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We are interested in the analogue of a result proved in the number field case
by E. Brown and C. J. Parry and in the function field case in odd characteristic
by Zhang Xian-Ke. Precisely, we study the ideal class number one problem for
imaginary quartic Galois extensions of k=Fq(x) of Galois group Z�2Z_Z�2Z in
even characteristic. Let L�k be such an extension and let K1 , K2 , and K3 be the
distinct subfields extensions of L�k. In even characteristic, the fields Ki are Artin�
Schreier extensions of k and L is the compositum of any two of them. Using the
factorization of the zeta functions of this fields, we get a formula between their ideal
class numbers which enables us to find all imaginary quartic Galois extensions L�k
of Galois group Z�2Z_Z�2Z with ideal class number one. � 1999 Academic Press

Key Words: ideal class number; function fields; Artin�Schreier extensions; zeta
functions.

1. INTRODUCTION

E. Brown and C. J. Parry have shown in [2] that there are exactly 47
imaginary bicyclic biquadratic number fields with ideal class number one.
The analogous problem in the function field case consists in checking for
all imaginary quartic Galois extensions of k=Fq(x), with Galois group
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Z�2Z_Z�2Z, such that their ideal class number is equal to one. If L�k is
such an extension, there exists exactly three distincts K1 , K2 , and K3

subfields of L which are quadratic extensions of k.
In [12], Zhang Xian-Ke has given all solutions to the preceding

problem in case of odd characteristic: for each solution, at least one sub-
field Ki has a zero genus. Our purpose here is to study the problem in even
characteristic.

In the following, Fq will denote the finite field with q elements, with q a
power of a prime, and k=Fq(x) for an x transcendental over Fq . All func-
tion fields F�Fq will be supposed to admit Fq as full constant field and we
always assume that F is contained in a separable closure of k. If F is a finite
extension of k, let us denote by S�(F ) the set of places of F above the
infinite place � of k and by s�(F) the order of S�(F ). The elements of
S�(F ) will be called the infinite places of F�k. If s�(F )=[F : k], that is
when the infinite place of k splits in F, one says that F�k is real, otherwise
it is imaginary. A quadratic imaginary extension F�k is called ramified or,
inert according to whether the infinite place of k is ramified or inert in F.

Let us denote by OF the integral closure of Fq[x] in F. Then OF is a
Dedekind domain and we denote by hOF

the order of its ideal class group,
called the ideal class number of OF or of F�k.

A quartic Galois extension F�k of Galois group Z�2Z_Z�2Z will be
called a bicyclic biquadratic extension of k.

This paper is organized as follows. In Section 2, we give a relation
between the ideal class number of an imaginary bicyclic biquadratic exten-
sion L�k and those of the three intermediate field extensions.

In Section 3, for the convenience of the reader, we recall some previously
known results concerning Artin�Schreier extensions in even characteristic.
In Section 4, we prove the main theorem which gives all imaginary bicyclic
biquadratic extensions L�k such that hOL

=1.

2. FACTORIZATION OF CLASS NUMBERS

In this section, we show results analogous to the ones given by Zhang
in odd characteristic (see [13]).

2.1. Schmidt's Relation

Let F be a finite extension of k and let hF be its divisor class number,
that is the number of rational points over Fq of the jacobian of F. Then we
have the following relation due to F. K. Schmidt [10],

rOF
hOF

=$OF
hF , (1)
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where $OF
is the gcd of the degrees of the infinite places of F�k and rOF

is
the order of the group of zero-degree divisors with support in S�(F )
modulo the principal ones. The regulator of F�k, denoted by ROF

, is defined
by

rOF
=

$OF
ROF

>s�(F)
i=1 deg ^ i

,

where the denominator is the product of the degrees of the infinite places
of F�k.

Remark 2.1. v Notice that if deg ^i=1 for all ^i # S�(F�k), then
rOF

=ROF
.

v If S�(F )=[^1 , ^2], with deg ^1=deg ^2 , then rOF
is just the

order of the class of the zero-degree divisor (^1&^2) in the jacobian of
F�Fq and if moreover gF>0 and deg ^1=deg ^2=1, then rOF

>1.

v Recall that for any function field F�Fq of zero genus, we have hF=
hOF

=1.

