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a b s t r a c t

A graph G is (a, b)-choosable if for any color list of size a associated with each vertex,
one can choose a subset of b colors such that adjacent vertices are colored with disjoint
color sets. This paper proves that for any integer m ≥ 1, every finite triangle-free induced
subgraph of the triangular lattice is (5m, 2m)-choosable.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Let G = (V (G), E(G)) be a graph where V (G) is the set of vertices and E(G) is the set of edges, and let a, b, n and e be
integers.

Given a list assignment L of G i.e. a map L : V (G) → P (N) and a weight function w of G i.e. a map w : V (G) → N, an
(L, w)-coloring c of G is a list assignment of the weighted graph G such that for all v ∈ V (G),

c(v) ⊂ L(v) and |c(v)| = w(v),

and for all vv′
∈ E(G),

c(v) ∩ c(v′) = ∅.

We say that G is (L, w)-colorable if there exists an (L, w)-coloring c of G. An (L, b)-coloring c of G is an (L, w)-coloring such
that for all v ∈ V (G), we havew(v) = b. A a-list assignment L ofG is a list assignment ofG such that for all v ∈ V (G), we have
|L(v)| = a. The graph G is said to be (a, b)-choosable if for any a-list assignment L of G, there exists an (L, b)-coloring c of G. If
the graph is (a, b)-choosable for the a-list assignment L such that L(v) = L(v′) for all vertices v, v′, then G is (a, b)-colorable.

The concept of choosability of a graph has been introduced by Vizing [16], and independently by Erdős, Rubin and
Taylor [4]. It contains of course the colorability as a particular case. Since its introduction, choosability has been extensively
studied (see for example [1,2,14,15,6,17] and more recently [7,9]). Even for the original (unweighted) version, the problem
proves to be difficult, and is NP-complete for very restricted graph classes.

Every graph that is (a, b)-colorable is also trivially (am, bm)-colorable for any integerm ≥ 1. Erdős, Rubin and Taylor [4]
conjectured the following:
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Conjecture 1 ([4]). The (a, b)-choosability of a graph G implies (am, bm)-choosability for all m ∈ N, m ≥ 1.

In relation with this question, Gutner and Tarsi [7] have recently exhibited graphs G that are (a, b)-choosable but not (c, d)-
choosable, with c

d > a
b ≥ 3.

List multicoloring problems on graphs can be used to model channel assignment problems in wireless systems. Sets of
radio frequencies are to be assigned to transmitters such that adjacent transmitters are assigned disjoint sets of frequencies.
Often these transmitters are laid out like vertices of a triangular lattice in a plane. This problem corresponds to the problem
of multicoloring an induced subgraph of a triangular lattice with integer demands associated with each vertex. Since more
than a decade,multicoloring of subgraphs of the triangular lattice has been the subject ofmany papers (see e.g. [12,8,10,11]).
Mc Diarmid and Reed [12] have made the following conjecture when the subgraph is induced and contains no triangle:

Conjecture 2 ([12]). Every triangle-free induced subgraph of the triangular lattice is
 9b

4


, b


-colorable.

The ratio 9b
4 is best possible since the cycle of length 9 is a triangle-free induced subgraph of the triangular lattice and is

not (a, b)-colorable for any a such that a/b < 9/4. Some progress has been made regarding this conjecture with Havet [8]
proving the (5, 2)-colorability and (7, 3)-colorability and Sudeep and Vishwanathan [13] (with a simpler proof) the (14, 6)-
colorability of any triangle-free induced subgraph of the triangular lattice.

The main result is Theorem 14 of Section 3 which shows the (5m, 2m)-choosability of triangle-free induced subgraphs
of the triangular lattice. The method is similar with that of Havet [8], that uses precoloring extensions and decomposition
into induced path (called handles). However, we need here some results on the choosability of a weighted path. We find
convenient to work on a type of list assignment of the path that we call waterfall list assignment. This is the subject of the
next section. We think that the choosability results for paths presented in the next section can be of interest to derive other
choosability results on triangular lattices or other graphs.

