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1. Introduction

Let K be a finite field of characteristic p. Let ψK be the canonical additive character 
of K, that is, ψK(x) = exp(2iπTrK/Fp

(x)/p) where TrK/Fp
is the absolute trace. Weil 

sums with ψK applied to binomials, that is, sums of the form 
∑

x∈K ψK(bxj +cxk), have 
been studied extensively from the early twentieth century to present [32,37,41,14,1,23,6,
7,33,31,11,9,10]. We are interested in such sums when j and k are coprime to |K×|, in 
which case we reparameterize them to obtain sums of the form

WK,d(a) =
∑
x∈K

ψK(xd + ax) (1)

with gcd(d, |K×|) = 1 and a ∈ K. This definition will remain in force throughout the 
paper, and we shall always insist that gcd(d, |K×|) = 1 whenever we write WK,d. The 
sums WK,d(a) are always real algebraic integers [20, Theorem 3.1(a)], and furthermore, 
are all rational integers if and only if d ≡ 1 (mod p − 1) [20, Theorem 4.2]. Apart from 
arising often in number-theoretic calculations, these sums are also the key to problems 
in finite geometry, cryptography, digital sequence design, and coding theory, as discussed 
in [27, Appendix].

For a fixed K and d, we consider WK,d(a) as a function of a ∈ K×, and are interested 
in how many different values it assumes as a runs through K×. WK,d(a) with a = 0 is 
passed over, as it is the Weil sum of the monomial xd, and since x �→ xd is a permutation 
of K, we always have WK,d(0) = 0. We call {WK,d(a) : a ∈ K×} the value set of WK,d, 
and say that WK,d is v-valued over K to mean that this set is of cardinality v.

If d ≡ pj (mod |K×|) for some j, we say that d is degenerate over K, because 
TrK/Fp

(xd + ax) = TrK/Fp
((1 + a)x), and so the binomial effectively becomes zero (if 

a = −1) or a nonvanishing linear form (if a �= −1). Thus if d is degenerate over K, one 
readily obtains for a ∈ K that

WK,d(a) =
{
|K| if a = −1,
0 otherwise.

(2)

Helleseth [20, Theorem 4.1] shows that one always obtains a richer value set in the 
nondegenerate case.

Theorem 1.1. (See Helleseth, 1976.) If d is nondegenerate over K, then WK,d(a) takes 
at least three values as a runs through K×.

Here we want to know when Weil sums of this form can be three-valued, and if so, 
what are the three values they may take. We indicate all known infinite families of 
three-valued examples, arranged according to analogy, in Table 1 below.

In several entries, we make use of the p-adic valuation of an integer a, denoted valp(a), 
which is the maximum k such that pk | a (or ∞ if a = 0). We write “nondegenerate” in 
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Table 1
Three-valued Weil sums.

Order of K d (nondegenerate) Values of WK,d Reference

q = 2e d = 2i + 1 0, ±
√

2gcd(e,i)q [24,26,18]val2(i) ≥ val2(e)

q = pe d = 1
2 (p2i + 1) 0, ±

√
pgcd(e,i)q

[40] (e odd)
p odd val2(i) ≥ val2(e) [19,20] (e even)

q = 2e d = 22i − 2i + 1, 0, ±
√

2gcd(e,i)q [42,25]val2(i) ≥ val2(e)

q = pe d = p2i − pi + 1 0, ±
√
pgcd(e,i)q

[40] (e odd)
p odd val2(i) ≥ val2(e) [19,20] (e even)

q = 2e

d = 2e/2 + 2(e+2)/4 + 1 0, ±2√q [12]val2(e) = 1

q = 2e

d = 2(e+2)/4 + 3 0, ±2√q [12]val2(e) = 1

q = 2e

d = 2(e−1)/2 + 3 0, ±√
2q [4,5,21]

e odd

q = 3e

d = 2 · 3(e−1)/2 + 1 0, ±√
3q [15]

e odd

q = 2e d = 22i + 2i − 1 0, ±√
2q [21,22]

e odd e | 4i + 1

q = 3e d = 2 · 3i + 1 0, ±√
3q [30]

e odd e | 4i + 1

the column heading for d values to impose the condition that d be nondegenerate over K
throughout the table, so that, for example, we cannot have i = 0 in the first four rows. 
If K has characteristic p and 1/d is interpreted modulo |K×|, then WK,pd and WK,1/d
take the same values as WK,d [20, Theorem 3.1], so the table records representative d
modulo these equivalences.

