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14032 Caen Cedex, France
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Abstract

We give a formula for the number of rational points of projective algebraic curves defined

over a finite field, and a bound ‘‘à la Weil’’ for connected ones. More precisely, we give the

characteristic polynomials of the Frobenius endomorphism on the étale c-adic cohomology

groups of the curve. Finally, as an analogue of Artin’s holomorphy conjecture, we prove that,

if Y�!X is a finite flat morphism between two varieties over a finite field, then the

characteristic polynomial of the Frobenius morphism on Hi
cðX ;QcÞ divides that of Hi

cðY ;QcÞ
for any i: We are then enable to give an estimate for the number of rational points in a flat

covering of curves.

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Absolutely reducible projective curves arise naturally in different ways in
Arithmetic and Geometry. For example when we reduce, modulo a prime, a
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projective curve defined over a number field, or when we consider intersections of
projective varieties.

We are interested in this paper in the number of rational points of such a curve X

defined over a finite field k: It is convenient to introduce the zeta function of X ;
denoted by Zk;X ðTÞ or simply ZX ðTÞ; as

ZX ðTÞ ¼ exp
XN
n¼1

xXðknÞ
Tn

n

 !
;

where kn denotes the finite field extension of degree n of k: Let q be the order of k;

and F be the endomorphism on the c-adic étale cohomology groups Hi
etð %X;QcÞ of X

(for some prime c different from the characteristic of k and %X a geometric model of
X ) induced by the endomorphism x7�!xq: The Grothendieck–Lefschetz formula
expresses this zeta function as a rational fraction in terms of the (reciprocal)

characteristic polynomials of F on the Hi’s

ZX ðTÞ ¼ detðI � TF j H1
etð %X;QcÞÞ

detðI � TF j H0
etð %X;QcÞÞ detðI � TF jH2

etð %X;QcÞÞ
:

In other words, the number of kn-rational points of X equals

xXðknÞ ¼
X

an
2;j �

X
an
1;j þ

X
an
0;j ;

where the ai;j’s are the eigenvalues of F on Hi
etð %X;QcÞ: The aim of this paper is to

determine them. Consider for instance a k-irreducible projective curve X having two
absolutely irreducible components X1 and X2 defined over k2; conjugated under
Galðk2=kÞ: It is easily seen that X1-X2 is defined over k; and an elementary counting
argument shows that

xXðknÞ ¼
xX1ðknÞ þ xX2ðknÞ � xX1-X2ðknÞ if n is even;

xX1-X2ðknÞ if n is odd:

�
It is not clear what could be these numbers ai;j (whose existence follows from the

above Grothendieck–Lefschetz formula) summing-up these two-case formulae into a
closed one (see Example 2). This will be done in the general case.

In the general reducible case, if X ¼ X1,?,Xr is a decomposition of X into its
k-irreducible components, it is enticing to compute xXðknÞ using the well-known
inclusion–exclusion formula in terms of the jth intersections Xi1-?-Xij : In fact,

this approach is not effective. Indeed, we obtain the eigenvalues ai;j’s unfortunately

only up to roots of unity (Theorem 1). However, this is sufficient to deduce a Weil
inequality (Corollary 3).

We use in the next section the cohomological approach to determine, without any
indetermination, the eigenvalues of the Frobenius on X in terms of the eigenvalues of

the Frobenius of the normalizations of the absolutely irreducible components of %X;
the (finite) set of singular points of these absolutely irreducible components, and the
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(finite) set of intersection points of these components (Theorems 9–11). In view of
these results, we point out that the contributions of these finite sets are very easy to
handle, as shown by Lemma 8. Moreover, the multiple intersections between the
absolutely irreducible components do not appear in the results (see Example 3),
which is nice, both for theoretical and computational approaches.

Finally, we consider in the final section the behaviour of the eigenvalues of the
Frobenius in a covering Y�!X of d-dimensional ðdX1Þ non-proper varieties. In
analogy with a conjecture of Artin, we prove a divisibility result for such finite flat
morphisms (Corollary 13). Together with the results of the preceding section, this
enables us to derive some upper bound for the number of points if X and Y are
projective curves in a surjective flat morphism (Theorem 14), including the known
results as special cases.

Because the cohomology groups of a disjoint union of varieties is the direct sum as
F -modules of those of its connected components, the characteristic polynomial of
the Frobenius is the product of those on each component. Hence, we will restrict
ourselves to connected curves.

Let us fix some notations. If V is a scheme over a field k; we denote by jV j the set
of closed points of V ; by kðPÞ the residue field of a point PAjV j; and by dP ¼
½kðPÞ : k� the degree of P over k: In this paper, k will always be the finite field with q

elements and %k an algebraic closure of k: The normalization map is denoted by

nV : Ṽ�!V and we denote by %V ¼ V �k
%k the extension of V to %k: We set pV for the

arithmetic genus of V ; gV for its geometric genus and DV ¼ xðṼð %kÞ � Vð %kÞÞ:
For simplicity, we denote by HiðVÞ (respectively Hi

cðVÞ) the ith c-adic étale

cohomology group (resp. with compact support) Hi
etð %V;QcÞ (resp. Hi

cð %V;QcÞ) of V :
Then, we denote by

Pk;HiðVÞðTÞ

the characteristic polynomial detðI � TF j HiðVÞÞ of the Frobenius endomorphism
F of the variety V over the field k: We use the same notation, but with a subscript
‘‘c’’, when we deal with cohomology with compact support.

Some varieties %V will naturally be introduced over %k: They will be denoted with an
overline. When it will be proved that they can be defined over the finite field
extension kn of k; we will denote by V (without overline) the variety over kn such that
%V ¼ V �kn

%k:

2. A counting approach

Let us remark that if fVig is a finite covering of a variety V defined over k by
subvarieties defined over k; then the following inclusion–exclusion formula

xVðknÞ ¼
X
jX1

ð�1Þjþ1
X

i1o?oij

xðVi1-?-Vij ÞðknÞ
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gives

Zk;V ðTÞ ¼
Y
jX1

Y
i1o?oij

ZVi1
-?-Vij

ðTÞð�1Þjþ1

:

Theorem 1. Let X be a connected projective curve defined over k and %X ¼ %X1,?, %X%r

be its decomposition into its %k-irreducible components. Then the number of rational

points of X over kn is of the form

xXðknÞ ¼
X%r
i¼1

rn
i �

X%r
i¼1

X2g %Xi

j¼1

on
ij
�
XDX�%r

i¼1

bn
i

for some algebraic integers ri of modulus q; some algebraic integers oij of modulus
ffiffiffi
q

p

and some roots of unity bi in C:

Proof. Let us assume to begin with that all absolutely irreducible components of X ;
so as all its singular points and the points above them by the normalization map, are
rational over k: We set Z ¼

S
iojðXi-XjÞ and Zi ¼ Z-Xi as k-varieties (overlines

for Xi’s can be dropped thanks to the last paragraph of the introduction).
Then, the inclusion–exclusion formula applied to X ¼

S
i Xi gives

Zk;X ðTÞ ¼
Y
jX1

Y
i1o?oij

ZXi1
-?-Xij

ðTÞð�1Þjþ1

and then applied to Z ¼
S

i Zi gives

Zk;ZðTÞ ¼
Y
jX1

Y
i1o?oij

ZZi1
-?-Zij

ðTÞð�1Þjþ1

:

Remarking that Zi1-?-Zij ¼ Xi1-?-Xij for jX2; we obtain

Zk;X ðTÞ ¼
Y%r
i¼1

Zk;Xi
ðTÞ � Zk;ZðTÞQ

i Zk;Zi
ðTÞ:

Since the Xi’s are absolutely irreducible curves, we know by [1] that their zeta
function are given by

Zk;Xi
ðTÞ ¼

P
Xi=eXiXi

ðTÞP
k;H1ðeXiXiÞ

ðTÞ
ð1� TÞð1� qTÞ ;

where the polynomial P
k;H1ðeXiXiÞ

ðTÞ has degree 2gXi
; i.e. twice the geometric genus of

Xi and has root of modulus
ffiffiffi
q

p
by the Riemann hypothesis and PXi= *Xi

ðTÞ is the
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following polynomial of degree DXi
whose roots have modulus 1

P
Xi=eXiXi

ðTÞ ¼
Y

PAjX j

Q
P̃An�1

X
ðPÞð1� Td

P̃
Þ

1� TdP

 !
:

Under our rationality assumptions, we have here: P
Xi=eXiXi

ðTÞ ¼ ð1� TÞDXi :

Moreover, for any zero-dimensional algebraic set V defined over k all of whose
closed points are rational over k; we have clearly

ZV ðTÞ ¼ 1

ð1� TÞxVðkÞ:

Thus Zk;X ðTÞ can be written as

Zk;X ðTÞ ¼

Q%r
i¼1 ðP

Xi=eXiXi

ðTÞP
k;H1ðeXiXiÞ

ðTÞÞ � ð1� TÞð
P%r

i¼1
xZiðkÞÞ�xZðkÞ�%r

ð1� qTÞ%r
:

Hence

Zk;X ðTÞ ¼

Q%r
i¼1 P

k;H1ðeXiXiÞ
ðTÞ

� �
� ð1� TÞDX�%r

ð1� qTÞ%r
;

since

DX ¼
X%r
i¼1

DXi

 !
þ

X%r
i¼1

xZiðkÞ
 !

� xZðkÞ:

This means that

xXðknÞ ¼ %rqn �
X%r
i¼1

X2g %Xi

j¼1

on
ij
�
XDX�%r

i¼1

1n;

so that the theorem is proved in this case.
In the general case, the well-known formulaY

zm¼1

Zk;X ðzTÞ ¼ Zkm;X�kkm
ðTmÞ

holding for any mAN�; proves that the absolute values of the zeros and poles of
Zk;X ðTÞ are some mth roots of the zeros and poles of Zkm;X�kkm

ðTÞ: Hence, the

general case follows from the particular one after a suitable base-field extension km

of k; and the theorem is proved. &

ARTICLE IN PRESS
Y. Aubry, M. Perret / Finite Fields and Their Applications 10 (2004) 412–431416



Lemma 2. Let X be a connected projective curve defined over k of arithmetic genus pX ;

and %X ¼ %X1,?, %X%r be its decomposition into %k-irreducible projective curves %Xi of

geometric genus gXi
: Let %c be the number of absolutely connected components of %X:

Then, we have

DXppX �
X%r
i¼1

g %Xi
þ %r � %c:

Proof. Since the problem is geometric, we can work on the algebraic closure %k of k:

If P is a closed point of %X; let OP; %X be the local ring of %X at P; FracðOP; %XÞ be the

localization of OP; %X at the multiplicative set of non-zero divisors of OP; %X and OP; %X be

its integral closure in FracðOP; %XÞ: Define

dðP; %XÞ ¼ dim %k

OP; %X

OP; %X

:

We have the following short exact sequence:

0�!O %X�!ðn %XÞ�O *%X
�!ðn %XÞ�O *%X

=O %X�!0;

where O %X is the structure sheaf of %X and ðn %XÞ�O *%X
the direct image sheaf.

Then the long exact sequence in cohomology associated implies (taking into

account that dim H0ðO %XÞ ¼ %c; that dim 0ððn %XÞ�O *%X
Þ ¼ %r and finally that

dim H1ððn %XÞ�O *%X
=O %XÞ ¼ 0):

pX ¼
X%r
i¼1

gXi
þ
X
PA %X

dðP; %XÞ � %r þ %c:

We are then reduced to prove the following inequality:

DXp
X
PA %X

dðP; %XÞ:

If PAXð %kÞ; let aðP; %XÞ be the number of closed points in n�1
%X
ðPÞ: We have to prove

that

aðP; %XÞ � 1pdðP; %XÞ:

The total fraction ring of OP; %X is isomorphic to the direct product %kð %X1Þ �?�
%kð %XrÞ of the function fields of the irreducible components of %X: The integral closure

OP; %X in it is then isomorphic to the direct product of the integral closures OP; %Xi
of the
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domains OP; %Xi
C %kð %XiÞ: But each OP; %Xi

is a semi-local ring

OP; %Xi
¼

\
P’P̃ij

Ae%Xi
%Xi

OP̃ij
; %Xi
:

Let 1pip%r be fixed. We introduce the evaluation map on the points of e%Xi%Xi lying
over P:

fi : OP; %Xi
�! %kaðP; %XiÞ

f 7�! ð f ðP̃i1Þ;y; f ðP̃iaðP; %Xi Þ
ÞÞ:

Note that if Pe %Xi then OP; %Xi
¼ %kð %XiÞ ¼ OP; %Xi

and aðP; %XiÞ ¼ 0; so that the map

fi : %kð %XiÞ�! %k0 ¼ f0g is the zero map.

This is a %k-linear map which is surjective thanks to the weak approximation

theorem for the global field %kð e%Xi%XiÞ: They fit together in a surjective %k-linear map

F : OP; %X ¼ OP; %X1
�?� OP; %Xr

�!
Yr

i¼1

%kaðP; %XiÞ ¼ %k
P

aðP; %XiÞ ¼ %kaðP; %XÞ

sending f ¼ ð f1;y; frÞ to

ð f1ðP̃11Þ;y; f1ðP̃1aðP; %X1Þ
Þ;y; frðP̃r1Þ;y; frðP̃raðP; %X%rÞ

ÞÞ;

which sends OP; %X onto the diagonal line. The inequality is then proved and so is the

lemma. &

Theorem 1 together with Lemma 2 admit for example the following corollary:

Corollary 3. Let X be an absolutely connected projective curve defined over k and

X ¼ X1,?,Xr be its decomposition into k-irreducible projective curves which are

absolutely irreducible. Then

jxX ðkÞ � ðrq þ 1Þjp2
Xr

i¼1

gXi

ffiffiffi
q

p þ DX � r þ 1p2pX
ffiffiffi
q

p
:

Proof. We write the formula of Theorem 1 for the number of k-rational points with
ri ¼ q for any i: Then, taking modulus we get the first inequality, and the second
inequality follows from Lemma 2. &

Remark that we can improve as in [10] the inequalities of the preceding corollary
by replacing 2

ffiffiffi
q

p
by its integer part.
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3. Frobenius on the cohomology

Let us begin by some lemmas, which will be useful later.

3.1. Two lemmas

Lemma 4. Let X be a projective curve defined over k; and ZCX be a non-empty zero-

dimensional subvariety defined over k: Let U ¼ X � Z: Then Pk;H0ðXÞðTÞ divides

Pk;H0ðZÞðTÞ and

Pk;H1
c ðUÞðTÞ ¼ Pk;H1ðX ÞðTÞ

Pk;H0ðZÞðTÞ
Pk;H0ðXÞðTÞ:

Proof. Since H1ðZÞ ¼ 0 for a zero-dimensional scheme, and H0
c ðUÞ ¼ 0 for a non-

proper variety U ; the following long exact sequence of F -modules (see [9, Remark
1.30, p. 94]):

?�!Hi�1
c ðZÞ�!Hi

cðUÞ�!Hi
cðXÞ�!Hi

cðZÞ�!? ð1Þ

becomes

0�!H0ðXÞ�!H0ðZÞ�!H1
c ðUÞ�!H1ðXÞ�!0:

The lemma follows taking characteristic polynomials of the Frobenius. &

Lemma 5. Let V be an irreducible (respectively connected) k-variety, and suppose that

%V ¼ %V1,?, %Vm

for some disjoint absolutely irreducible (respectively, absolutely connected) subvarieties
%Vi over %k: Then, %V1;y; %Vm are defined over km; are conjugated under Galðkm=kÞ; and

Pk;Hi
cðVÞðTÞ ¼ Pkm;H

i
cðV1ÞðT

mÞ:

Proof. Let kn be the smallest extension of k; in which each Vi; 1pipm; are defined.
Then Galðkn=kÞ acts on the set fV1;y;Vmg: The union of those Vi’s in an orbit for
this action is defined over k; and is irreducible (resp. connected) over k: Since V is
irreducible (resp. connected) by assumption, this action is transitive, so that nXm:
On the other side, each Vi is defined over the fixed field of kn by the common
stabilizer. By minimality of n; this stabilizer is trivial, hence n ¼ m; which proves the
first and the second assertions of the lemma.

Now, the disjointness of the Vi’s implies that

Hi
cðVÞ ¼ Hi

cðV1Þ"?"Hi
cðVmÞ
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as vector spaces. We just saw that, up to a labelling, F cyclically permutes V1;y;Vm:

Let B1 ¼ fe1;y; ebg be a basis of Hi
cðV1Þ; so that Bk ¼ fFk�1ðe1Þ;y;Fk�1ðebÞg is a

basis of Hi
cðVkÞ: In the basis B ¼ B1,?,Bm of Hi

cðVÞ; the matrix of F is

MatBðF j Hi
cðVÞÞ ¼

0 0 ? ? A

I 0 ? ? 0

0 I 0 ? 0

^ & & & ^

0 ? 0 I 0

0BBBBBB@

1CCCCCCA
for some matrix AAMbðQcÞ: Hence,

MatBðjqm j Hi
cðVÞÞ ¼ MatBðF j Hi

cðVÞÞm ¼

A 0 ? 0

0 A & ^

^ & & 0

0 ? 0 A

0BBB@
1CCCA;

but the matrix MatBðjqm j Hi
cðVÞÞ also equals

MatB1
ðjqm j Hi

cðV1ÞÞ 0 ? 0

0 & & ^

^ & & 0

0 ? 0 MatBm
ðjqm j Hi

cðVmÞÞ

0BBB@
1CCCA;

so that A ¼ MatB1
ðF m j Hi

cðV1ÞÞ: Now, the lemma follows from the easy fact that, if

AAMbðQcÞ and I is the identity matrix in MbðQcÞ then

det

I 0 ? 0 �TA

�TI I & 0

0 �TI & 0 ^

^ & & I 0

0 ? 0 �TI I

0BBBBBB@

1CCCCCCA ¼ detðI � TmAÞ: &

3.2. The zeroth and second cohomology groups

Proposition 6. Let X be a connected projective algebraic curve defined over k: Let %c be

the number of connected components of %X: Then these connected components are

defined over k %c; are conjugate under Galðk%c=kÞ; and

Pk;H0ðXÞðTÞ ¼ 1� T %c:
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Proof. This follows immediately from Lemma 5 and the fact that

Pk%c;H0ðX1ÞðTÞ ¼ 1� T

for an absolutely connected component X1 of X ; defined over k%c: &

Proposition 7. Let X be a connected projective curve defined over k; and let

%X ¼ %X1,?, %X %c

be the decomposition of %X into its absolutely connected components. The %Xi’s are

defined over k %c and conjugated under Galðk%c=kÞ: Let

X1 ¼ X1,?,Xr

be the decomposition of X1 into its k %c-irreducible components and let

%Xi ¼ %Xi;1,?, %Xi;ri

be the decomposition of %Xi into absolutely irreducible components %Xi;j;

1pipr; 1pjpri:

Then, %Xi;1;y; %Xi;ri
are defined over k %c�ri

; are conjugate under Galðk%c�ri
=kÞ; and

Pk;H2ðXÞðTÞ ¼
Yr

i¼1

ð1� ðqTÞ %c�riÞ:

Proof. Lemma 5 says that the %Xi’s are defined over k%c and conjugated under
Galðk %c=kÞ and that

Pk;H2ðXÞðTÞ ¼ Pk%c;H2ðX1ÞðT %cÞ: ð2Þ

Let

%Zi ¼
[

1pjokp%ri

ð %Xi;j- %Xi;kÞ:

This variety is the extension to %k of a (zero-dimensional)-variety Zi defined over k %c;

so that Xi � Zi is defined over k %c: Let %Zi;j ¼ %Xi;j- %Zi: Lemma 5 for the disjoint

decomposition

%Xi � %Zi ¼
[%ri

j¼1

ð %Xi;j � %Zi;jÞ

proves that the %Xi;j � %Zi;j are defined over k%c�%ri
and conjugated under Galðk%c�%ri

=kÞ:
Hence, this is also the case for their completions %Xi;j :
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Let Z0 be the algebraic set

Z0 ¼
[
iaj

ðXi-XjÞ

and Z0
i ¼ Z0-Xi: Then Z0 and Z0

i are obviously defined over k%c:
Now, the exact sequence (1) for closed subschemes, together with Mayer–Vietoris

sequence and the fact that H1ðZ0Þ ¼ 0 for the finite subscheme of intersections points

of the Xi’s, imply that H2ðX1Þ ¼ H2ðX1 � Z0Þ ¼ "r
i¼1H2

c ðXi � Z0
iÞ ¼ "r

i¼1H2ðXiÞ
as a direct sum of F -modules. Thus,

Pk%c;H2ðX1ÞðTÞ ¼
Yr

i¼1

Pk%c;H2
c ðXiÞðTÞ:

The last part of the proposition follows from (2) and the fact that

Pk%c;H2
c ðXiÞðTÞ ¼ 1� ðq%cTÞ%ri : &

3.3. The first cohomology group

We will give in this section the characteristic polynomial on the first cohomology
group of a connected projective curve X over k depending only on the characteristic
polynomial for the smooth models of the absolutely irreducible components
of X ; the singular points of the absolutely irreducible components of X ; and on
the 0-dimensional subvariety of pairwise intersections of the irreducible components

of %X:
This will be done by successive reductions, starting from the smooth absolutely

irreducible case to the absolutely irreducible one (Theorem 9), then from the
absolutely irreducible case to the irreducible one (Theorem 10), and finally from the
irreducible case to the connected one (Theorem 11). Let us begin with the following
trivial consequence of Lemma 5.

Lemma 8. Let Z be a 0-dimensional algebraic set defined over k: Then

Pk;H0ðZÞðTÞ ¼
Y

PAjZj
ð1� TdPÞ:

Theorem 9. Let X be an absolutely irreducible projective curve defined over k; with

normalization map nX : X̃�!X : Then, we have

Pk;H1ðXÞðTÞ ¼ Pk;H1ðX̃ÞðTÞ
Y

PAjX j

Q
nX ðP̃Þ¼Pð1� Td

P̃Þ
ð1� TdPÞ :
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Proof. We can assume that X is singular, because otherwise there is nothing to

prove. We apply Lemma 4 to both situations Sing XCX and n�1
X ðSing XÞCX̃: We

obtain

Pk;H1ðX̃ÞðTÞ
Pk;H0ðn�1

X
ðSing XÞÞðTÞ

Pk;H0ðX̃ÞðTÞ ¼Pk;H1
c ðX̃�n�1

X
ðSing XÞÞðTÞ

¼Pk;H1
c ðX�Sing XÞðTÞ

¼Pk;H1ðX ÞðTÞ
Pk;H0ðSing X ÞðTÞ

Pk;H0ðX ÞðTÞ ;

where the middle equality follows from the fact that the normalization map nX is an

isomorphism from X̃ � n�1
X ðSing X Þ to X � Sing X : Then, Lemma 8 applied to

Sing X and n�1
X ðSing X Þ and Proposition 6 applied to X and X̃ gives the result. &

Note that an elementary proof for Theorem 9 can be found in [1].

Theorem 10. Let X be an irreducible projective curve defined over k with %c absolutely

connected components, and let

%X ¼ %X1,?, %X%r

be the decomposition of %X into its absolutely irreducible components. Let %Z be the

algebraic set

%Z ¼
[
iaj

%Xi- %Xj

and %Zi ¼ %Z- %Xi: Then,

* %Z is defined over k;
* %Zi are defined over k%r;
* %Xi are defined over k%r; and are conjugated under Galðk%r=kÞ; and

Pk;H1ðX ÞðTÞ ¼ Pk%r;H1ðX1ÞðT %rÞ
Pk%r;H0ðZ1ÞðT %rÞ=Pk;H0ðZÞðTÞ

ð1� T %rÞ=ð1� T %cÞ

Proof. The assertions on the field of definition follow from Lemma 5 in the same

way as in the proof of Proposition 7 for the decomposition %X � %Z ¼
S%r

i¼1 ð %Xi � %ZiÞ:
Lemma 4 applied to ZCX as k-varieties implies that

Pk;H1
c ðX�ZÞðTÞ ¼ Pk;H1ðX ÞðTÞ

Pk;H0ðZÞðTÞ
Pk;H0ðXÞðTÞ

:
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Now, Lemma 4 applied to Z1CX1 as k%r-varieties says that

Pk%r;H1
c ðX1�Z1ÞðTÞ ¼ Pk%r;H1ðX1ÞðTÞ

Pk%r;H0ðZ1ÞðTÞ
Pk%r;H0ðX1ÞðTÞ:

But Lemma 5 applied to the variety U ¼ U1,?,U%r where U ¼ X � Z and Ui ¼
Xi � Zi; proves that

Pk;H1
c ðUÞðTÞ ¼ Pk%r;H1

c ðU1ÞðT %rÞ:

Hence the theorem follows thanks to Proposition 6 applied to X over k and to X1

over k%r: &

Theorem 11. Let X be a connected projective curve defined over k; and let

%X ¼ %X1,?, %X %c

be the decomposition of %X into its absolutely connected components. The %Xi’s are

defined over k %c and conjugated under Galðk%c=kÞ: Let

X1 ¼ X1,?,Xr

be the decomposition of X1 into its k%c-irreducible components and let %ci be the number

of absolutely connected components of Xi: Let Z be the algebraic set

Z ¼
[
iaj

Xi-Xj

and Zi ¼ Z-Xi: Then Z and Zi are defined over k%c; and

Pk;H1ðXÞðTÞ ¼
Yr

i¼1

Pk%c;H1ðXiÞðT %cÞ �
Qr

i¼1 Pk%c;H0ðZiÞðT %cÞ
Pk%c;H0ðZÞðT %cÞ � ð1� T %cÞQr

i¼1 ð1� T %c:%ciÞ:

Proof. Lemma 5 implies that the %Xi’s are defined over k %c and conjugated under
Galðk %c=kÞ and that

Pk;H1ðXÞðTÞ ¼ Pk%c;H1ðX1ÞðT %cÞ:

Since the Xi’s are, by definition, defined over k%c; this implies obviously that Z and Zi

are also defined over k%c: Now, Lemma 4 applied to ZCX1; and to ZiCXi; together
with the fact that X1 � Z is equal to the disjoint union of the ðXi � ZiÞ’s and with
Lemma 6 enables us to conclude. &
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Note that it can happen for the Xi’s to be absolutely disconnected as shown by the

example of the curveX1 in P
2 with equation ðX 2 þ Z2ÞðY 3 þ YZ2 þ Z3Þ over a finite

field k for which both factors are k-irreducible. In this case, %X1 has two connected

components, and %X2 has three connected components.

4. Examples

Let us now look at some examples.

Example 1. Let X be the projective plane curve with equation x2 þ y2 ¼ 0 over the

field k with q elements, where q � 3 ðmod 4Þ: Then %X is the union of two projective

lines meeting at the k-rational point ½0 : 0 : 1�; and %X ¼ %X1, %X2; where %X1 is the k2-
rational projective line whose equation is x � iy ¼ 0 (i being a primitive root of �1),
and X2 is the Galðk2=kÞ-conjugate of X1:

Propositions 6, 7 and Theorem 10 give us the spectrums of the Frobenius on the
étale cohomology groups:

* SpecðF j H0ðX ÞÞ ¼ f1g;
* SpecðF j H1ðX ÞÞ ¼ f0g;
* SpecðF j H0ðX ÞÞ ¼ fq;�qg:

Indeed, Theorem 10 with %r ¼ 2;Z ¼ f½0 : 0 : 1�g and Z1 ¼ Z-X1 says that

Pk;H1ðXÞ ¼
ð1� T2Þ=ð1� TÞ
ð1� T2Þ=ð1� TÞ ¼ 1:

The Grothendieck–Lefschetz formula then gives, for any nAN�:

xXðknÞ ¼ qn þ ð�qÞn � 0n þ 1n

¼
2qn þ 1 if n is even;

1 if n is odd;

�

which is the expected value.

Example 2. More generally, let X be an irreducible and absolutely connected
projective curve defined over k; having exactly two absolutely irreducible

components %X1 and %X2 over %k: By Lemma 5, the %Xi’s are extension to
%k of two curves X1 and X2 defined over k2; and conjugated under Galðk2=kÞ ¼
Z=2Z: Moreover, X1-X2 is defined over k by Theorem 10. In particular,
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we have

X ðknÞ ¼
X1ðknÞ,X2ðknÞ if n is even;

X1-X2ðknÞ if n is odd:

�

Hence,

xXðknÞ ¼
xX1ðknÞ þ xX2ðknÞ � xX1-X2ðknÞ if n is even;

xX1-X2ðknÞ if n is odd:

�

Let us verify that Propositions 6, 7 and Theorem 10 are in accordance with this
naive counting. Indeed, Theorem 10 says, since Z ¼ Z1; that

Pk;H1ðX ÞðTÞ ¼Pk2;H1ðX1ÞðT
2Þ

Pk2;H0ðZ1ÞðT2Þ=Pk;H0ðZÞðTÞ
ð1� T2Þ=ð1� TÞ

¼Pk2;H1ðX1ÞðT
2Þ

Pk2;H0ðZÞðT2Þ=Pk;H0ðZÞðTÞ
1þ T

:

Let o1;y;oa be the eigenvalues of the Frobenius F2 ¼ F3F on H1ðX1Þ with

multiplicities, and a1;y; ab be those of the Frobenius F on H0ðZÞ with
multiplicities. Note that X1 being defined over k2 and being eventually singular,

some oi’s have modulus
ffiffiffiffiffi
q2

p
¼ q and the others have modulus

ffiffiffi
1

p
¼ 1: Note also

that 1 is always an eigenvalue on H0ðZÞ; so that we can assume that a1 ¼ 1:We have
then

xX1ðknÞ ¼ qn �
Xa

i¼1

on
i þ 1

for n even, and

xX1-X2ðknÞ ¼
Xb

i¼1

an
i ¼ 1þ

Xb

i¼2

an
i

for any n: The above formula for Pk;H1ðXÞ implies that the eigenvalues of the

Frobenius on H1ðXÞ with multiplicities areffiffiffiffi
o

p
1;�

ffiffiffiffi
o

p
1;y;

ffiffiffiffi
o

p
a;�

ffiffiffiffi
o

p
a;�a2;y;�ab:

Moreover, Propositions 6 and 7 implies that the eigenvalue of the Frobenius on

H0ðXÞ is just 1 and the eigenvalues on H2ðXÞ are q and �q: Then, we have by the
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Grothendieck–Lefschetz formula

xXðknÞ ¼ qn þ ð�qÞn �
Xa

i¼1

ð1þ ð�1ÞnÞ
ffiffiffiffi
o

p n

i þ
Xb

j¼2

ð�ajÞn

 !
þ 1

¼
2qn � ð2ðqn þ 1� xX1ðknÞÞ þ xX1-X2ðknÞ � 1Þ þ 1 if n is even;

�ð�ðxX1-X2ðknÞ � 1ÞÞ þ 1 if n is odd

�
¼

xX1ðknÞ þ xX2ðknÞ � xX1-X2ðknÞ if n is even;

xX1-X2ðknÞ if n is odd;

�
as promised in the Introduction (note that xX1ðknÞ ¼ xX2ðknÞ if n is even).

Example 3. The aim of this example is to show that on the contrary to what may be
thought, formulas of Theorems 10 and 11 really took into account the multiple
intersections between the Xi’s and not just the pairwise intersections. Indeed, let X be
an absolutely connected projective curve, union of r absolutely irreducible
components defined over k:

X ¼ X1,?,Xr:

Suppose for simplicity that all intersection points of the Xi’s are also defined over

k; that is to say that ZðkÞ ¼ Zð %kÞ: Then, Theorem 11, together with Propositions 6
and 7 and with the Grothendieck–Lefschetz formula, imply

xXðkÞ ¼ rq �
Xr

i¼1

X
oASpecðF j H1ðXiÞÞ

oþ
Xr

i¼1

xZi � xZ � ðr � 1Þ

0@ 1Aþ 1

¼ rq �
Xr

i¼1

ðq þ 1� xXiðkÞÞ þ
Xr

i¼1

xZi � xZ � ðr � 1Þ
 !

þ 1

¼
Xr

i¼1

xXiðkÞ �
Xr

i¼1

xZi � xZ

 !
:

Since

xZ ¼
Xr

i¼1

xZi

�
X

1pi1oi2pr

xXi1ðkÞ-Xi2ðkÞ

þ
X

1pi1oi2oi3pr

xXi1ðkÞ-Xi2ðkÞ-Xi3ðkÞ

�;y;

we obtain the well-known inclusion–exclusion formula for xXðkÞ!
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5. Analogue of an Artin conjecture for algebraic varieties

For a finite extension of number fields E=F ; Artin’s holomorphy conjecture asserts
that the quotient zEðsÞ=zF ðsÞ of their Dedekind zeta functions is an entire function of
the complex variable s (this conjecture was proved independently by Aramata and
Brauer in the Galois case (see [5] for instance).

Let Y�!X be a surjective morphism between algebraic varieties defined over k:
One can ask whether the quotient ZY ðTÞ=ZX ðTÞ of their zeta function (which are
rational fractions thanks to Dwork’s theorem) is a polynomial in T : The
Grothendieck–Lefschetz formula gives, as in Section 1 in the one dimensional case,
the following form for the zeta function of an algebraic variety X defined over a
finite field k:

ZX ðTÞ ¼
Y2 dim X

i¼0

ðdetð1� TF j Hi
cðXÞÞÞð�1Þiþ1

¼
Y2 dim X

i¼0

ðPk;Hi
cðX ÞðTÞÞð�1Þiþ1

:

Therefore, the real question becomes whether the polynomials Pk;Hi
cðXÞðTÞ divide

the polynomials Pk;Hi
cðYÞðTÞ (see [3] for a detailed discussion).

The following proposition, whose proof has been communicated to the authors by
N. Katz, gives an answer to this question.

Proposition 12. Let f : Y�!X be a finite flat morphism between varieties over k and G

be a constructible Qc-sheaf on X : Then the compact cohomology group Hi
cð %X;GÞ is a

direct factor of Hi
cð %Y; f �ðGÞÞ for any iX0 has a F -module.

Without hypothesis on the morphism, this turns to be false as shown by the
example of the normalization map of a nodal singular curve.

This proposition was proved by Kleiman in [7] if both Y and X are smooth
projective algebraic varieties, and by the authors in [3] for absolutely irreducible
projective curves.

Proof. Since f is finite, we have Hi
cð %Y; f �ðGÞÞ ¼ Hi

cð %X; f�f
�ðGÞÞ: Since f is flat,

there is a Trace morphism f�f
�ðGÞ�!G; such that the composite with the

natural morphism G�!f�f �ðGÞ is the multiplication by degð f Þ on G (see [6, Exposé
XVIII, Theorem 2.9]). If we choose c prime to degð f Þ; then degð f Þ is invertible in
Qc; so that G injects in f�f

�ðGÞ and f�f �ðGÞ surjects in G: Hence, we get by
elementary linear algebra that G is a direct factor of f�f �ðGÞ; which gives the
desired result. &

When G is the constant sheaf Qc; we obtain

Corollary 13. Let f : Y�!X be a finite flat map between varieties defined over the

finite field k: Then, for any positive i; the reciprocal polynomial of the characteristic
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polynomial of the Frobenius morphism Pk;Hi
cðX ÞðTÞ on Hi

cðXÞ divides that of Hi
cðYÞ in

the polynomial ring Z½T �:

Note that there is no completness or dimensional assumption on X and Y in this
corollary.

Propositions 6, 7 and Theorems 9–11, together with Corollary 13, imply

Theorem 14. Let f : Y�!X be a surjective flat morphism between absolutely

connected projective curves defined over the finite field k with q elements, having

respectively %rY and %rX
%k-irreducible components %Yi and %Xi of geometric genus g %Yi

and

g %Xi
: We have

jxY ðkÞ � xX ðkÞjpð%rY � %rX Þq þ 2
X%rY

i¼1

g %Yi
�
X%rX

i¼1

g %Xi

 ! ffiffiffi
q

p þ DY � DX � ð%rY � %rX Þ:

For X ¼ P1 and an absolutely irreducible smooth curve Y ; this is nothing else
than Weil’s bound. In this case, the flatness hypothesis is always satisfied. Without
the smoothness assumption on Y ; this is the bound for singular curves proved in [1]
(see also [4,8]). For absolutely irreducible curves X and Y ; we recover the bound
given in [2].

6. Remark

In the particular case of absolutely connected curves X defined over k for which

the k-irreducible components %X1;y; %X%r are absolutely irreducible, we can have the
following approach for Pk;H1ðXÞðTÞ: Consider the jacobian JX of X which is the

group scheme defined as the identity component of the Picard scheme PicX of X :
This is a semi-abelian variety: JX is an extension of the abelian variety JX̃ (the

jacobian of the desingularization X̃ of X ) by a smooth connected linear algebraic
group LX ; and the latter can be written as the product of a unipotent group UX by a
torus TX : We have quoted in [3], using a result of Deligne, that the polynomial
Pk;H1ðX ÞðTÞ is related to the Tate module TcðJX Þ of the jacobian of X by

Pk;H1ðXÞðTÞ ¼ detð1� TF j TcðJX Þ#ZcQcÞ:

Moreover, this polynomial can be viewed as the product

Pk;H1ðX ÞðTÞ ¼ Pk;H1ðX̃ÞðTÞ � PX=X̃ðTÞ; ð3Þ

where the last polynomial corresponds to the following weight-zero part (see [3]):

PX=X̃ðTÞ ¼ detð1� TF j TcðTX Þ#ZcQcÞ: ð4Þ
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The (absolutely) irreducible components of X̃ are the normalizations e%Xi%Xi

of the (absolutely) irreducible components %Xi: The following exact sequence of
sheaves:

1�!O�
X�!nX ;�O

�
X̃
�!nX ;�O

�
X̃
=O�

X�!1

gives the following long exact sequence:

1�!H0ðX ;O�
X Þ�!

Y%r
i¼1

H0ðX̃i;O
�
X̃i
Þ�!

YN
i¼1

Yni

j¼1

kðP̃ij Þ
 !

=kðPiÞ

�! JX�!
Y%r
i¼1

JX̃i
�!1;

where Pi; i ¼ 1;y;N are the singular points of X and Pij ; j ¼ 1;y; ni the points of

X̃ lying above Pi and where kðPiÞ and kðP̃ij Þ are theirs residue field.

Thus, the kernel of JX�!
Qr

i¼1 JX̃i
is a torus of rank equal to DX � %r þ 1: This

kernel is equal to the toric part TX of the jacobian of X which gives, by (4), the
weight-zero part PX=X̃ðTÞ of Pk;H1ðX ÞðTÞ: So, by (3), we get

Pk;H1ðXÞðTÞ ¼ PX=X̃ðTÞ �
Y%r
i¼1

Pk;H1ðX̃ÞðTÞ;

where PX=X̃ðTÞ is a polynomial of degree DX � %r þ 1:
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