Available online at www.sciencedirect.com

o FINITE FIELDS
sclENcE@DIREcT iy
: APPLICATIONS
ELSEVIER Finite Fields and Their Applications 10 (2004) 412-431

http://www.elsevier.com/locate/ffa

On the characteristic polynomials of the
Frobenius endomorphism for projective curves
over finite fields

Yves Aubry®*! and Marc Perret®

& Laboratoire de Mathématiques Nicolas Oresme, CNRS-UMR 6139, Université de Caen,
14032 Caen Cedex, France
Y GRIMM, Université de Toulouse 2-Le Mirail, 5, allées A. Machado, 31058 Toulouse, France

Received 13 November 2002; revised 8 September 2003

Communicated by Michael Tsfasman

Abstract

We give a formula for the number of rational points of projective algebraic curves defined
over a finite field, and a bound ““a la Weil” for connected ones. More precisely, we give the
characteristic polynomials of the Frobenius endomorphism on the étale /-adic cohomology
groups of the curve. Finally, as an analogue of Artin’s holomorphy conjecture, we prove that,
if Y—X is a finite flat morphism between two varieties over a finite field, then the
characteristic polynomial of the Frobenius morphism on H.(X,Q,) divides that of HI(Y,Q,)
for any i. We are then enable to give an estimate for the number of rational points in a flat
covering of curves.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Absolutely reducible projective curves arise naturally in different ways in
Arithmetic and Geometry. For example when we reduce, modulo a prime, a
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projective curve defined over a number field, or when we consider intersections of
projective varieties.

We are interested in this paper in the number of rational points of such a curve X
defined over a finite field k. It is convenient to introduce the zeta function of X
denoted by Z; x(T) or simply Zx(T), as

o0 "
Zy(T) = X kn R B

(1) = e 3 #X )
where k, denotes the finite field extension of degree n of k. Let ¢ be the order of k,
and F be the endomorphism on the /-adic étale cohomology groups H’ (X, Q,) of X
(for some prime ¢ different from the characteristic of k and X a geometric model of
X) induced by the endomorphism x——x?. The Grothendieck—Lefschetz formula
expresses this zeta function as a rational fraction in terms of the (reciprocal)

characteristic polynomials of F on the H’s

~ det(I — TF| H\(X,Q))
~ det(l — TF | HY,(X,Q,)) det(l — TFIHA(X,Q,))’

Zx(T)

In other words, the number of k,-rational points of X equals

11X (ky) = Zag,j - Za'f.j+zo‘8w

where the o;;’s are the eigenvalues of F on H! (X, Q,). The aim of this paper is to
determine them. Consider for instance a k-irreducible projective curve X having two
absolutely irreducible components X; and X, defined over k,, conjugated under
Gal(ky/k). It is easily seen that X; n X5 is defined over k, and an elementary counting
argument shows that

X (K X (ky) + $Xa(ky) — $X1 0 Xao(k,) if n is even,

) = { 5X1 0 Xa (k) if nis odd.

It is not clear what could be these numbers «;; (whose existence follows from the
above Grothendieck—Lefschetz formula) summing-up these two-case formulae into a
closed one (see Example 2). This will be done in the general case.

In the general reducible case, if X = XjuU --- U X, is a decomposition of X into its
k-irreducible components, it is enticing to compute #X (k,) using the well-known
inclusion—exclusion formula in terms of the jth intersections X; N --- N X;. In fact,
this approach is not effective. Indeed, we obtain the eigenvalues o;;’s unfortunately
only up to roots of unity (Theorem 1). However, this is sufficient to deduce a Weil
inequality (Corollary 3).

We use in the next section the cohomological approach to determine, without any
indetermination, the eigenvalues of the Frobenius on X in terms of the eigenvalues of
the Frobenius of the normalizations of the absolutely irreducible components of X,
the (finite) set of singular points of these absolutely irreducible components, and the
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(finite) set of intersection points of these components (Theorems 9-11). In view of
these results, we point out that the contributions of these finite sets are very easy to
handle, as shown by Lemma 8. Moreover, the multiple intersections between the
absolutely irreducible components do not appear in the results (see Example 3),
which is nice, both for theoretical and computational approaches.