First of all, note that all these value sets consist of three rational integers, one of 
which is 0, with the other two being opposites of each other. The first two properties are 
inevitable facts, as shown in [27, Theorems 1.7, 1.9].

Theorem 1.2. (See Katz, 2012.) Let K be a finite field of characteristic p. If WK,d is 
three-valued for some exponent d, then d ≡ 1 (mod p −1), and the values must be rational 
integers, one of which is zero.

Concerning the two nonzero values of a three-valued Weil sum, one must be positive 
and the other negative, since it is known that 

∑
a∈K× WK,d(a)2 =

(∑
a∈K× WK,d(a)

)2. 
(See Lemma 2.1 and Corollary 2.3 below for details.) However, it has not been proved 
that these values must have the same magnitude, although this is always what has 
been observed. We say that a three-valued Weil sum WK,d is symmetric when the two 
nonzero values are opposites of each other. If we assume that a three-valued Weil sum 
is symmetric, we can make further conclusions about the possible values.
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Proposition 1.3. If K is the finite field of characteristic p and order q, and if WK,d(a)
is three-valued with values 0 and ±A, then |A| = pk for some positive integer k with 
√
q < pk < q.

This follows easily from well-known facts, which are arranged in Section 2, where the 
above proposition is proved as Proposition 2.4.

Our first main result shows that in many cases, WK,d cannot be symmetric three-
valued.

Theorem 1.4. Let K be a finite field, and suppose that I and J are subfields of K with 
[J : I] = 2, with d degenerate over I but not over J . Then the set of values assumed by 
WK,d(a) as a runs through K× is not of the form {−A, 0, +A} for any A.

We prove this in Section 6. This means that a field obtained by a tower of quadratic 
extensions over a prime field can never support a symmetric three-valued sum.

Corollary 1.5. Let K be a finite field of characteristic p, and suppose that [K : Fp] is a 
power of 2. Then the set of values assumed by WK,d(a) as a runs through K× is not of 
the form {−A, 0, +A} for any A.

For if WK,d were three-valued, Theorem 1.2 and Eq. (2) would make d degenerate 
over Fp but not over K, and then as we proceed from Fp toward K up the tower of 
quadratic extensions, we must find a step where d passes from degenerate to nondegen-
erate. This corollary generalizes a result of Calderbank–McGuire–Poonen–Rubinstein 
[3, Theorem 3]. Our proof is quite different from that of Calderbank et al., who used 
McEliece’s Theorem from coding theory (a relative of Stickelberger’s Theorem on the 
p-divisibility of Gauss sums) and a delicate calculation in additive number theory to 
obtain Corollary 1.5 in the case where p = 2. The proof for Theorem 1.4 in full gen-
erality given here is much more straightforward, and is the consequence of some useful 
observations about the p-adic valuation of Weil sums. These observations come as a con-
sequence of relations (explored in Section 4) between Weil and Gauss sums over a field 
and sums of the same form over a subfield: the Gauss sums play a role since Weil sums 
can be written in terms of Gauss sums, and the Davenport–Hasse relation supplies the 
connection between Gauss sums over the field and Gauss sums over the subfield.

Note that if K is a field of characteristic p and order q = pe, with e not equal to a 
power of 2, then we can set i = 2val2(e) in the first four rows of Table 1 to obtain a d
such that Wq,d is three-valued. On the other hand, Table 1 furnishes no example of a 
three-valued WK,d with [K : Fp] a power of 2. (Recall that our table prohibits parameters 
which make d degenerate, so we cannot have i a multiple of e in the first four rows.) 
Helleseth conjectured [20, Conjecture 5.2] that for such fields there is no d that makes 
the Weil sum WK,d three-valued.
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Conjecture 1.6. (See Helleseth, 1976.) Let K be a finite field of characteristic p. If 
[K : Fp] is a power of 2, then WK,d is not three-valued.

If it were proved that three-valued Weil sums must be symmetric, this would follow 
from Corollary 1.5. The p = 2 and 3 cases of Conjecture 1.6 have been proved. First, 
Feng [16, Theorem 2] showed that if p = 2, one could strengthen the conclusion of 
Corollary 1.5 to say that the value set is not only non-symmetric, but entirely lacks the 
value 0. Then when Katz [27, Theorem 1.9] proved that a three-valued Weil sum must 
take the value 0, Conjecture 1.6 was established for p = 2. Further work of Katz [28, 
Theorem 1.7] shows that Conjecture 1.6 is also true when p = 3.