2.2. Behaviour of Places and Zeta Functions in a Quartic Extension

Let L�k be an imaginary bicyclic biquadratic extension. Since L�k is
Galois of Galois group Z�2Z_Z�2Z, there is by Galois theory three
distinct subfield extensions Ki �k.

For a place p of k, we denote by gp the number of places ^ of L lying
over p, fp their relative degree and ep their ramification index. Only five
situations may occur. Indeed, we have ep fp gp=4 and thus only 6 possi-
bilities for (ep , fp , gp). The situation (ep , fp , gp)=(1, 4, 1) is impossible,
since, for such a place, the quotient of the decomposition group by the
inertia group is isomorphic to the Galois group of L�k which is bicyclic and
also isomorphic to the Galois group of the residue class extension L^ �kp

which is cyclic. Thus we only have to consider the following cases:

1. pOL=^1^2 ^3^4 ,

2. pOL=^4,

3. pOL=^2,

4. pOL=^2
1^2

2 ,

5. pOL=^1^2 .

We see that in the first case p is totally decomposed in all the Ki and in
the second one p is totally ramified in all the Ki . Using the properties of
the decomposition field and the inertia field, we can show that, in case
three p is inert in one Ki and ramified in the two others, in case four p is
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decomposed in one Ki and ramified in the two others, and finally in case
five p is decomposed in one Ki and inert in the others.

Thus, if we focus on the infinite place of k, we have the following dif-
ferent situations:

v Case 1. All Ki �k, i=1, 2, 3, are real.

v Case 2. All Ki �k, i=1, 2, 3, are ramified.

v Case 3. Two Ki �k are ramified, the third one is inert.

v Case 4. Two Ki �k are ramified, the third one is real.

v Case 5. Two Ki �k are inert, the third one is real.

Case 1 cannot occur since we assumed that L�k is imaginary.

Remark 2.2. If the characteristic of k is odd, case 2 cannot occur, since
if K1 �k and K2 �k are ramified, then, for i=1, 2, Ki=k( yi), with y2

i = f i (x)
where fi # k[x] is a monic square-free polynomial of odd degree and we see
that K3 �k is real since K3=k( y3) with y2

3= f3(x), where f3=( f1 f2)�
gcd( f1 , f2)2 is a monic square-free polynomial of even degree.

For an extension F of k, let `OF
be the zeta function of OF , defined by

`OF
(s)=:

I

1
N(I)s=`

^
\1&

1
N(^)s+

&1

,

where s # C, the sum ranges over the nonzero ideals I of OF and N(I) stands
for the norm of the ideal I, that is, by definition the number of elements of
the residue class ring OF�I, and finally the product ranges over the nonzero
prime ideals ^ of OF .

The zeta function of the function field F�Fq is such that

`F (s)=`OF
(s) `

^ # S�(F ) \1&
1

N(^)s+
&1

. (2)

Then we have:

Theorem 2.3. Let L be an imaginary bicyclic biquadratic extension of k
and let K1 , K2 , and K3 be the three intermediate fields of L�k. Then we have

`OL
(s)�`Ok

(s)= `
3

i=1

(`OKi
(s)�`Ok

(s)).
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Proof. If we denote by Spec(OF) the set of prime ideals of OF , we have
for all i # [1, 2, 3]

`OKi
(s)= `

p # Spec(Ok)&[0]

`
^ | p \1&

1
N(^)s+

&1

.

But, as the prime ideal p of Ok is inert, ramified or splits in K i�k, the norm
N(^) of ^ | p is equal to N( p)2, N( p) or N( p). Thus we obtain

`OKi
(s)=`Ok

(s) LOk
(s, /),

where

LOk
(s, /)= `

p # Spec(Ok)&[0] \1&
/( p)

N( p)s+
&1

,

with /( p)=&1, 0, or 1, according whether p is inert, ramified or split in
Ki �k. Then we have to consider the behaviour of a place p of k in the dif-
ferent extensions and remark that the norm of a place ^ over p in L equals
N( p) or N( p)2, according whether ^ is of degree one or two. A simple
calculation gives us the result. K

Corollary 2.4. (`L�`k)(s)=>3
i=1 (`Ki

�`k)(s).

Proof. According to (2), we have to look at the behaviour of the
infinite places of these fields. K

2.3. Formula for Class Numbers

Using the previous results, we have the following corollary.

Corollary 2.5. If the imaginary bicyclic biquadratic extension L�k has
a real quadratic subfield, say K=K1 (Cases 4 and 5), we have

ROL

ROK

hOL
=hOK

hOK2
hOK3

.