Finally, we consider in the final section the behaviour of the eigenvalues of the
Frobenius in a covering Y—X of d-dimensional (d>1) non-proper varieties. In
analogy with a conjecture of Artin, we prove a divisibility result for such finite flat
morphisms (Corollary 13). Together with the results of the preceding section, this
enables us to derive some upper bound for the number of points if X and Y are
projective curves in a surjective flat morphism (Theorem 14), including the known
results as special cases.

Because the cohomology groups of a disjoint union of varieties is the direct sum as
F-modules of those of its connected components, the characteristic polynomial of
the Frobenius is the product of those on each component. Hence, we will restrict
ourselves to connected curves.

Let us fix some notations. If V' is a scheme over a field k, we denote by | V| the set
of closed points of ¥, by k(P) the residue field of a point Pe|V|, and by dp =
[k(P) : k] the degree of P over k. In this paper, k will always be the finite field with ¢
elements and k an algebraic closure of k. The normalization map is denoted by
vy : V—V and we denote by ¥ = V x, k the extension of V to k. We set 7y for the
arithmetic genus of V', gy for its geometric genus and A, = #(V(k) — V (k)).

For simplicity, we denote by H'(V) (respectively H!(V)) the ith /-adic étale
cohomology group (resp. with compact support) H. (V,Q,) (resp. H:(V,Qy)) of V.
Then, we denote by

P wion(T)

the characteristic polynomial det(I — TF | H'(V')) of the Frobenius endomorphism
F of the variety V' over the field k. We use the same notation, but with a subscript
“c”, when we deal with cohomology with compact support.

Some varieties ¥ will naturally be introduced over k. They will be denoted with an
overline. When it will be proved that they can be defined over the finite field
extension k, of k, we will denote by V" (without overline) the variety over k,, such that
V V Xkn k

2. A counting approach

Let us remark that if {V;} is a finite covering of a variety V' defined over k by
subvarieties defined over k, then the following inclusion—exclusion formula

8V (k)= > (=1 N #(Viae V) (k)

j=1 i< <ij
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gives

Z(T) =[] H Zyy ey (T) T

j=1l h<-

Theorem 1. Let X be a connected projective curve defined over k and X = X, U --- U X;

be its decomposition into its k-irreducible components. Then the number of rational
points of X over k, is of the form

295, Ay —F

SEOE I IE W
i=1 i=1

Jfor some algebraic integers p; of modulus q, some algebraic integers w;, of modulus \/q
and some roots of unity f3; in C.

Proof. Let us assume to begin with that all absolutely irreducible components of X,
so as all its singular points and the points above them by the normalization map, are
rational over k. We set Z = J,_;(X;nX;) and Z; = Zn X; as k-varieties (overlines
for X;’s can be dropped thanks to the last paragraph of the introduction).

Then, the inclusion—exclusion formula applied to X = J; X; gives

Zix(M =T TI Zye-nn @

j=l h<--<i

and then applied to Z = |J; Z; gives

Zez(T) =[] H Zz,002 (T)HW.

j=l <
Remarking that Z; n---nZ; = X;; n--- n X for j>2, we obtain

ZkZ(T)

Zex(T) = 11 Zex (D) < 777

Since the X;’s are absolutely irreducible curves, we know by [1] that their zeta
function are given by

AT

Al == - g1y

where the polynomial Pk - (})(T) has degree 2gy,, i.e. twice the geometric genus of

X; and has root of modulus /g by the Riemann hypothesis and PX,/)Z,»(T) is the
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following polynomial of degree 4y, whose roots have modulus 1

HPGV}‘(P)(I - T%
PX./)?(T) - 1 — Tdr '
v Pe|X]|

Under our rationality assumptions, we have here: PX/;(T )= (1—T)".