A symmetric three-valued Weil sum is called preferred if the magnitude of the nonzero 
values is as small as possible in view of Proposition 1.3, that is, if the nonzero values are 
±√

pq when q is an odd power of p, or if the nonzero values are ±p
√
q when q is an even 

power of p. This terminology originates from digital sequence design, wherein smaller 
magnitude Weil sums of binomials correspond to smaller cross-correlation between a pair 
of maximal linear recursive sequences, which is desirable. The known infinite families of 
preferred three-valued Weil sums can be deduced from Table 1 above: the last seven rows 
furnish preferred Weil sums, and in the first four rows, one must have gcd(e, i) = 1 if e
is odd, or gcd(e, i) = 2 if e is even.

Our second main result is a lower bound on the magnitude of the nonzero values of 
a symmetric three-valued Weil sum WK,d. This bound grows as the 2-divisibility of the 
degree of K over its prime field increases.

Theorem 1.7. Let K be the finite field of characteristic p and order q. If val2([K : Fp]) = s

and WK,d is symmetric three-valued with values 0, ±A, then |A| ≥ p2s−1√
q.

We prove this in Section 7. One consequence is that if the degree of K over its prime 
field is a multiple of 4, then WK,d cannot be preferred.

Corollary 1.8. Let K be the finite field of characteristic p and order q. If [K : Fp] ≡
0 (mod 4), then the set of values assumed by WK,d as a runs through K× is not of the 
form {0, ±p

√
q}.

This generalizes the result of Calderbank–McGuire [2], who proved a conjecture of 
Sarwate and Pursley [39, p. 603], which is the special case of Corollary 1.8 where p = 2. 
Our proof technique for Theorem 1.7 in full generality is much simpler than the orig-
inal proof of Calderbank–McGuire, as it obviates the need for McEliece’s Theorem or 
Stickelberger’s Theorem.

Our first two results give restrictions on the types of fields that support symmetric and 
preferred Weil sums. Our third result shows that certain exponents d of the polynomial 
in the Weil sum prevent the Weil sum from being three-valued at all.
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Theorem 1.9. Let K be a finite field of characteristic p with [K : Fp] even. If d is a power 
of p modulo 

√
|K| − 1, then WK,d is not three-valued.

In other words, it is impossible for WK,d to be three-valued if K is the quadratic 
extension of a field F in which d is degenerate. We prove this in Section 8. Such an 
exponent d is called a Niho exponent, since they were first studied by Niho in [38]. 
Theorem 1.9 generalizes the result of Charpin [8, Theorem 2], who proved the p = 2 case. 
Some steps of Charpin’s proof for characteristic two do not hold in odd characteristic, 
so new arguments are devised.

Finally, the techniques developed here can be used to simplify the proof that the 
values of a three-valued Weil sum must be rational integers, a result that appears above 
in Theorem 1.2, and which originally appeared in [27, Theorem 1.7]. The new proof is 
presented in Section 9.

Our proofs of all the above results make extensive use of Galois theory. Since Weil 
sums connect calculations in finite fields to calculations in cyclotomic extensions of Q, 
there are two realms, both cyclotomic, where Galois groups come into play. On the one 
hand, there are Galois groups for finite fields, which act on the terms of the polynomial 
arguments of the characters in the Weil sums; this is explored in Section 3. On the other 
hand, there are Galois groups for cyclotomic fields, which are applied to the values of 
the Weil sums; this is explored in Section 5. This dual Galois-theoretic approach has 
proved to be both powerful for obtaining new results, and at the same time, simplifies 
the proofs of previous results that we recapitulate.

We should note that Weil sums assuming four, five, or more values are also studied 
(see [20, Theorems 2.2, 2.3, 4.8, 4.10, 4.11, 4.13] for some examples), but we focus on the 
three-valued ones, as they are extremal in view of Theorem 1.1. It has been asked [29, 
Problem 3.6] whether there is an analogue of Theorem 1.2 for four-valued Weil sums. 
Four-valued Weil sums WK,d(a) are known that assume irrational values and do not 
assume the value 0 for a ∈ K×. For example, if K is the field with 5 elements and d = 3, 
then WK,d(a) assumes four distinct irrational values (±

√
5 and (5 ±

√
5)/2) as a runs 

through K×. Thus any analogue of Theorem 1.2 for four-valued sums would need to be 
significantly different from the original.

The organization of this paper is as follows: in Section 2, we prove some preliminary 
results using the well-known methodology of power moments. In Section 3, we explore 
the action of the Galois groups of finite fields on the terms inside the Weil sums. In 
Section 4, we look at the Fourier transform of the value set of our Weil sums, which 
is expressible in terms of Gauss sums, from which we deduce results about the p-adic 
valuation of Weil sum values. In Section 5, we explore the action of the Galois groups 
of cyclotomic fields on the values of the Weil sums. In Sections 6, 7, and 8, we prove 
Theorems 1.4, 1.7, and 1.9, respectively. In Section 9, we finish with our new simpler 
proof of the rationality of the values of three-valued Weil sums.
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2. Power moments of Weil sums

In this section we state some of the basic results about Weil sums that will be useful 
later on. These facts are proved using character sums known as power moments. Recall 
the definition (1) of WK,d, and our tacit insistence that gcd(d, |K×|) = 1 whenever we 
write WK,d. The mth power moment of the Weil sum WK,d is the sum

∑
a∈K×

WK,d(a)m.

The first few power moments can be calculated as straightforward character sums.

Lemma 2.1. Let K be a finite field. Then

(i).
∑

a∈K× WK,d(a) = |K|,
(ii).

∑
a∈K× WK,d(a)2 = |K|2, and

(iii).
∑

a∈K× WK,d(a)3 = |K|2 · |R|,

where R is the set of roots of the polynomial (x + 1)d − xd − 1 in K.

Proof. See [27, Proposition 3.1]. �
Corollary 2.2. If K is a finite field, and d is nondegenerate over K, then |WK,d(a)| < |K|
for all a ∈ K×.

Proof. From Lemma 2.1(ii), the only way to escape this conclusion would be to have 
|WK,d(b)| = |K| for some b ∈ K×, and WK,d(a) = 0 for all other a, which would make 
the Weil sum two-valued, contrary to Theorem 1.1. �
Corollary 2.3. If d is nondegenerate over K, then WK,d assumes at least one positive 
value and at least one negative value.

Proof. Recall that the Weil sum values are real algebraic integers [20, Theorem 3.1(a)]. 
By Theorem 1.1, we know that WK,d must assume at least two nonzero values. If 
all the nonzero values it assumes were of the same sign, then 

(∑
a∈K× WK,d(a)

)2
>∑

a∈K× WK,d(a)2, contradicting Lemma 2.1(i) and (ii). �
The following is an easy consequence of this power moment analysis, and provides the 

proof of Proposition 1.3 in the Introduction.

Proposition 2.4. If K is the finite field of characteristic p and order q, and if WK,d(a)
is three-valued with values 0 and ±A, then d ≡ 1 (mod p − 1) and |A| = pk for some 
positive integer k. If R denotes the set of roots of (x + 1)d − xd − 1 in K, then 

√
q <√

|R| q = |A| < q.
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Proof. By Theorem 1.2, we must have A ∈ Z and d ≡ 1 (mod p − 1). Let NA be the 
number of a ∈ K× with WK,d(a) = A. Since the other two values WK,d(a) assumes are 
0 and −A, we have 

∑
a∈K× WK,d(a)(WK,d(a) +A) = 2A2NA, and by Lemma 2.1(i),(ii), 

this sum also equals q2 +qA, so that NA = (q2 +qA)/(2A2), and so A cannot be divisible 
by any prime other than p. We know |A| < q by Corollary 2.2.

Similarly, 
∑

a∈K× WK,d(a)(WK,d(a)2 − A2) = 0, and by Lemma 2.1(i),(iii) equals 
q2 |R| − qA2, so |A| =

√
|R| q. Then note that 0, −1 ∈ R. (This is clear for p = 2, and 

for p odd, note that gcd(d, q − 1) = 1 forces d to be odd.) Thus A ≥ √
2q. �

It will also be useful to consider a version of the first power moment of a Weil sum, 
but where we restrict the summation to a smaller subfield.

Lemma 2.5. Let K be a finite field and let L be the quadratic extension of K. Then∑
a∈K×

WL,d(a) = |L| .

Proof. Let q = |K|. Since WL,d(0) = 0, we have
∑

a∈K×

WL,d(a) =
∑
x∈L

ψL(xd)
∑
a∈K

ψK(aTrL/K(x))

= q
∑
x∈L

TrL/K(x)=0

ψL(xd).