Else (Cases 2 and 3), we have

hOL
=hOK1

hOK2
hOK3

.

Proof. For any function field L�Fq , a residue calculus gives (see [8])

`OL
(s)=

&hOL
ROL

(q&1)
(ln q)s�(L)&1 ss�(L)&1+O(ss�(L)).
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Then, if we set 4OL
(s)=`OL

(s)�ss�(L)&1, we have

4OL
(0)=

&hOL
ROL

(q&1)
(ln q)s�(L)&1

and since s�(L)&s�(k)=s�(K1)+s�(K2)+s�(K3)&3s�(k) we obtain

(4OL
�4Ok

)(0)= `
3

i=1

(4OKi
�4Ok

)(0),

which gives us

ROL
hOL

= `
3

i=1

ROKi
hOKi

.

One gets the result observing that, in any function field F�k, if there is only
one place in F above the infinite place of k, then the regulator ROF

is equal
to one. K

Let L�k be an imaginary bicyclic biquadratic extension which has a real
quadratic subfield K. By Dirichlet's theorem the unit group of L and K are
of rank 1. We set QL�K=[O*L : O*K] for the index of the units.

Lemma 2.6. Let L be an imaginary bicyclic biquadratic extension of k
which has a real quadratic subfield K. Then we have:

v QL�K=1 or 2.

v ROL
�ROK

=2�QL�K .

Proof. Let =K and =L be the fundamental units of K and L respectively.
We have =K # O*L thus =K==QL�K

L . If we denote by NL�K the norm of L�K, we
have =2

K=NL�K(=K)=NL�K(=QL�K
L )=NL�K(=L)QL�K==mQL�K

K , where m is an
integer, thus mQL�K=2 and then QL�K=1 or 2. Note that this a particular
case of the situation considered in [1] from which we can also deduce the
second statement. K

Proposition 2.7. Let L�k be an imaginary bicyclic biquadratic extension
and let Ki , i=1, 2, 3, be the three intermediate fields. We have

hOL
=

Q
2

hOK1
hOK2

hOK3
, (3)

where Q=2 if none of the Ki �k is real and Q=QL�K=1 or 2 if one Ki , say
K, is real.
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This is a trivial consequence of Corollary 2.5 and Lemma 2.6. Since hOK
is even if K�k is an inert quadratic extension, we see that hOL

is even in
Cases 3 and 4. Thus if we want hOL

=1, we will have to consider only Cases
2 and 5 of Subsection 2.2. Moreover, using Proposition 2.7, we have the
following result.

Corollary 2.8. Let L�k be an imaginary bicyclic biquadratic extension
and let Ki , i=1, 2, 3, be the three intermediate fields.

(1) If all Ki �k are ramified (Case 2) then

hOL
=1 � (hOKi

)1�i�3=(1, 1, 1).

(2) If two Ki �k are ramified and the third one is real (Case 5) then

(hOKi
)1�i�3=(1, 1, 2) and Q=1,

hOL
=1 � {or

(hOKi
)1�i�3=(1, 1, 1) and Q=2.

3. QUADRATIC EXTENSIONS IN EVEN CHARACTERISTIC

3.1. Equation of Artin�Schreier Extensions

Let us recall the Hasse normalized equation for an Artin�Schreier exten-
sion in even characteristic.

Proposition 3.1 (see [3, 4]). Let k=Fq(x), with q a power of 2, and let
K�k be an Artin�Schreier extension. Then K=k(y), where y verifies the
equation

y2+ y= f (x)=*
N(x)

>r
i=1 Pi (x)ni

, (4)

with

v * # Fq*,

v N and Pi are monic polynomials of Fq[x] and N(x) is prime to
>r

i=1 Pi (x),

v ni is odd for all i, 1�i�r.

We set

s= :
r

i=1

deg(Pi), t= :
r

i=1

ni deg(Pi), n=deg(N).
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For a fixed x, there exists y # K such that K=k( y), where y satisfies (4) and
furthermore,

(1) in case gK�1,

if K�k is ramified, s+n is odd, t<n, gK=
s+n&1

2
,

if K�k is real, n<t, gK=
s+t

2
&1,

if K�k is inert, n=t, *{c2+c, \c # Fq , gK=
s+t

2
&1.

(2) in case gK=0 (with a # Fq)

if K�k is ramified, y2+ y=x+a,

if K�k is real, y2+ y=
a
x

,

if K�k is inert, y2+ y=*
x+a

x
, a{0 and *{c2+c, \c # Fq .

If an Artin�Schreier extension K�k is such that K=k( y), with y satisfying
Eq. (4), we will set K=Kf .

Remark 3.2. The number r which appears in (4) is the number of finite
places of k which are ramified in K.

3.2. Parity of the Ideal Class Number

Let us quote a result concerning the parity of the ideal class number of
a quadratic extension K�k. In [14], the quadratic extensions K�k with an
odd ideal class number are characterized in the odd characteristic case. For
even characteristic one has the following result.

Proposition 3.3. Assume that the characteristic of k equals 2. Let K�k
be a quadratic extension, K=k( y), where y satisfies (4). Then the ideal class
number hOK

is odd if and only if the number r of finite places of k which are
ramified in K is such that

v r=0, or

v r=1 and K�k is real.

Recall that if K�k is inert, then, according to (1), hOK
is even.
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Sketch of Proof (see [9]). We have K=k( y), with

y2+ y= f (x)=*
N(x)

>r
i=1 Pi (x)ni

.

Let us show that the 2-rank, R, of the ideal class group of K�k is equal to

R={r
r&1

if K�k is imaginary
if K�k is real.

We denote by H the Hilbert class field of (K, S�) and by M�K the maximal
2-primary subextension of H�K. One can define M explicitly. In fact, con-
sider the partial decomposition of f (x),

f (x)=S0(x)+ :
r

i=1

N i (x)
Pi (x)ni

,

where S0(x) # Fq[x] (S0(x)=0 if K�k is real) and deg Ni (x)<ni deg Pi (x).
Set

Si (x)=
Ni (x)
Pi (x)ni

, i=1, ..., r.

It can be shown that M=K( y0 , ..., yr) (resp. M=K( y1 , ..., yr)) if K�k is
imaginary (resp. real), where yi satisfies the equation y2

i + yi=Si (x). Since
[M : K]=2R, we obtain the result. K

3.3. Quadratic Extensions with a Small Ideal Class Number

We will also use the following result, which, in even characteristic,
gives all imaginary quadratic extensions K�k such that hOK

=1 or 2. The
case hOK

=1 is due to [7, 6] and the case hOK
=2, to [5, 4].

Proposition 3.4. Assume that the characteristic of k equals 2 and let
K�k be an imaginary quadratic extension. Let K=k( y), then one has (up to
an isomorphism leaving the infinite place of k fixed, where we denote by : a
generator of F4*).

(1) if gK�1, then hOK
=1 only if

v k=F2(x) with y2+ y=x3+x+1 or y2+ y=x5+x3+1.

v k=F4(x) with y2+ y=x3+:.
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(2) If gK�1 and K�k is ramified, then hOK
=2 only if

v k=F2(x), where y2+ y= f (x) with

gK=1 and f (x)=x+1+
1
x

gK=2 and f (x)=x+1+
x

x2+x+1

f (x)=x3+1+
1
x

f (x)=x+1+
1
x3 (V)

gK=3 and f (x)=x3+x+
1

x2+x+1

f(x)=x+1+
x

x3+x+1
.

(V) This case is obtained applying transformation x [ 1�x to the preceding
one.

v k=F4(x), where y2+ y= f (x) with

gK=2 and y2+ y=x+
:
x

.

3.4. Compositum of Artin�Schreier Extensions

For a bicyclic biquadratic extension L�k, one can relate an intermediate
field with the two others.

Lemma 3.5. Assume that the characteristic of k equals 2. Let L�k be a
bicyclic biquadratic extension. Then L is the compositum of K1=Kf1

and
K2=Kf2

, with f1 , f2 F2 -linearly independent and the third intermediate field
is K3=Kf3

, with f3= f1+ f2 . The genus of L is

gL= g1+ g2+ g3 . (5)

Proof. It is consequence of the results quoted in [11]. K

Note that if Ki=K( yi), with y2
i + yi= f i (x) for i=1, 2, then ( y1+ y2) is

a primitive element of K3 , that is, K3=k( y1+ y2). One can also show that
t= y1 y2 is a primitive element of L=K1K2 .
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4. PRINCIPAL IMAGINARY BICYCLIC BIQUADRATIC
FUNCTION FIELDS IN EVEN CHARACTERISTIC

The solutions to the ideal class number one problem for imaginary
bicyclic biquadratic function fields in even characteristic are listed in the
following theorem.

Theorem 4.1. Let L be an imaginary bicyclic biquadratic extension of
k=F2 e(x) and let Ki , i=1, 2, 3, be the three distinct intermediate fields. The
extensions L�k with ideal class number equal to one are exactly the following
(up to isomorphism leaving the infinite place of k fixed ): L=k( y, z), where

(1) k=F2 e(x), y2+ y= f (x), z2+z= g(x), with degree one polyno-
mials f, g # F2 e[x] that are independent over F2 e and then gL=0.

(2) k=F4(x), y2+ y=x3+:, z2+z=ax+b, (a, b) # F4*_F4 , and
then gL=2.

(3) k=F4(x), y2+ y=x+:�x, z2+z=x and then gL=1.

(4) k=F2(x), y2+ y=x+1+1�x, z2+z=x+1 and then gL=1.

(5) k=F2(x), y2+ y=x+1+x�(x2+x+1), z2+z=x+1 and then
gL=3.

(6) k=F2(x), y2+ y=x+1+1�x3, z2+z=x+1 and then gL=3.

(7) k=F2(x), y2+ y=x+1+x�(x3+x+1), z2+z=x+1 and then
gL=5.

As previously, we denote by : a generator of F4*.

Proof. The genus of a solution L�k will be easily computed using (5).
For each subfield Ki=k( yi) of L, we will consider the equation
y2

i + yi= f i (x), where fi (x) # k(x). According to Corollary 2.3, we only
have to consider Cases 2 and 5 of Subsection 2.2.

(1) (Case 2) All Ki �k are ramified and (hOKi
)1�i�3=(1, 1, 1).

(a) If two Ki �k are ramified and with genera equal to 0 then so is the
third one (see Proposition 3.1). We can take three Ki=Kfi

such that the
corresponding fi's are linear polynomials, independent over Fq . This gives
solution (1) of the Theorem.

(b) If q=4 and gK>0, then, according to Proposition 3.4, there is a
unique K such that hOK

=1. Let K1=k( y), with y2+ y=x3+: and g1=1,
and let K2 be k-isomorphic to K1 and also ramified. Then K2=k(z) with
z2+z=x3+ax+b, where a, b # F4 . Thus, we obtain K3=k(u), u2+u=
ax+(b+:) with g3=0 and this gives solution (2) of the Theorem.
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(c) If q=2 and gK>0, then according to Proposition 3.4, there are
exactly two K such that hOK

=1, which are k(u), with u2+u=x3+x+1,
g=1, and k(v), with v2+v=x5+x3+1, g=2. They both define ramified
extensions K�k. Let us take K1=k(u) or a ramified extension K1 �k
k-isomorphic to k(u)�k and K2=k(v) or a ramified extension K2 �k
k-isomorphic to k(v)�k. Then K3 has genus 2 and, since it must have an
ideal class number equal to 1, it has to be k-isomorphic to k(v). There are
no solutions in this case.

It can easily be shown that if one takes K1=k(u) and K2 (ramified)
k-isomorphic to k(u), there are no solutions too, and the same conclusion
if one takes k(v) instead of k(u).

(2) (Case 5) Two Ki �k are ramified, the third one is real, and
(hOKi

)1�i�3=(1, 1, 2) and Q=1, or (hOKi
)1�i�3=(1, 1, 1) and Q=2.

(a) If the two ramified fields have genus 0, there are no solutions,
since the third field will also be ramified (see Proposition 3.1).

(b) Now we take one ramified field, say K1 , with genus 0 and the
other ramified field, say K2 , such that g2>0 and hOK2

=1 or 2. Then, according
to Proposition 3.4, we must have q=2 or 4.

(i) If hOK2
=1, it can easily be shown as previously that the third

field will be ramified too, so this case cannot occur.

(ii) If hOK2
=2 and q=4, the unique possibility (up to isomor-

phism) is K2=k( y), where f2(x)=x+:�x. Then K1=k(z), where f1(x)=
ax+b, and K2=k( y) give K3=k(u), where u2+u=(a+1)x+b+:�x.
Since K3 �k has to be real, we must have a=1 and b=0. Then g3=0 (so
hOK3

=1) and this will give a solution if Q=1. The genus of L is gL=1 and
the two places of S�(L) are of degree one because there is some ramifica-
tion in K1 and K2 . So, since gL>0, the regulator of L is strictly greater
than 1 and, since g3=0, the regulator of K3 equals 1, so Q=1. This is solu-
tion (3) of the Theorem.

(iii) If hOK2
=2 and q=2, we consider the six possibilities for K2=

Kf2
given in Proposition 3.4. In the following, we set K1=k(z), K2=k( y)

and K3=k(u), with u= y+z.

v Since the third subfield K3 of L has to be real, we must have
K3=Kf3

, with deg( f3)<0 and, since f1 is a linear polynomial, we will have
no solutions if the polynomial part of f2 has a degree greater than 1. Thus
f2(x)=x3+1+1�x or f2(x)=x3+x2+1�(x2+x+1) give no solution.

v If f2(x)=x+1+1�x, then f1(x)=x+1 is the only possibility to
obtain a real third subfield. It gives K3=k(u), where u2+u=1�x, which is
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a real extension of k such that g3=0. With the same argument as above,
we show that this is a solution (solution (4) of the Theorem) and gL=1.

v If f2(x)=x+1+x�(x2+x+1), then f1(x)=x+1 is the only
possibility to obtain a real third subfield. It gives f3(x)=x�(x2+x+1),
g3=1. We can show that the divisor class number of K3 is h3=4. Since
(x2+x+1) is irreducible over F2 , hOK3

is odd because of Proposition 3.3.
Then 4=h3=hOK3

rOK3
, implies that hOK3

=1 and rOK3
=4. This will give a

solution only if Q=2rOK3
�rOL

=1. Let us compute rOL
. We consider L as a

real quadratic extension of K1=k(z): indeed, we have L=K1(u) with

u2+u=
z2+z+1
z4+z+1

, (6)

and it is easy to show that gL=3, hL=8. Since K1 �k is ramified, we have
S�(K1)=[P], with deg P=1. The integral closure of Fq[x] in L is clearly
equal to the integral closure of k[z] in L. Applying Proposition 3.3 to the
real quadratic extension L�K1 defined by (6), we obtain that hOL

is odd.
Then hL=hOL

rOL
implies that hOL

=1 and rOL
=8, so that Q=2rOK3

�rOL
=1.

This gives solution (5) of the Theorem.

v If f2(x)=x+1+1�x3, f1(x)=x+1 is the only possibility to
obtain a real third subfield. It gives f3(x)=1�x3, g3=1 and h3=3. Thus
hOK3

=1 and rOK3
=3. As previously, L is a real quadratic extension of

K1=k(z) and L=K1(u) with

u2+u=
1

(z2+z+1)3 ,

gL=3, hL=6. We conclude that Q=1 as before. This gives solution (6) of
the Theorem.

v If f2(x)=x+1+x�(x3+x+1), f1(x)=x+1 is the only
possibility to obtain a real third subfield. It gives f3(x)=x�(x3+x+1) and
we can show that g3=2 and h3=11. Since g3>0, we have rOK3

>1 (see

Remark 2.1). Thus h3=hOK3
rOK3

implies hOK3
=1 and rOK3

=11. Then

L=K1(u), with u2+u=
z2+z+1

z6+z5+z3+z2+1
,

gL=5, hL=22. Since (z6+z5+z3+z2+1) is irreducible, hOL
is odd. As

previously, we have rOL
�rOK3

=2�Q=2 or 1. Then, since hL=22=hOL
rOL

,
we have rOL

=22, so that Q=1. This gives solution (7) of the Theorem.
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(iv) If the two ramified fields have genus >0 and an ideal class
number equal to 1, the third one will not be real: just look at the
possibilities given in Proposition 3.4.

Assume now that hOK1
=1, hOK2

=2, and gi>0 for i=1, 2,

v If q=4, according to Proposition 3.4 we must have f1(x)=
x3+: (up to isomorphism) and f2=x+a�x (up to isomorphism). One
cannot obtain a third real subfield.

v If q=2, it is easy to see that there are no solutions for similar
reasons than previously. K

5. CONCLUSION

If the characteristic of k is even, we have given all imaginary bicyclic
biquadratic extensions L�k with ideal class number one. As for odd charac-
teristic (see [12]), all such extensions have at least one intermediate field
with genus 0.
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