Moreover, for any zero-dimensional algebraic set V' defined over k all of whose
closed points are rational over k, we have clearly

1

Zy(T) = T

Thus Zj x(T') can be written as

H; (P, ~(TP ~(T))x(l- T)(ZZ.':] £ 7,(k))—Z (k) —F
Zk,X(T) = Xi/Xi kH'(X;) ‘ |

Hence

since

This means that

so that the theorem is proved in this case.
In the general case, the well-known formula

H Zix((T) = Z, x4k, (T")

S

holding for any meN*, proves that the absolute values of the zeros and poles of
Zi x(T) are some mth roots of the zeros and poles of Zi xx.,(T). Hence, the
general case follows from the particular one after a suitable base-field extension k,
of k, and the theorem is proved. [
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Lemma 2. Let X be a connected projective curve defined over k of arithmetic genus my
and X = X; U --- U X; be its decomposition into k-irreducible projective curves X; of
geometric genus gy.. Let ¢ be the number of absolutely connected components of X.
Then, we have

i3
Axgﬂix—z gx—I—f—E’.
i=1

Proof. Since the problem is geometric, we can work on the algebraic closure k of k.
If P is a closed point of X, let ¢p 3 be the local ring of X at P, Frac(( z) be the
localization of (/p 3 at the multiplicative set of non-zero divisors of (/p 3 and Op 3 be
its integral closure in Frac(@p ). Define '

_ Op 5
(P, X) = dim; .
Op x

We have the following short exact sequence:
0—0z—(vg), 03— (v3),03/ 05—,

where Oy is the structure sheaf of X and (vg),0  the direct image sheaf.

Then the long exact sequence in cohomology associated implies (taking into
account that dim H%(0g) =¢, that dimO((vg),0;) =7 and finally that
dim H'((vg),03/0x) = O):

Ty =Y gy + Y oP.X)-F+e

i=1 PeX

We are then reduced to prove the following inequality:

Ax< > 8(P,X).

PeX

If Pe X (k), let (P, X) be the number of closed points in v;'(P). We have to prove
that

a(P, X) — 1<46(P, X).

The total fraction ring of ¢ ¢ is isomorphic to the direct product k(X)) x - x
k(X,) of the function fields of the irreducible components of X. The integral closure
Op g in it is then isomorphic to the direct product of the integral closures (p 3, of the
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domains Op g =k(X;). But each 0p 3 is a semi-local ring

Oog= () Op 5

Let 1<i<F be fixed. We introduce the evaluation map on the points of f’, lying
over P:

/E“(P’)?")

f(pil)v ’f(ﬁ

foo— )

Note that if P¢X; then 0py =k(X;) = py and a(P,X;) =0, so that the map
¢; : k(X;)—k" = {0} is the zero map.

This is a k-linear map which is surjective thanks to the weak approximation
theorem for the global field k(X;). They fit together in a surjective k-linear map

D:0pg=0pyg, % x Opg— [ P = oo P X) _ pu(P.X)

=1
sending f = (fi,...,f;) to

(ﬁ(ﬁll)7 --~7f1(ﬁla(p,,{»l>)a “'vfr(ﬁrl)v "'7<f;‘(13r7(P_)?;)))’

which sends O 3 onto the diagonal line. The inequality is then proved and so is the
lemma. [

Theorem 1 together with Lemma 2 admit for example the following corollary:
Corollary 3. Let X be an absolutely connected projective curve defined over k and

X =X 0+ VX, be its decomposition into k-irreducible projective curves which are
absolutely irreducible. Then

X (k) = (rg + 1)[ <2 gx/q + Ax — r + 1<2nx /3.
i=1

Proof. We write the formula of Theorem 1 for the number of k-rational points with
p; = q for any i. Then, taking modulus we get the first inequality, and the second
inequality follows from Lemma 2. [

Remark that we can improve as in [10] the inequalities of the preceding corollary
by replacing 2,/q by its integer part.
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3. Frobenius on the cohomology

Let us begin by some lemmas, which will be useful later.

3.1. Two lemmas

Lemma 4. Let X be a projective curve defined over k, and Z < X be a non-empty zero-
dimensional subvariety defined over k. Let U =X —Z. Then Py pox\(T) divides
P/C’HO(Z>(T) and

Py o2 (T)

P giw)(T) = Pk,Hl(X)(T)m-

Proof. Since H'(Z) = 0 for a zero-dimensional scheme, and H?(U) = 0 for a non-
proper variety U, the following long exact sequence of F-modules (see [9, Remark
1.30, p. 94]):

= H N (Z)— H(U)—Hy(X ) —H{(Z)— - (1)
becomes
0—H(X)—H"(Z)—H!(U)—H'"(X)—0.
The lemma follows taking characteristic polynomials of the Frobenius. [

Lemma 5. Let V be an irreducible (respectively connected) k-variety, and suppose that
V=TViu--uV,

for some disjoint absolutely irreducible (respectively, absolutely connected) subvarieties
V; over k. Then, Vy, ..., V,, are defined over k,,, are conjugated under Gal(k,,/k), and

P gion)(T) = P, iy (T™).

Proof. Let k, be the smallest extension of k, in which each V;, 1<i<m, are defined.
Then Gal(k,/k) acts on the set {V1, ..., V,,}. The union of those V;’s in an orbit for
this action is defined over k, and is irreducible (resp. connected) over k. Since V is
irreducible (resp. connected) by assumption, this action is transitive, so that n>=m.
On the other side, each V; is defined over the fixed field of k, by the common
stabilizer. By minimality of n, this stabilizer is trivial, hence n = m, which proves the
first and the second assertions of the lemma.
Now, the disjointness of the V;’s implies that

H{(V)=H{(V)® - @H{(Vpn)
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as vector spaces. We just saw that, up to a labelling, F cyclically permutes V1, ..., V,,.
Let ) = {e1, ..., e} be a basis of H.(V}), so that By = {FK~(ey), ..., F*"(ep)} is a
basis of H(V}). In the basis Z = %, U --- U4, of H.(V), the matrix of F is

0 0 - - 4
I 0 - 0
Maty(F|H(V)=]0 I 0 0
0 0 I 0
for some matrix 4 e M;,(Q,). Hence,
0O - 0
i i m 0 A ’
Mats (g | Hi(V)) = Maty(F| H(V)" = | Ol
0 - 0 4

but the matrix Maty(¢,. | HX(V)) also equals

Maty, (@, | Hi(V1)) 0 - 0

0 S :
: . 0 7
0 =+ 0 Maty, (¢, | H{(Vin))

so that A = Maty, (F™ | H.(V1)). Now, the lemma follows from the easy fact that, if
Ae #p(Q,) and I is the identity matrix in .#,(Q,) then

I 0 - 0 -TA
T T - 0
det| 0 —TI - 0 D | =detg—174). O
S P
0 0 -TI I

3.2. The zeroth and second cohomology groups

Proposition 6. Let X be a connected projective algebraic curve defined over k. Let ¢ be
the number of connected components of X. Then these connected components are
defined over kz, are conjugate under Gal(k:/k), and

Pk,HO(X)(T) - 1 - TE.
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Proof. This follows immediately from Lemma 5 and the fact that
sz.HO(Xl)(T) = 1 - T
for an absolutely connected component X; of X, defined over kz. O

Proposition 7. Let X be a connected projective curve defined over k, and let

X=%1v---uZ;

be the decomposition of X into its absolutely connected components. The X;’s are
defined over k; and conjugated under Gal(k;/k). Let

%1=X1U"'UXr

be the decomposition of X'\ into its kg-irreducible components and let

X = le U - U)_(i,r_[
be the decomposition of X; into absolutely irreducible components Xi;,
I1<i<r, 1<j<r.

Then, X\, ..., X5 are defined over k;z, are conjugate under Gal(kz7/k), and

<

P (T) = (1 (qT)"").
Proof. Lemma 5 says that the Z;’s are defined over k; and conjugated under
Gal(kz/k) and that
Prwrx)(T) = Pr o) (T°). (2)

Let

This variety is the extension to k of a (zero-dimensional)-variety Z; defined over kz,
so that X; — Z; is defined over kz. Let Z;; = X;;nZ;. Lemma 5 for the disjoint
decomposition

Xi-z=J (X -2y
=1

proves that the X;; — Z;; are defined over kz7, and conjugated under Gal(kz,/k).
Hence, this is also the case for their completions X; e
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Let Z’ be the algebraic set

7' =] (xinX))
i#j

and Z! = Z'n X;. Then Z' and Z! are obviously defined over k.

Now, the exact sequence (1) for closed subschemes, together with Mayer—Vietoris
sequence and the fact that H'(Z') = 0 for the finite subscheme of intersections points
of the X;’s, imply that H*(2) = H*(Z, — Z') = @'_|H}(X; — Z}) = @'_,H*(X))
as a direct sum of F-modules. Thus,

.
Piiran(T) = [ Prerzony (7).
i=1

The last part of the proposition follows from (2) and the fact that

Py (T)=1=(¢T)". O

3.3. The first cohomology group

We will give in this section the characteristic polynomial on the first cohomology
group of a connected projective curve X over k depending only on the characteristic
polynomial for the smooth models of the absolutely irreducible components
of X, the singular points of the absolutely irreducible components of X, and on
the 0-dimensional subvariety of pairwise intersections of the irreducible components
of X.

This will be done by successive reductions, starting from the smooth absolutely
irreducible case to the absolutely irreducible one (Theorem 9), then from the
absolutely irreducible case to the irreducible one (Theorem 10), and finally from the
irreducible case to the connected one (Theorem 11). Let us begin with the following
trivial consequence of Lemma 5.

Lemma 8. Let Z be a 0-dimensional algebraic set defined over k. Then

Pz (T) = [ (1—1%).
Pe|Z|

Theorem 9. Let X be an absolutely irreducible projective curve defined over k, with
normalization map vy : X—X. Then, we have

I, p)=p(l = T%)
a—7dy

Py (T) = P (T) H
Pe|X|
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Proof. We can assume that X is singular, because otherwise there is nothing to

prove. We apply Lemma 4 to both situations Sing X =X and v!(Sing X)cX. We
obtain

P oy sing 1)) (T)
P v T\ ’ X £ :P > _ . T
o () (T) Py (1) o) (2 (sing X)) (T)

= Pp i1 (x—sing x)(T)

P o (sing x)(T)

:PkJ-Il(X)(T) PkHO(X)(T) )

where the middle equality follows from the fact that the normalization map vy is an
isomorphism from X —vy'(Sing X) to X — Sing X. Then, Lemma 8 applied to
Sing X and vy!(Sing X) and Proposition 6 applied to X and X gives the result. O

Note that an elementary proof for Theorem 9 can be found in [1].

Theorem 10. Let X be an irreducible projective curve defined over k with ¢ absolutely
connected components, and let

X=Xu-uX;

be the decomposition of X into its absolutely irreducible components. Let Z be the
algebraic set

z=J&nx

and Z; = Zn X;. Then,

® 7 is defined over k;
® 7, are defined over ky;
® X; are defined over k;, and are conjugated under Gal(k:/k), and

P oz (T7) [ Preio(z)(T)
(1-17)/(1-T°)

P x)(T) = P () (T7)

Proof. The assertions on the field of definition follow from Lemma 5 in the same
way as in the proof of Proposition 7 for the decomposition X — Z = {J_, (X; — Z)).
Lemma 4 applied to Z< X as k-varieties implies that

P o) (T)

Pk‘Hcl(X*Z>(T) = Pk,Hl(X)(T) Pk HO(X)(T) ’
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Now, Lemma 4 applied to Z; < X as kj-varieties says that

Py m0(z,)(T)

Pi i -z (T) = P"“H'(X‘)(T)Pk ) (T)
; 1

But Lemma 5 applied to the variety U = Uju--- U U; where U = X — Z and U, =
X; — Z;, proves that

Py (T) = Pre i) (T7).

Hence the theorem follows thanks to Proposition 6 applied to X over k£ and to X
over ky. [

Theorem 11. Let X be a connected projective curve defined over k, and let

X=Z1v--uZ;
be the decomposition of X into its absolutely connected components. The X;’s are
defined over k; and conjugated under Gal(k;/k). Let

%1 =X1U"'UXr
be the decomposition of X into its kz-irreducible components and let ¢; be the number

of absolutely connected components of X;. Let Z be the algebraic set

zZ=]J XinX
i#j

and Z; = Zn X;. Then Z and Z; are defined over kz, and

H:":l sz,HO(Zi)<TE) X (1 — T(_)
Pr, 10(2)(T7) [T, (1—17%a)

,
Prx(T) = H Pr i x) (T) %
=1

1

Proof. Lemma 5 implies that the Z;’s are defined over k; and conjugated under
Gal(kz/k) and that

Prnx)(T) = Pr g, (TF).

Since the X;’s are, by definition, defined over k;, this implies obviously that Z and Z;
are also defined over k;. Now, Lemma 4 applied to Z<= 2, and to Z; < X;, together
with the fact that '} — Z is equal to the disjoint union of the (X; — Z;)’s and with
Lemma 6 enables us to conclude. [
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Note that it can happen for the X;’s to be absolutely disconnected as shown by the
example of the curve 21 in P? with equation (X? 4+ Z?)(Y? 4 YZ? + Z3) over a finite
field & for which both factors are k-irreducible. In this case, X; has two connected
components, and X> has three connected components.

4. Examples
Let us now look at some examples.

Example 1. Let X be the projective plane curve with equation x> + y*> = 0 over the
field k with ¢ elements, where ¢ = 3 (mod 4). Then X is the union of two projective
lines meeting at the k-rational point [0: 0 : 1], and X = X; U X, where X; is the k-
rational projective line whose equation is x — 1y = 0 (1 being a primitive root of —1),
and X; is the Gal(ky/k)-conjugate of X;.

Propositions 6, 7 and Theorem 10 give us the spectrums of the Frobenius on the
¢tale cohomology groups:

® Spec(F|H(X)) = {1}

® Spec(F|H'(X)) = {0};
® Spec(F|H(X)) = {q,—4}

Indeed, Theorem 10 with 7 =2,Z = {[0:0: 1]} and Z; = Zn X, says that

po =T/ =T)
T =T/ T)

=1.

The Grothendieck—Lefschetz formula then gives, for any ne N*:

X (kn) = 4"+ (=q)" = 0"+ 1"

{Zq” +1 if nis even,
RS if n is odd,

which is the expected value.

Example 2. More generally, let X be an irreducible and absolutely connected
projective curve defined over k, having exactly two absolutely irreducible
components X; and X, over k. By Lemma 5, the X;’s are extension to
k of two curves X; and X, defined over k», and conjugated under Gal(k,/k) =
Z/27Z. Moreover, X;nX, is defined over k by Theorem 10. In particular,
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we have
X (k) = {Xl(kn)u)(z(kn) if n is even,
Y X0 X (k) if nis odd.
Hence,
$X (k) = { X (k) + $Xo(ky) — X1 0 Xa(k,)  if n is even,
YL X 0 X (k) if nis odd.

Let us verify that Propositions 6, 7 and Theorem 10 are in accordance with this
naive counting. Indeed, Theorem 10 says, since Z = Z;, that

Pesiniz(T2)) P (T)
(-19/(1-1)
sz,H“(Z)(Tz)/PkﬁHO(Z)(T)

1+T '

P x)(T) =Py (x,)(T?)

:sz,Hl(Xl)(Tz)

Let wy,...,w, be the eigenvalues of the Frobenius F?> = FoF on H'(X;) with
multiplicities, and oy, ...,o be those of the Frobenius F on H°(Z) with
multiplicities. Note that X; being defined over k, and being eventually singular,
some w;’s have modulus \/217 = ¢ and the others have modulus V1 = 1. Note also
that 1 is always an eigenvalue on H°(Z), so that we can assume that o; = 1. We have
then

a

iX1(ke) =¢q" = > ol +1

i=1

for n even, and

b
X 0 Xo(ky) = o =1+> of
i=2

i=1

for any n. The above formula for Py yi(y) implies that the eigenvalues of the
Frobenius on H'(X) with multiplicities are

\/5137\/5;17 ”';\/54437\/501“7“27 ooy —O0pe

Moreover, Propositions 6 and 7 implies that the eigenvalue of the Frobenius on
H°(X) is just 1 and the eigenvalues on H?(X) are ¢ and —¢q. Then, we have by the
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Grothendieck—Lefschetz formula

a

b
£X (ka) =¢" + (—q)" — (Z I+ (=)")Waoi+> (—ov)”) +1
=2

i=1
_{2(1" —2(¢"+ 1 —8X(ky)) + 8X1n Xa(k,) — 1)+ 1 if n is even;

—(—(#X1 0 Xa(k,) — 1)) + 1 if nis odd
B { 8X, (k) + #Xa(ky) — $X1 " Xa(ky) if n is even;
N #X] ﬂXZ(kn) if nis Odd7

as promised in the Introduction (note that X (k,) = #X>(k,) if n is even).

Example 3. The aim of this example is to show that on the contrary to what may be
thought, formulas of Theorems 10 and 11 really took into account the multiple
intersections between the X;’s and not just the pairwise intersections. Indeed, let X be
an absolutely connected projective curve, union of r absolutely irreducible
components defined over k:

X=Xu---UlX,.

Suppose for simplicity that all intersection points of the X;’s are also defined over

k, that is to say that Z(k) = Z(k). Then, Theorem 11, together with Propositions 6
and 7 and with the Grothendieck—Lefschetz formula, imply

#X(k):rq—(zr: > w+§r:#z,—:¢z_(r_1)>+1
i=1

i=1 weSpec(F | H'(X;)) =

=rq — (i (qﬁLliFXi(k))+i#Zi#Z(rl)> +1

i=1 i=1
= zr: X (k) — (zr: 7, — ﬂZ).
i=1 i=1

Since

7 = Z 47
i=1
- > X, ()X, (k)

I1<ihi<ib<r

+ Z 81X, (k) NnXp (k) N X (k)
I<ii<ih<iz<r

g eeey

we obtain the well-known inclusion—exclusion formula for #X (k)!
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5. Analogue of an Artin conjecture for algebraic varieties

For a finite extension of number fields E/F, Artin’s holomorphy conjecture asserts
that the quotient (£ (s)/{r(s) of their Dedekind zeta functions is an entire function of
the complex variable s (this conjecture was proved independently by Aramata and
Brauer in the Galois case (see [5] for instance).

Let Y—X be a surjective morphism between algebraic varieties defined over k.
One can ask whether the quotient Zy(T)/Zx(T) of their zeta function (which are
rational fractions thanks to Dwork’s theorem) is a polynomial in 7. The
Grothendieck—Lefschetz formula gives, as in Section 1 in the one dimensional case,
the following form for the zeta function of an algebraic variety X defined over a
finite field k:

2 dim X _ (71)”[ 2 dim X (71)”[
Zy(T)= [[ (det(1 — TF | Hi(X))) = I ®emn(T) :
i=0 i=0

Therefore, the real question becomes whether the polynomials Py yi(x)(7) divide
the polynomials Py yi(y)(T) (see [3] for a detailed discussion).

The following proposition, whose proof has been communicated to the authors by
N. Katz, gives an answer to this question.

Proposition 12. Let f : Y— X be a finite flat morphism between varieties over k and G
be a constructible Q,-sheaf on X . Then the compact cohomology group H.(X, G) is a
direct factor of H.(Y,f*(G)) for any i=0 has a F-module.

Without hypothesis on the morphism, this turns to be false as shown by the
example of the normalization map of a nodal singular curve.

This proposition was proved by Kleiman in [7] if both ¥ and X are smooth
projective algebraic varieties, and by the authors in [3] for absolutely irreducible
projective curves.

Proof. Since f is finite, we have H(Y,/*(G)) = H.(X,f./*(G)). Since f is flat,
there is a Trace morphism f.f*(G)—G, such that the composite with the
natural morphism G—f.f*(G) is the multiplication by deg(f) on G (see [6, Exposé
XVIII, Theorem 2.9]). If we choose / prime to deg(f), then deg(f) is invertible in
Q,, so that G injects in f,f*(G) and f.f*(G) surjects in G. Hence, we get by
elementary linear algebra that G is a direct factor of f.f*(G), which gives the
desired result. [

When G is the constant sheaf Q,, we obtain

Corollary 13. Let f: Y—X be a finite flat map between varieties defined over the
finite field k. Then, for any positive i, the reciprocal polynomial of the characteristic
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polynomial of the Frobenius morphism Py i x)(T) on H((X) divides that of H{(Y) in
the polynomial ring Z[T).

Note that there is no completness or dimensional assumption on X and Y in this
corollary.
Propositions 6, 7 and Theorems 9-11, together with Corollary 13, imply

Theorem 14. Let f:Y—X be a surjective flat morphism between absolutely
connected projective curves defined over the finite field k with q elements, having
respectively Fy and Fy k-irreducible components Y; and X; of geometric genus gy, and
gz, We have

|#Y (k) — #X (k)| < (Fy — Fx) q+2<z Z ,\7i>\/6_]+AY—AX—(7y—7X).

For X = P! and an absolutely irreducible smooth curve Y, this is nothing else
than Weil’s bound. In this case, the flatness hypothesis is always satisfied. Without
the smoothness assumption on Y, this is the bound for singular curves proved in [1]
(see also [4,8]). For absolutely irreducible curves X and Y, we recover the bound
given in [2].

6. Remark

In the particular case of absolutely connected curves X defined over k& for which
the k-irreducible components X7, ..., X; are absolutely irreducible, we can have the
following approach for Py 1 (x)(T). Consider the jacobian Jy of X which is the
group scheme defined as the identity component of the Picard scheme Picy of X.
This is a semi-abelian variety: Jy is an extension of the abelian variety J; (the

jacobian of the desingularization X of X) by a smooth connected linear algebraic
group Ly, and the latter can be written as the product of a unipotent group Uy by a
torus Ty. We have quoted in [3], using a result of Deligne, that the polynomial
P (x)(T) is related to the Tate module 7,(Jx) of the jacobian of X by

P x)(T) = det(1 = TF [ T, (Jx) ®7,Q/)-
Moreover, this polynomial can be viewed as the product
P (T) = P (T) x Py 3(T), (3)
where the last polynomial corresponds to the following weight-zero part (see [3]):

Py p(T) =det(l = TF | T/(Tx) ®2,Q/). (4)
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The (absolutely) irreducible components of X are the normalizations )z
of the (absolutely) irreducible components X;. The following exact sequence of
sheaves:

1— Oy —vy 05—y . 0% Oy —1

gives the following long exact sequence:
P n;
1—H'(X, 03)— [[H(X;, 03 )— [T |/k(P)
i-1 i=1 \ j=1

—>JX—>H J);i—>l,
i=1

where P;, i =1, ..., N are the singular points of X and P;,j =1, ...,n; the points of
X lying above P; and where k(P;) and k(P;) are theirs residue field.

;
Thus, the kernel of Jy— HLl Jy is a torus of rank equal to 4y — 7+ 1. This

kernel is equal to the toric part Ty of the jacobian of X which gives, by (4), the
weight-zero part Py, z(T) of P r1(x)(T). So, by (3), we get

P xo)(T) = Py o(T) < [ Py (T,
i=1

where Py, ¢(T) is a polynomial of degree Ay — 7+ 1.
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