/KL∗ :

c is the class of fσ,a : G×G → L∗, with

fσ,a(σi, σj) =

{
a : i + j ≥ p
1 : i + j < p.
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7.1 Local fields

7.1.1 Frobenius

Let K be complete with a discrete va-
luation v, a finite residue field k with
q = ld0 elements and with Galois group
GK . For instance: K = Ql0 and k =
Z/l0.
Let π be the Frobenius automorphism
of k.
Let Lu be the unique unramified exten-
sion of K of degree p. We can lift π in a
canonical way to an element of the Ga-
lois group of Lu/K.
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7.1.2 Invariants

The key results of local class field theory
are:

1. Every element of c in Br(K)[p] is
equivalent to a cyclic algebra with
respect to Lu/K.

2. Let c be given by (π, a). Then c is
uniquely determined by v(a) modulo
p.

v(a) ∈ Z/pZ is the
invariant inv(c)
of c.
Hence the computing in Br(K)[p] would
be trivial if we could compute invariants
since then we transfer it to Z/p.
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For cyclic algebras two cases occur:
1)c is given by a pair (τ, a) and τ is ano-
ther generator of G(Lu)/K. We have to
determine n with

τn = π.

2)c is given by (σ, a) with σ a generator
of a ramified extension of degree p. We
have to find an equivalent pair of the
form (π, b).
(This is the case coming out of the Tate
pairing.)
For both cases we have to solve discrete
logarithms in finite fields.

115



7.2 Global fields

7.2.1 The Hasse-Brauer-Noether se-
quence

Let K be a global field (number field)
with
localisations Kv and
with decomposition groups Gv.

We get the most important exact se-
quence

0 → Br(K)[p]
⊕v′∈ΣK

ρv′−→
⊕

v′∈ΣK

Br(Kv′)[p]
Σv′∈ΣK

invv′−→ Z/p → 0.

where ΣK is the set of equivalence clas-
ses of valuations of K.
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7.3 Index-Calculus in Brauer groups

Assume that Av is a cyclic algebra cor-
responding to cv ∈ Br(Kv)p.
Lift Av to a cyclic algebra A defined
over K and use the equation

−Σv′∈ΣK\v invv′(ρv′(A)) = invv(Av).

to get relations.
For the lifting we need
existence theorems
for cyclic extensions of K with prescri-
bed ramification delivered by
global class field theory
(in an explicit way e.g. by CM theory).
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8 Example:K = Q

The global class field theory ofQ is com-
pletely determined by the theorem by
Kronecker and Weber:

Theorem 2 (Kronecker–Weber) Every
abelian extension K/Q of Q is con-
tained in a easily determined cyclo-
tomic extension Q(ζn)/Q.
There exists an extension K/Q of de-
gree l ramified exactly at p iff l|p− 1
holds. If it exists it is uniquely deter-
mined.

We have a complete control of the de-
composition laws of primes.
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8.1 The Algorithm

Consider a global algebra A of the form
A = (K/Q, σ, a). If a can be factored
in the form a =

∏
pnp the theorem by

Hasse–Brauer–Noether leads to a rela-
tion of the form

invp(a) +
∑

q 6=p

fqnq ≡ 0 mod l. (1)

Here the factors fq are defined as fol-
lows:
Let Kq/Qq denote the extension of lo-
cal fields belonging to K/Q. We can
identify G(Kq,Qq) with the decomposi-
tion group Gq. Since G has prime order
l, it is obvious that Gq is either trivial
(if q splits completely in K) or is equal
to G (if q is inert in K).
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If Kq/Qq is unramified (i.e. q 6= p) we
can identify G(Kq/Qq) with the Galois
group G(kq/Fq) of the extensions of re-
sidue class fields.

Let σ denote the fixed generator of G.

Define fq by πq = σfq (πq the Frobeni-
us at q) modulo l.

(1) can be seen as a linear equation re-
lating the indeterminates {fq, invp(a).
Hence we have to produce enough equa-
tions of this form in order to apply line-
ar algebra modulo l to compute “enough”
factors fq.
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Definition 8.1 A natural number n ∈
N is M–smooth iff the following holds:

q prime, q|n ⇒ q ≤ M.

Let ψ(x, y) denote the number of na-
tural numbers n ≤ x which are y–
smooth.

Theorem 3 Let ε be an arbitrary po-
sitive constant, then we have uniform-
ly for x ≥ 10 and y ≥ (log x)1+ε:

ψ(x, y) = xu−u+o(u) fürx →∞
(2)

where u = (log x)/(log y).
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8.1.1 One algorithm for K = Q

Choose a smoothness bound M and com-
pute the factor basis S consisting of the
primes less or equal to M .

Let d be the smallest number ≥ √
p.

For δ ∈ L := [0, ..., l] take
a1(δ) := d + δ.
a2(δ) := c0 + 2δ · d + δ2)
(≡ a2 modulo p)
with c0 = d2 − p.
Assume that for δ ∈ L both a1(δ)
and a2(δ) are M−smooth. Then we get
a relation for the fq for q in the factor
base.
To find such δ ∈ L we can use sieves.
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Having enough relations for a large enough
factor base we can proceed as usual: For
random a we take small powers of a and
hope that modulo p such a power yields
a smooth number. Then we can com-
pute the invariant of the corresponding
algebra and so the invariant of a and use
this for computing discrete logarithms.
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This approach unifies methods and re-
sults obtained by various authors
(Coppersmith, ElGamal,
Schirokauer,Adleman-Huang)
using different and quite complicated me-
thods for different cases. The most ad-
vanced amongst them are called number
field sieve and function field sieve.
All these methods can be explained by
Brauer groups and so class field theory
of global fields is the right background
for the DL in finite fields. That point
of view could open new possibilities for
more advanced attacks for instance by
lifting from local Brauer groups to glo-
bal Brauer groups in a more intelligent
way.
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