If x ∈ L with TrL/K(x) = 0, then xq = −x, so that TrL/K(xd) = xqd + xd = (−x)d +
xd = 0. (In odd characteristic, gcd(d, q − 1) = 1 makes d odd.) Thus 

∑
a∈K× WL,d(a) =

q ·
∣∣{x ∈ L : TrL/K(x) = 0}

∣∣ = q2 = |L|. �
3. Action of Galois groups of finite fields

We begin this section by seeing that the automorphisms of a finite field K act trivially 
with respect to the Weil sum WK,d(a). As always WK,d(a) is as defined in (1), and 
gcd(d, |K×|) = 1 whenever we write WK,d.

Lemma 3.1. Let K be a finite field of characteristic p. If σ ∈ Gal(K/Fp), then 
WK,d(σ(a)) = WK,d(a).

Proof. Since Galois conjugates have the same trace, they have the same character value. 
Thus WK,d(a) =

∑
x∈K ψK(σ(xd + ax)), and by reparameterizing with y = σ(x), we 

have WK,d(a) =
∑

y∈K ψK(yd + σ(a)y) = WK,d(σ(a)). �
The action of the Galois group also shows that some exponents give equivalent Weil 

sums.
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Lemma 3.2. Let K be a finite field of characteristic p. Then WK,d(a) = WK,pjd(a) for 
any a ∈ K and j ∈ Z.

Proof. This follows immediately from the fact that xpjd is a Galois conjugate of xd, and 
so ψK(xpjd) = ψK(xd). �

Now we use finite field automorphisms to prove a congruence between the Weil sum 
over a field and the Weil sum over its extensions.

Lemma 3.3. Let K be a finite field of characteristic p, and let L be an extension of K
with [L : K] a power of a prime � distinct from p. Then for any a ∈ K, we have

WL,d(a) ≡ WK,d([L : K]1−1/da) (mod �),

where 1/d indicates the multiplicative inverse of d modulo p − 1.

Proof. For a ∈ K, we have

WL,d(a) =
∑
x∈K

ψK(TrL/K(xd + ax)) +
∑

x∈L�K

ψL(xd + ax).

The first sum equals 
∑

x∈K ψK([L : K](xd + ax)), and if we reparameterize with w =
[L : K]1/dx, then we see that this sum is WK,d([L : K]1−1/da). For the second sum, the 
action of Gal(L/K) partitions L � K into orbits of Galois conjugates whose sizes are 
positive powers of �. For any σ ∈ Gal(L/K), we have ψL(xd + ax) = ψL(σ(xd + ax)) =
ψL(σ(x)d + aσ(x)), so that the value of ψL(xd + ax) is constant on orbits, and thus the 
sum over L �K is � times a sum of algebraic integers. �

We then explore what this tells us in the case where d is degenerate in the smaller 
field.

Corollary 3.4. Let K be a finite field of characteristic p, and let L be an extension of L
with [L : K] a power of a prime � distinct from p. Let d be degenerate over K. Then 
WL,d(−1) ≡ |K| (mod �) and WL,d(a) ≡ 0 (mod �) for every a ∈ K � {−1}.

Proof. Combine Lemma 3.3 with (2), and note that since d is degenerate over K, we 
have d ≡ 1 (mod p − 1), so the factor of [K : L]1−1/d mentioned in Lemma 3.3 is equal 
to 1. �
4. Gauss sum and valuation

In this section, we explore the Fourier transform of the value set of the Weil sum, 
which is expressible in terms of Gauss sums. This will enable us to prove some criteria 
about the p-divisibility of Weil sum values.
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Throughout this section K is a finite field of characteristic p and order q and, as 
always, we assume that gcd(d, q − 1) = 1. For any multiplicative character χ ∈ K̂×, we 
consider the Gauss sum

τK(χ) =
∑

a∈K×

χ(a)ψK(a).

By Fourier inversion, if a ∈ K×, we find that

ψK(a) = 1
q − 1

∑
χ∈K̂×

τK(χ)χ̄(a).

Thus for a ∈ K×,

WK,d(a) = 1 + 1
(q − 1)2

∑
b∈K×

∑
χ,ϕ∈K̂×

τK(χ)τK(ϕ)χ̄d(b)ϕ̄(ab)

= 1 + 1
q − 1

∑
χ,ϕ∈K̂×

ϕ=χ̄d

τK(χ)τK(ϕ)ϕ̄(a)

= q

q − 1 + 1
q − 1

∑
χ �=1

τK(χ)τK(χ̄d)χd(a). (3)

If we denote by t the inverse of −d modulo q−1, the above formula shows that q and the 
τK(χ)τK(χ̄d) are the Fourier coefficients of the mapping a �→ WK,d(at) from K× to C, 
whence by Fourier inversion

∑
a∈K×

WK,d(at)χ(a) =
{
q if χ = 1,
τK(χ)τK(χ̄d) otherwise. (4)

Recall from the Introduction that for any nonzero integer n, the p-adic valuation of n, 
written valp(n), is the largest k such that pk divides n, and we set valp(0) = ∞. Then 
valp(ab) = valp(a) + valp(b) and valp(a + b) ≥ min{valp(a), valp(b)}, which becomes 
an equality whenever valp(a) �= valp(b). We can extend the definition to Q, wherein 
valp(a/b) = valp(a) −valp(b). If ζp and ζq−1 are, respectively, primitive pth and (q−1)th 
roots of unity over Q, we can further extend valp to the field Q(ζp, ζq−1) where the 
Gauss sums reside, while still retaining the relations given above concerning products 
and sums of elements. In this last field, elements can have fractional valuations: for 
instance valp(1 − ζp) = 1/(p − 1).

We introduce the useful notation

VK,d = min valp(WK,d(a)).

a∈K×
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It is well known [35], [36, Section 6] that Stickelberger’s congruence on Gauss sums can 
be used to obtain the value of VK,d but we do not need it to reach our goal.

Lemma 4.1. For K a finite field of order q, and d an integer coprime to q − 1, we have

VK,d = min
χ∈K̂×
χ �=1

valp(τK(χ)τK(χ̄d)).

Proof. This is straightforward once we note that valp(χ(a)) = 0 for any χ ∈ K̂× and 
any a ∈ K×, because (q−1)valp(χ(a)) = valp(χ(a)q−1) = valp(1) = 0. Using the relation 
(3), one has VK,d ≥ minχ �=1 valp(τK(χ)τK(χ̄d)), and the reverse inequality is obtained 
by using the relation (4), once we establish that minχ �=1 valp(τK(χ)τK(χ̄d)) ≤ valp(q). 
This last fact follows because τK(χ̄) = χ(−1)τK(χ) and |τK(χ)|2 = q for any nontrivial 
multiplicative character χ, and so 

∏
χ �=1 τK(χ)τK(χ̄d) = ±qq−2. �

Corollary 4.2. Let L be a finite extension of K. For a positive integer d,

VL,d ≤ [L : K] × VK,d

Proof. Denoting by NL/K the norm from L over K, the Davenport–Hasse relation (see 

[13]) tells us that if χ ∈ K̂×, we have

−τL(χ ◦ NL/K) = (−τK(χ))[L:K],

and the set of lifted characters χ ◦ NL/K as χ runs through the nontrivial elements of 
K̂× is a subset of the nontrivial elements of L̂×. �

The remaining results in this section are specific to quadratic extensions of finite fields, 
which are involved in our three main results (Theorems 1.4, 1.7, and 1.9).

Lemma 4.3. Let K be a finite field, and let L be the quadratic extension of K. Let d be 
degenerate over K, but not over L. Let Y be a set of representatives of cosets of K×

in L×. Then for a ∈ L, we have

WL,d(a) = |K| (Z(a) − 1),

where Z(a) is the number of y ∈ Y such that TrL/K(yd + ay) = 0.

Proof. If K has characteristic p, then Lemma 3.2 allows us to replace d with pjd for 
any j, so we may take d ≡ 1 (mod |K×|) without loss of generality. Then
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WL,d(a) = 1 +
∑
y∈Y

∑
x∈K×

ψL((yd + ay)x)

= − |K| +
∑
y∈Y

∑
x∈K

ψK(xTrL/K(yd + ay)),

since |Y | = (|L|−1)/(|K|−1) = |K|+1. The sum over x is |K| when TrL/K(yd+ay) = 0; 
otherwise the sum is 0. �

This calculation has immediate consequences for the p-adic valuation of Weil sum 
values.

Corollary 4.4. Let K be a finite field of characteristic p, and let L be the quadratic 
extension of K. Let d be degenerate over K, but not over L. Then

VL,d = [K : Fp],

and furthermore, WL,d(a) = −|K| for some a ∈ L×.

Proof. Let Y and Z(a) be as defined in Lemma 4.3, which tells us that

WL,d(a) = |K| (Z(a) − 1),

for each a ∈ L. All these numbers have a valuation greater or equal to [K : Fp]. Since d is 
not degenerate over L, WL,d(a) must be negative for some a ∈ L× by Corollary 2.3. The 
only way to make WL,d(a) negative is to have Z(a) = 0, which makes WL,d(a) = − |K|, 
and then the valuation of WL,d(a) is precisely [K : Fp]. �

The calculation of Lemma 4.3 also gives a nonnegativity condition that will be useful 
in our proof of Theorem 1.9.

Corollary 4.5. Let K be a finite field, and let L be the quadratic extension of K. Let d
be degenerate over K. Then WL,d(a) ≥ 0 for all a ∈ K.

Proof. We may take d nondegenerate over L, since (2) settles the degenerate case. Let 
a ∈ K. By Lemma 4.3, it suffices to find some y ∈ L× such that TrL/K(yd + ay) = 1. 
In characteristic 2, take y ∈ K×, so that TrL/K(yd + ay) = 2(yd + ay) = 0. In odd 
characteristic, take y ∈ L with y2 ∈ K but y /∈ K. Then y and −y are conjugates under 
the action of Gal(L/K), and so TrL/K(yd + ay) = (−y)d + a(−y) + yd + ay = 0. �
5. Action of Galois groups of cyclotomic fields

Throughout this section, ζp denotes a primitive pth root of unity over Q. If K is a field 
of characteristic p, then the Weil sum values WK,d(a) reside in Q(ζp) by definition (1). 



172 Y. Aubry et al. / Journal of Number Theory 154 (2015) 160–178
First we see how Galois automorphisms permute the Weil sum values. Recall that we 
always have d invertible modulo |K×| whenever we write the sum WK,d.

Lemma 5.1. Let K be a finite field of characteristic p. If σ is the element of Gal(Q(ζp)/Q)
with σ(ζp) = ζjp, then σ(WK,d(a)) = WK,d(j1−(1/d)a), where 1/d indicates the multiplica-
tive inverse of d modulo p − 1.

Proof. This is [27, Theorem 2.1(b)]. �
This shows that if two Weil sum values are Galois conjugates over Q, then they occur 

equally often.

Corollary 5.2. Let K be a finite field, and let A and B be values assumed by WK,d. If A
and B are Galois conjugates over Q, then the number of a ∈ K× such that WK,d(a) = A

is equal to the number of a ∈ K× such that WK,d(a) = B.

Proof. Let σ ∈ Gal(Q(ζp)/Q) with σ(A) = B, and let j ∈ F×
p such that σ(ζp) = ζjp. By 

Lemma 5.1, WK,d(a) = A precisely when WK,d(j1−1/da) = B. �
Often the Weil sums lie in a proper subfield of Q(ζp). We give a criterion for deter-

mining when this happens.

Lemma 5.3. Let K be a finite field of characteristic p. Let E be the extension of Q
generated by all the values of WK,d(a) for a ∈ K×. Let m be the smallest divisor of 
p − 1 such that d ≡ 1 (mod (p − 1)/m). Then E is the unique subfield of Q(ζp) with 
[E : Q] = m.

Proof. An arbitrary σ ∈ Gal(Q(ζp)/Q) takes ζp to ζjp for some j ∈ F×
p . So by Lemma 5.1, 

we have

σn(WK,d(a)) = WK,d(jn(1−1/d)a) (5)

for any a ∈ K× and n ∈ Z.
Since d ≡ 1 (mod (p − 1)/m), we see that jm(1−1/d) = 1 for any j ∈ F×

p . Thus if 
σ ∈ Gal(Q(ζp)/Q), then σm fixes all the values of WK,d. So the subgroup of index m in 
Gal(Q(ζp)/Q) fixes all values in E, and so [E : Q] is a divisor of m.

Conversely, if we set n = [E : Q] and Fourier transform both sides of (5) with a 

multiplicative character χ ∈ K̂×, we obtain∑
a∈K×

WK,d(a)χ(a) =
∑

a∈K×

WK,d(jn(1−1/d)a)χ(a).

The right hand side is χ̄(jn(1−1/d)) times the left hand side. The left hand side is nonzero, 
since it is either q if χ is principal, or a product of Gauss sums involving nontrivial 
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characters (use (4) with χt in place of χ, where t is the inverse of −d modulo q − 1). 
Thus we must have χ(jn(1−1/d)) = 1 for all j ∈ F×

p and all χ ∈ K̂×, which forces 
d ≡ 1 (mod (p − 1)/n). By the minimality of m, this means that [E : Q] = n ≥ m. �
Remark 5.4. Values of WK,d are always algebraic integers, so that if these lie in a field E, 
they actually lie in the ring of algebraic integers in E.

Remark 5.5. In view of the previous remark, the special case of Lemma 5.3 when m = 1
states that the values of WK,d(a) for a ∈ K× all lie in Z if and only if d ≡ 1 (mod p −1). 
This was proved in [20, Theorem 4.2].

The next result is reminiscent of the power moments of Section 2. We shall combine 
it with Lemma 5.1 in Corollary 5.7 below.

Lemma 5.6. Let K be a finite field. For any b ∈ K with b �= 1, we have

∑
a∈K×

WK,d(a)WK,d(ba) = 0.

Proof. Since WK,d(0) = 0, we may include the a = 0 term in

∑
a∈K×

WK,d(a)WK,d(ba) =
∑

x,y∈K

ψK(xd + yd)
∑
a∈K

ψK(a(x + by))

= |K|
∑

x,y∈K
x+by=0

ψK(xd + yd)

= |K|
∑
y∈K

ψK(yd(1 + (−b)d)),

which vanishes because y �→ yd is a permutation of K, and 1 +(−b)d �= 0 since b �= 1. �
Now we combine Lemmata 5.1 and 5.6.

Corollary 5.7. If K is a finite field and σ ∈ Gal(Q(ζp)/Q) permutes the values of WK,d

nontrivially, then

∑
a∈K×

WK,d(a)σ(WK,d(a)) = 0.

Proof. Lemma 5.1 furnishes an element b such that σ(WK,d(a)) = WK,d(ba) for all a ∈
K×, and clearly b �= 1, for otherwise σ would fix each value taken by WK,d. Lemma 5.6
finishes the proof. �
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6. Proof of Theorem 1.4

We have three fields I ⊆ J ⊆ K with [J : I] = 2. Let p be the characteristic of our 
fields. As always, gcd(d, |K×|) = 1. We are given that d is degenerate in I, but not in J .

We want to show that the value set of WK,d is not of the form {0, ±A}. Suppose the 
contrary. By Proposition 2.4, |A| must be an integral power of p with 

√
|K| < |A| < |K|, 

so then

VK,d = valp(A)

> valp(
√
|K|)

= 1
2[K : Fp].

On the other hand, by Corollary 4.2 and Corollary 4.4, we get a contradiction because

VK,d ≤ [K : J ] × VJ,d

= [K : J ] × [I : Fp]

= 1
2 [K : Fp].

7. Proof of Theorem 1.7

We have K a finite field of characteristic p and order q with [K : Fp] divisible by 2s. 
As always, gcd(d, q − 1) = 1. We suppose that WK,d is symmetric three-valued with 
values 0 and ±A, and our goal is to show that |A| ≥ p2s−1√

q.
Note that Fp2s ⊆ K. Since WK,d is three-valued, d is degenerate over Fp by Theo-

rem 1.2. If d were nondegenerate over Fp2s , then there must be subfields I and J of Fp2s

with [J : I] = 2 and d degenerate over I but not over J . Then Theorem 1.4 tells us that 
WK,d is not symmetric three-valued, contrary to our hypothesis.

So d is degenerate over Fp2s , and thus every point of Fp2s is an element of the set 
R of roots of (x + 1)d − xd − 1. Thus |R| ≥ p2s , so Proposition 2.4 tells us that |A| =√

|R| q ≥ p2s−1√
q.

8. Proof of Theorem 1.9

We have L a finite field with [L : Fp] even, and d is a power of p modulo 
√
|L| − 1. 

We want to show that WL,d is not three-valued.
Since we are considering WL,d, the exponent d is an invertible element modulo |L|. If 

d is degenerate over L, then WL,d is at most two-valued by (2), so we assume that d is 
nondegenerate over L henceforth. The proof that WL,d is not three-valued when L is of 
characteristic 2 is given as [8, Theorem 2], so we assume that we are in odd characteristic 
henceforth.



Y. Aubry et al. / Journal of Number Theory 154 (2015) 160–178 175
Assume WL,d is three-valued to show a contradiction. By Theorem 1.2 and Corol-
lary 2.3, these three values are all in Z, one of them is 0, one is positive, and one is 
negative. Let K be the subfield of L with [L : K] = 2. Then by Corollary 4.5, we know 
that WL,d(a) ≥ 0 for all a ∈ K. Corollary 3.4 shows that WL,d(−1) is odd, and that 
WL,d(a) is even for all other a ