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Abstract. We show that, up to isomorphism, there are only finitely

many totally real function fields which have any totally imaginary extension

of a given ideal class number.

Introduction.

The case of imaginary quadratic extensions of Fq(X) with ideal class

number one is quite known : we know that there are only four (see [M]). The

real quadratic case is completely different since there are infinitely many

such fields (see [S]). The regulator in the last case is a hard parameter

to deal with. The situation that we are interested in, is totally imaginary

extensions of totally real extensions of the rational function field Fq(X).

In our situation, the problem of each regulator subsists but we can easily

compute the quotient of them : we show that it is essentially the index of

units of their rings of integers. After that, we prove the divisibilty in the

general case of the divisor class numbers in a finite separable extension of

function fields. This result, with the Riemann Hypothesis allow us to show

the finiteness of the number of such function fields if we fix the ideal class

number of the imaginary field.

1. Notation.

Let q be a power of a prime and Fq be the finite field with q elements.

Let K be an algebraic function field of one variable with finite constant

field Fq . First we give some notation and some well-known results (see for

example [R]). Let S∞(K) = {P1, . . . , Ps∞} be a non empty finite set of

places of K and let A be the ring of elements of K whose poles are in

S∞(K) (the ring A is a Dedekind domain). We denote by Cl(A) the ideal



class group of A and by hA its order. The number hA is finite and is called

the ideal class number of A.

The analogue of Dirichlet theorem states that the unit group A∗ of A

(modulo the constants) is finitely generated of rank s∞ − 1 where s∞ =

]S∞(K) :

A∗/F∗
q ' Zs∞−1

We consider the following groups D = divisors of K, D0 = divisors of degree

zero of K, P = principal divisors of K, C = D/P = the group of divisors

classes, J = D0/P = the divisors classes of degree zero and δK = greatest

common divisor of {deg P1, . . . ,deg Ps∞}.
Recall that we have an isomorphism of C/N with Cl(A) where N is the

subgroup of C generated by the classes of places in S∞(K). We remark also

that J is isomorphic to the group of rational points over Fq of the Jacobian

of the non singular projective curve which has K as its function field. Thus,

the order hK of J , called the divisor class number, is also the numerator of

the zeta function of K evalued on 1.

Let D∞ be the divisors supported on S∞(K), D0
∞ = D∞ ∩ D0, P∞ the

principal divisors supported on S∞(K) and rA = [D0
∞ : P∞]. We have

exact sequences

0 −→ F∗
q −→ A∗ −→ P∞ −→ 0

and

0 −→ D0
∞/P∞ −→ J −→ Cl(A) −→ Z/δKZ −→ 0

which give the isomorphism P∞ ' A∗/F∗
q and the relation

δKhK = rAhA (1)

If P is a place of K, we denote by vP the valuation associated to P .

Consider the s∞×(s∞−1) matrix whose ij’th entry is − deg PivPi(εj) where

{ε1, . . . , εd−1} is a fundamental set of units for A∗. The regulator RA of A is

defined to be the absolute value of the determinant of any (s∞−1)×(s∞−1)

minor of this matrix. We can easily show that (see [R] and note that “our”

regulator is the “q-regulator” of Rosen) :

rA =
δKRA∏s∞

i=1 deg Pi
(2)



2. Finiteness theorem.

Let k = Fq(X) and let ∞ be the place at infinity of k. From now on,

all the extensions considered will be contained in a separable closure of k

and will have full constant field Fq.

Consider a totally imaginary extension L of degree n of a totally real

extension K of degree d of k. This means that the place ∞ of k splits

completely in K and that the infinite places of K have only one place above

each of them in L. Let A be the integral closure of Fq[X] in K and B be

the integral closure of A in L. Let S∞(L) = {P1, . . . ,Pd} be the places

of L above those of S∞(K) = {P1, . . . , Pd}. Note that the places Pi are

necessarily of degree 1, and that the ring A is the same that the one defined

in §1.

L P1 . . . Pd

B n

K P1 . . . Pd

A d

k ∞

Fq[X]

By Dirichlet’s theorem the two units groups of L and K are of rank

d − 1, and we have :

[P∞(L) : P∞(K)] = [B∗ : A∗]

Lemma 2.1. The index Q := [B∗ : A∗] divides nd−1.

Proof. We have B∗ = F∗
qB1

∗ where B1
∗ is free on d − 1 generators. Let

A1
∗ = A∗∩B1

∗. Then A∗ = F∗
qA1

∗ and A1
∗ is also free on d−1 generators.

By the elementary divisors theorem, there is a basis {ε1, . . . , εd−1} of B1
∗

and integers mi such that {e1 = ε1
m1 , . . . , ed−1 = εd−1

md−1} is a basis for

A1
∗. If we denote by NL/K the norm map from L to K, then applying NL/K



to each relation εi
mi = ei one sees that mi divides n and this concludes the

proof.

Proposition 2.2. We have

RB

RA
=

nd−1

Q

Proof. Consider the basis {ε1, . . . , εd−1} of the previous proof. Then, we

have

−deg PivPi(εj
mj ) =

−mj

e(Pi | Pi)
vPi(εj) =

−mj

n
deg PivPi(εj)

where e(Pi | Pi) is the ramification index of Pi over Pi. Since the regulator

is defined as a (d − 1) × (d − 1)-determinant, we get

RA =

∏d−1
i=1 mi

nd−1
RB

Now, let XK be the smooth projective algebraic curve associated to

the function field K . Weil’s theorem states that the zeta function of XK ,

defined as

ZK(T ) = exp

( ∞∑

n=1

]XK(Fqn)
T n

n

)

is a rational function ZK(T ) = PK(T)
(1−T )(1−qT ) . Here, PK(T ) is a polynomial

with integral coefficients of degree 2gK , where gK is the genus of the curve

XK , which can be described in the following way. Let T`(JK) be the Tate

module of the Jacobian JK of XK with respect to any prime number `

distinct to the characteristic of Fq. Then T`(JK)⊗Z` Q` is a Q`-vector space

of dimension 2gK on which the Frobenius morphism induces a linear map.

Let fK(T ) be its characteristic polynomial. Then the numerator of the zeta

function is the reciprocal polynomial of fK(T ), i.e. PK(T ) = T 2gK fK(1/T ).

Proposition 2.3. If L/K is a finite separable extension of function fields

then hK divides hL.

Proof. Let XL be the smooth curve having L for its function field. Then,

we have a finite morphism f : XL −→ XK defined over Fq between these



two curves. Let f∗ : JK −→ JL be the map induced by f on the Jacobians of

XK and XL. Then f∗ has finite kernel and sends the `n-torsion points of JK

on the `n-torsion points of JL. We deduce from this an injective morphism

Q` ⊗Z` T`(JK)
1⊗f∗

−→ Q` ⊗Z` T`(JL),

since the tensor product kills the kernel of f∗. The Frobenius morphism on

the Q`-vector-space Q` ⊗Z` T`(JL) leaves fixed the subspace Q` ⊗Z` T`(JK).

Hence the characteristic polynomial of the former divides the characteristic

polynomial of the latter in Q`[T ], hence in Z[T ] since both PK , PL ∈ Z[T ]

have constant term equals to 1. Since the divisor class number of a function

field equal the number of Fq-rational points of its jacobian which is equal to

the value of the numerator of its zeta function on 1, then hK divides hL.

If we define h−
L = hL

hK
as the relative divisor class number, then we have :

Proposition 2.4.

h−
L ≥ (

√
q − 1)2(n−1)(gK−1)+R

where R is the degree of the different of L/K .

Proof. The Riemann Hypothesis for function fields tell us that the inverse

roots of the polynomials PK(T ) and PL(T ) are algebraic integers ωi of

modulus
√

q. Thus, we have

h−
L =

gL−gK∏

i=1

(1 − ωi)(1 − ω̄i) ≥ (
√

q − 1)2(gL−gK )

By the Riemann-Hurwitz formula, we have 2gL−2 = n(2gK −2)+R where

R is the degree of the different of L/K , which is the contribution of the

ramification in L/K. So we get the result.

Lemma 2.5. Up to isomorphism, there are only finitely many smooth

algebraic projective curves defined over Fq of bounded genus, where q is

bounded.

Proof. For elliptic curves, the degree of the equation of the curve is clearly

bounded, so we get the result. Now, we can assume g > 1. Let Mg be the

moduli scheme of curves of genus g. Then Mg×Spec(Fq) is a quasi-projective



variety over Fq. Its Fq-rational points correspond to Fq-isomorphism classes

of curves of genus g defined over Fq. There are only finitely many rational

points over a finite field. If C is such a curve of genus g defined over Fq the

number of Fq-isomorphism classes contained in the Fq-isomorphism class of

C is the size of the group H1(G, Aut(C̄)) where G = Gal(Fq/Fq) ' Ẑ and

C̄ = C ×Fq Fq. When g > 1, Aut(C̄) is finite and H1(G, Aut(C̄)) is finite as

well.

Then, we have

Theorem 2.6. Let K/k be a totally real function field of fixed degree and

L/K a totally imaginary extension of K of fixed degree > 1. Let B be the

integral closure of Fq[X ] in L and suppose the ideal class number of B is

fixed. Then up to isomorphism, there are only finitely many such extensions

L/K .

Proof. By the relation (1) we have

hB =
rA

rB

δL

δK

hL

hK
hA

Using the relation (2), proposition 2.2 and 2.4. we get

hB ≥ hA
Q

nd−1

d∏

i=1

deg Pi(
√

q − 1)2(n−1)(gK−1)+R

where n and d are respectively the degrees of the extensions L/K and K/k.

The right hand side tends to infinity with q and gK if q ≥ 5 and if gK 6= 1

and R 6= 0. Thus, if the ideal class number hB of B is fixed, these quantities

are bounded and thus gL is bounded too by Riemann-Hurwitz formula.

Applying lemma 2.5, we have that there exists, up to isomorphism, only a

finite number of such function fields K and L.

Furthermore, the condition q ≥ 5 can be suppressed since we have the

following lower bound

h−
L ≥ qgL−gK−1 (q − 1)2

(q + 1)(gL − gK + 1)

which can be proved in the same way as Th.2 of [L-M]. Moreover, if gK = 1

and R = 0, we get gL = 1 and we have a covering of elliptic curves. In

this case, the divisor class number hL of L is just the number of ratio-

nal points over Fq of the associated elliptic curve XL, which is isogenous



to XK so hK = hL. So if hB is bounded, using relation (1) we see that

hL is also bounded and since the Weil’s bound gives hL ≥ (
√

q − 1)2, we

see finally that q is bounded too and the lemma 2.5 still gives the result.
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