2. Waterfall list assignments on the path

We first define the similarity of two list assignments with respect to a weighted graph:

Definition 1. Let (G, w) be a weighted graph. Two list assignments L and L′ are said to be similar if this assertion is true:

G is (L, w)-colorable ⇔ G is (L′, w)-colorable.

The path Pn+1 of length n is the graph with vertex set V = {v0, v1, . . . , vn} and edge set E =
n−1

i=0 {vivi+1}. To simplify
the notation, L(i) denotes L(vi), c(i) denotes c(vi) and w(i) denotes w(vi).

By analogy with the flow of water in waterfalls, we define a waterfall list assignment as follows:

Definition 2. A waterfall list assignment L of a path Pn+1 of length n is a list assignment L such that for all i, j ∈ {0, . . . , n}
with |i − j| ≥ 2, we have L(i) ∩ L(j) = ∅.

Notice that another similar definition of a waterfall list assignment is that any color is present only on one list or on two
lists of consecutive vertices. The list assignment Lc on the bottom right of Fig. 1 is a waterfall list assignment.

Definition 3. For a weighted path (Pn+1, w),

• A list assignment L is good if |L(i)| ≥ w(i) + w(i + 1) for any i, 1 ≤ i ≤ n − 1.
• The amplitude A(i, j)(L) (or A(i, j)) of a list assignment L is A(i, j)(L) = ∪

j
k=i L(k).

As the next result shows, the condition of being a good list assignment is sufficient to allows the transformation of the
list assignment into a similar waterfall list assignment. Notice that if the condition |L(i)| ≥ w(i) + w(i + 1) would be also
required for the vertex v0 in a good list assignment L (and if |L(n)| ≥ w(n)), then an (L, w)-coloring could be obtained easily
by greedily coloring the vertices from vn to v0. However we will show, using Hall’s condition, that the path Pn+1 remains
(L, w)-colorable for good waterfall lists Lwith some additional properties (Corollary 7, Propositions 8 and 9).

Proposition 4. For any good list assignment L of Pn+1, there exists a similar waterfall list assignment Lc with |Lc(i)| = |L(i)| for
all i ∈ {0, . . . , n}.

Proof. We are going to transform a good list assignment L of Pn+1 into a waterfall list assignment Lc and we will prove that
Lc is similar with L.

First, remark that if y is a new color (y ∉ A(0, n)(L)), then if a color x ∈ L(i−1) but x ∉ L(i) for some iwith 1 ≤ i ≤ n−1,
then for any j > i, one can change the color x by y in the list L(j), resulting in a similar list assignment. With this remark in
hand, we can assume that L is such that any color x appears on the lists of consecutive vertices ix, . . . , jx.

Now, by permuting the colors if necessary, we can assume that if x < y then ix < iy or ix = iy and jx ≤ jy.



Y. Aubry et al. / Discrete Applied Mathematics 166 (2014) 51–58 53

Fig. 1. Example of the transformation of a list assignment L of P5 into a similar waterfall list assignment Lc as in proof of Proposition 4.

Repeat the following transformation:
1. Take theminimum color x for which jx ≥ ix +2, i.e. the color x is present on at least three vertices ix, ix +1, ix +2, . . . , jx;
2. Replace color x by a new color y in lists L(ix + 2), . . . , L(jx);
until the obtained list assignment is a waterfall list assignment (obviously, the number of iterations is always finite).

Fig. 1 illustrates these steps, starting from a list assignment L of the path P5. The second list assignment is after changing
the non-contiguous colors (1, 3, and 5) along the path; the third one is after reordering the colors; the fourth one is after
applying transformation on colors 3 and4; the fifth one is after applying transformation on color 11 (this is already awaterfall
list assignment) and the sixth one is after reordering the colors (optional).

Now, in order to show that this transformation preserves the choosability of the list assignment, we prove that the list
assignment Ls obtained from the list assignment L after s iterations of the above transformation is similar with the list
assignment Ls−1 (setting L0 = L), for s ≥ 1.

If c is an (Ls−1, w)-coloring of Pn+1 then the coloring c ′ obtained from c by changing the color x by the color y in the color
set c(k) of each vertex k ≥ ix + 2 (containing x) is an (Ls, w)-coloring since y is a new color.

Conversely, if c ′ is an (Ls, w)-coloring of Pn+1, we consider two cases:
Case 1: x ∉ c ′(ix + 1) or y ∉ c ′(ix + 2). In this case, the coloring c obtained from c ′ by changing the color y by the color x in
the color set c ′(k) of each vertex k ≥ ix + 2 (containing y) is an (Ls−1, w)-coloring.
Case 2: x ∈ c ′(ix + 1) and y ∈ c ′(ix + 2). We have to consider two subcases:
• Subcase 1: Ls(ix + 1) ⊄ (c ′(ix) ∪ c ′(ix + 1) ∪ c ′(ix + 2)). There exists z ∈ Ls(ix + 1) \ (c ′(ix) ∪ c ′(ix + 1) ∪ c ′(ix + 2)) and

the coloring c obtained from c ′ by changing the color x by the color z in c ′(ix + 1) and replacing the color y by the color
x in the color set c ′(k) of each vertex k ≥ ix + 2 (containing y) is an (Ls−1, w)-coloring.

• Subcase 2: Ls(ix + 1) ⊂ (c ′(ix) ∪ c ′(ix + 1) ∪ c ′(ix + 2)). We have

|Ls(ix + 1)| =
(c ′(ix)) ∪ c ′(ix + 1) ∪ c ′(ix + 2)


∩ Ls(ix + 1)

 .
As c ′ is an (Ls, w)-coloring of Pn+1, we have

|Ls(ix + 1)| = |c ′(ix + 2) ∩ Ls(ix + 1)| + |c ′(ix + 1) ∩ Ls(ix + 1)| +
c ′(ix)\c ′(ix + 2)


∩ Ls(ix + 1)

 ,
|Ls(ix + 1)| − w(ix + 1) − |c ′(ix + 2) ∩ Ls(ix + 1)| =

c ′(ix)\c ′(ix + 2)

∩ Ls(ix + 1)

 .
Since y ∈ c ′(ix + 2) and y ∉ Ls(ix + 1), we obtain that

|c ′(ix + 2) ∩ Ls(ix + 1)| ≤ w(ix + 2) − 1,

hence

(|Ls(ix + 1)| − w(ix + 1) − w(ix + 2)) + 1 ≤
c ′(ix)\c ′(ix + 2)


∩ Ls(ix + 1)

 .
But, by hypothesis, L is a good list assignment, hence so are list assignments Lℓ, ℓ ≥ 0. Thus |Ls−1(ix +1)| = |Ls(ix +1)| ≥

w(ix + 1) + w(ix + 2) and

1 ≤
c ′(ix)\c ′(ix + 2)


∩ Ls(ix + 1)

 .
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Consequently, there exists z ∈

c ′(ix)\c ′(ix + 2)


∩ Ls(ix + 1). The coloring c is then constructed from c ′ by changing the

color x by the color z in c ′(ix + 1), the color z by the color x in c ′(ix) and the color y by the color x in the set c ′(k) of each
vertex k ≥ ix + 2 (containing y). �

Cropper et al. [3] consider Philip Hall’s theorem on systems of distinct representatives and its improvement by Halmos
and Vaughan as statements about the existence of proper list colorings or list multicolorings of complete graphs. The
necessary and sufficient condition in these theorems is generalized in the new setting as ‘‘Hall’s condition’’:

∀H ⊂ G,

k∈C

α(H, L, k) ≥


v∈V (H)

w(v),

whereC =


v∈V (H) L(v) andα(H, L, k) is the independencenumber1 of the subgraphofH inducedby the vertices containing
k in their color list. Notice that H can be restricted to be a connected induced subgraph of G.

It is easily seen that Hall’s condition is necessary for a graph to be (L, w)-colorable. Cropper et al. [3] showed that the
condition is also sufficient for some graphs, including paths:

Theorem 5 ([3]). For the following graphs, Hall’s condition is sufficient to ensure an (L, w)-coloring:

(a) cliques;
(b) two cliques joined by a cut-vertex;
(c) paths;
(d) a triangle with a path of length two added at one of its vertices;
(e) a triangle with an edge added at two of its three vertices.

This result is very nice, however, it is often hard to compute the left part of Hall’s condition, even for paths. However, as
the next result shows, Hall’s condition is very easy to check when restricted to waterfall list assignments.

Theorem 6. Let Lc be a waterfall list assignment of a weighted path (Pn+1, w). Then Pn+1 is (Lc, w)-colorable if and only if:

∀i, j ∈ {0, . . . , n},

 j
k=i

Lc(k)

 ≥

j
k=i

w(k).

Proof. ‘‘if’’ part: Recall that A(i, j) = ∪
j
k=i L

c(k). For i, j ∈ {0, . . . , n}, let Pi,j be the subpath of Pn+1 induced by the vertices
i, . . . , j. By Theorem 5, it is sufficient to show that

∀i, j ∈ {0, . . . , n},


x∈A(i,j)

α(Pi,j, Lc, x) ≥

j
k=i

w(k).

Since Lc is a waterfall list assignment, then for each color x ∈ A(i, j), α(Pi,j, Lc, x) = 1 and thus


x∈A(i,j) α(Pi,j, Lc, x) =

|A(i, j)| =

j
k=i L

c(k)
.

‘‘only if’’ part: If c is an (Lc, w)-coloring of Pn+1 then

∀i, j ∈ {0, . . . , n} :

j
k=i

Lc(k) ⊃

j
k=i

c(k).

Since Lc is a waterfall list assignment, it is easily seen that
j

k=i c(k)
 =

j
k=i w(k). Therefore, ∀i, j ∈ {0, . . . , n} :j

k=i L
c(k)

 ≥
j

k=i w(k). �

Theorem 6 has the following corollary when the list assignment is a good waterfall list assignment and |L(n)| ≥ w(n).

Corollary 7. Let Lc be a waterfall list assignment of a weighted path (Pn+1, w) such that for any i, 1 ≤ i ≤ n − 1, |Lc(i)| ≥

w(i) + w(i + 1) and |Lc(n)| ≥ w(n). Then Pn+1 is (Lc, w)-colorable if and only if

∀j ∈ {0, . . . , n},

 j
k=0

Lc(k)

 ≥

j
k=0

w(k).

1 The independence number of a graph is the size of the largest set of isolated vertices.
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Proof. Under the hypothesis, if Pn+1 is (Lc, w)-colorable, then Theorem 6 proves in particular the result.
Conversely, since Lc is a waterfall list assignment of Pn+1, we have:

∀i, j ∈ {1, . . . , n}, |A(i, j)| =

 j
k=i

Lc(k)

 ≥


j

k=i
k−i even

Lc(k)

 =

j
k=i

k−i even

|Lc(k)|.

Since Lc is a good list assignment of Pn+1 (for simplicity, we set w(n + 1) = 0):

∀i, j ∈ {1, . . . , n},
j

k=i
k−i even

|Lc(k)| ≥

j
k=i

k−i even

(w(k) + w(k + 1)) ≥

j
k=i

w(k),

and then we obtain for all i, j ∈ {1, . . . , n}, |A(i, j)| ≥
j

k=i w(k). Since for all j ∈ {0, . . . , n}, |A(0, j)| ≥
j

k=0 w(k),
Theorem 6 concludes the proof. �

Another interesting result holds for list assignments L such that |L(0)| = |L(n)| = b, and for all i ∈ {1, . . . , n−1}, |L(i)| =

a. The function Even is defined for any real x by: Even(x) is the smallest even integer p such that p ≥ x.

Proposition 8. Let L be a list assignment of Pn+1 such that |L(0)| = |L(n)| = b, and |L(i)| = a = 2b+e for all i ∈ {1, . . . , n−1}
(with e > 0).

If n ≥ Even

2b
e


then Pn+1 is (L, b)-colorable.

Proof. The hypothesis implies that L is a good list assignment of Pn+1, hence by Proposition 4, there exists a waterfall list
assignment Lc similar to L. So we get:

∀i ∈ {1, . . . , n − 1}, |Lc(i)| ≥ 2b = w(i) + w(i + 1)

and |Lc(n)| ≥ b = w(n). By Corollary 7 it remains to prove that:

∀j ∈ {0, . . . , n}, |A(0, j)| ≥

j
k=0

w(k) = (j + 1)b.

Case 1: j = 0. By hypothesis, we have |A(0, 0)| = |Lc(0)| ≥ b.
Case 2: j ∈ {1, . . . , n − 1}. Since Lc is a waterfall list assignment of Pn+1 we obtain that:
if j is even

|A(0, j)| ≥

j
k=0

k even

|Lc(k)| = b +

j
k=2

k even

2b = b +
j
2
2b = (j + 1)b,

and if j is odd

|A(0, j)| ≥

j
k=0
k odd

|Lc(k)| =

j
k=1
k odd

2b =
j + 1
2

2b = (j + 1)b.

Hence for all j ∈ {0, . . . , n − 1}, |A(0, j)| ≥ (j + 1)b.
Case 3: j = n. Since n ≥ Even

 2b
e


by hypothesis, and

| A(0, n) |≥

n
k=0
k odd

|Lc(k)| =

a
n
2
, if n is even;

b + a
n − 1
2

, otherwise;

we deduce that |A(0, n)| ≥ (n + 1)b, which concludes the proof. �

Also, we will need the following result with more restrictions on the lists of colors on the two last vertices of the path.

Proposition 9. Let n, a, b, e be positive integers such that a = 2b + e and e < b. Let L be a list assignment of a path Pn+1 such
that |L(0)| = b, and for any i ∈ {1, . . . , n − 2} : |L(i)| = a, |L(n − 1)| = |L(n)| = b + e, and |A(n − 1, n)(L)| ≥ 2b.

If n = Even

2b
e


then Pn+1 is (L, b)-colorable.
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Proof. Since

|A(n − 1, n)| = |L(n − 1)| + |L(n)\L(n − 1)| = (b + e) + |L(n)\L(n − 1)| ≥ 2b,

we obtain that |L(n)\L(n − 1)| ≥ b − e. Let D be a set such that D ⊂ L(n)\L(n − 1) and |D| = b − e.
Let L′ be the new list assignment constructed with L such that L′(i) = L(i) if i ∈ {0, . . . , n − 1} and L′(n) = L(n)\D and

let w′ be a new weight function defined by w′(i) = b if i ∈ {0, . . . , n − 1} and w′(n) = e.
We are going to prove that if Pn+1 is (L′, w′)-colorable then Pn+1 is (L, b)-colorable. Indeed, if c ′ is an (L′, w′)-coloring of

Pn+1, then we construct c such that:

c(i) =


c ′(i), if i ∈ {0, . . . , n − 1};
c ′(n) ∪ D, otherwise.

Since D ∩ L(n − 1) = ∅, we have c(n − 1) ∩ c(n) = ∅ and then c is an (L, b)-coloring of Pn+1.
Now, this new list assignment L′ is a good list assignment of Pn+1 and |L′(n)| ≥ w′(n). Proposition 4 shows that there

exists a waterfall list assignment Lc similar to L′ such that for all k we have |Lc(k)| = |L′(k)|.
Thanks to Corollary 7, it remains to check that:

∀j ∈ {0, . . . , n} : |A(0, j)(Lc)| ≥

j
k=0

w′(k).

Case 1: j ∈ {0, . . . , n − 2}. Since the list assignment is a waterfall list assignment, we have:

|A(0, j)(Lc)| ≥



j
k=0

k even

|Lc(k)| = b + a
j
2
, if j is even;

j
k=0
k odd

|Lc(k)| = a
j + 1
2

, otherwise;

and the weight function satisfies
j

k=0 w′(k) = (j + 1)b. Hence, we deduce that

|A(0, j)(Lc)| ≥

j
k=0

w′(k).

Case 2: j = n − 1. Since the list assignment is a waterfall list assignment, we have:

|A(0, n − 1)(Lc)| ≥

n−1
k=0
k odd

|Lc(k)| = (b + e) + a
n − 2
2

,

and
n−1

k=0 w′(k) = nb. Then b + e + a n−2
2 ≥ nb if and only if en

2 ≥ b, which is true by hypothesis since n = Even
 2b

e


, thus

|A(0, n − 1)(Lc)| ≥

n−1
k=0

w′(k).

Case 3: j = n. Since the list assignment is a waterfall list assignment, we have:

|A(0, n)(Lc)| ≥

n
k=0

k even

|Lc(k)| = b + 2e + a
n − 2
2

,

and
n

k=0 w′(k) = nb+e. Then b+2e+a n−2
2 ≥ nb+e if and only if en

2 ≥ b, which is true by hypothesis since n = Even
 2b

e


,

thus

|A(0, n)(Lc)| ≥

n
k=0

w′(k). �

3. Choosability of the triangular lattice

Let R be a finite triangle-free induced subgraph of the triangular lattice. Recall that the triangular lattice is embedded
in an Euclidean space and the vertices are all integer linear combinations xp⃗ + yq⃗ of the two vectors p⃗ = (1, 0) and
q⃗ =


1/2,

√
3/2


. Hence, we may identify the vertices with the pairs (x, y) of integers and any vertex (x, y) of R has at
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Fig. 2. Left node and right node.

Fig. 3. Cutting handle of length 3.

most six neighbors: its neighbor on the left (x − 1, y), its neighbor on the right (x + 1, y), its neighbor on the top left
(x − 1, y + 1), its neighbor on the top right (x, y + 1), its neighbor on the bottom left (x, y − 1) and its neighbor on the
bottom right (x + 1, y − 1).

Following the terminology used in [8], we define nodes and handles of R.

Definition 10. The nodes ofR are the vertices of degree 3. There are two kinds of nodes: the left nodes whose neighbors are
the neighbors on the left, on the top right, and on the bottom right; and the right nodes whose neighbors are the neighbors
on the right, on the top left and on the bottom left (see Fig. 2).

Definition 11. A cutting node of R is a left node (x, y) such that for any node (x′, y′), we have y ≥ y′, and for any left node
(x′, y), we have x′

≤ x. A handle H of R is a subpath of R such that its extremal vertices are nodes and its internal vertices
have degree 2 in R. The set of the internal vertices of a handle H is denoted by Ḣ . A cutting handle of R is a handle H such
that one of its extremal vertices is the cutting node (x, y) and (x, y + 1) is its neighbor in H .

Note that the end-vertices of a handle may be the same vertex (i.e. the handle is an induced cycle of R).
We have the following easy results:

Lemma 12. If R has minimum degree 2 and at least a node, then it has a cutting handle.

Proof. First, we can suppose that R contains a cutting node v0 (by considering the mirror graph if there is no left node
among the nodes with highest ordinate). Second, as the vertices are of degree 2 or 3, the number of nodes is even and there
are at least two nodes. Then the induced path starting at v0, crossing v1 = (x, y+ 1) and continuing along the induced path
of R (which has minimum degree 2) until a node vn is reached is a cutting handle. �

Lemma 13. Let H be a cutting handle of R such that V (H) = {v0, . . . , vn}. If the length n of H is less than or equal to 3, then
n = 3 and v3 has a neighbor v4 ≠ v2 of degree less than or equal to 2.

Proof. Let v0 = (x, y) be the cutting node of H . Then, by definition, v1 = (x, y + 1).
If n = 1 then v1 is a right node with higher ordinate than v0, which contradicts the hypothesis that v0 is a cutting node.
If n ≥ 2 then v2 can be neither (x + 1, y) nor (x − 1, y + 1) since otherwise v0, v1, v2 would form a triangle in R. Hence

if n = 2, then v2 is a node with a higher ordinate than v0, which contradicts the hypothesis.
Then n = 3 and v3 = (x + 2, y) has the same ordinate than v0 and is a right node. We are thus in the configuration

depicted in Fig. 3. The vertex v4 = (x + 3, y) cannot be a node since otherwise it would be a left node on the right from v0,
which, again, contradicts the hypothesis. Hence v4 has degree one or two. �

Theorem 14. For any integer m ≥ 1, every finite triangle-free induced subgraph of the triangular lattice is (5m, 2m)-choosable.

Proof. Set a = 5m, b = 2m and e = m. Let G be a minimal (with respect to the number of vertices) counter-example. It
is easily seen that G is connected and has no vertex of degree 0 or 1. Then G has only vertices of degree 2 or 3. Suppose G
has only vertices of degree 4 Also, G cannot be reduced to a simple cycle since it has girth2 at least 6 and since cycles of
even length are (2m,m)-choosable and cycles of odd length ℓ > 3 are (5m, 2m)-choosable [18]. Therefore G has at least
one node and, by Lemma 12, G has a cutting handle H . By hypothesis, for any 5m-list assignment L of G, there exists an
(L, 2m)-coloring c of G − Ḣ . If H is of length n ≥ 4 = Even

 4m
m


, by Proposition 8, c can be extended to an (L, 2m)-coloring

2 The length of a shortest (simple) cycle in the graph.
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of G, contradicting the hypothesis. Otherwise, by Lemma 13, H has length 3 and v3 has a neighbor v4 ≠ v2 of degree 2 (let v′

2
be the other neighbor of v3 and let v5 be the other neighbor of v4). Hence we have |L(v4)\ c(v5)| ≥ 5m−2m = 3m = b+ e,
and |L(v3)\ c(v′

2)| = 5m−2m = b+ e. Moreover, |L(v3)\ c(v′

2)∪ L(v4)\ c(v5)| ≥ |c(v3)∪ c(v4)| = 2b since c is an (L, 2m)-
coloring of G − Ḣ . Then, H ∪ {v4} satisfies the conditions of Proposition 9 and the coloring c restricted to G − (Ḣ ∪ {v3, v4})
can be extended to an (L, 2m)-coloring of G, contradicting the hypothesis. �

Notice that the above proof can be easily translated to show the more general result that for any integers a, b such that
a/b ≥ 5/2, every finite triangle-free induced subgraph of the triangular lattice is (a, b)-choosable. As mentioned in the
Introduction, this extension is not true for all graphs.

Also, using similar arguments with some additional results on the list-colorability of the path [5], allows us to show that
triangle-free induced subgraphs of the triangular lattice are (7, 3)-colorable, thus giving another proof of Havet’s result and
for the (7, 3)-choosability of such graphs, Proposition 8 permits us to treat handles of length at least 6 and Proposition 9 to
treat a handle of length 5 with an end-vertex that has a neighbor of degree 2.

Moreover, the method defined in this paper can serve as a starting tool in order to prove Conjecture 2. Proceeding as in
the proof of Theorem 14 but with a = 9 and b = 4 (and e = a − 2b = 1), allows us to prove that a minimal counter-
example to the conjecture does not contain handles of length n ≥ 8 (and also no handles of length 7 with an end-vertex
that has a neighbor of degree 2). By using more complex structures than handles, some additional properties of a minimal
counter-example were found by Godin [5]. However, many configurations remain to be investigated in order to prove the
conjecture.

Remark 15. As noticed by a referee, for a = 5m, b = 2m and e = m, the coloring of a handle of length n ≥ 4 can be done
directly, without using Proposition 8: color the vertices one by one from one end of the path until there remain only the
three vertices v1, v2, v3 with lists |L(v1) \ c(v0)| = |L(v3) \ c(v4)| = 3m and |L(v2)| = 5m. Color v2 by m colors from
L(v2) \ (L(v1) \ c(v0)) andm further colors from L(v2) \ (L(v3) \ c(v4)). However, we choose to keep Proposition 8 since it
can be of interest to prove other coloring results. For instance if a = 9m and b = 4m (and e = a− 2b = m), finding directly
a coloring of a handle of length 8 seems not so easy.
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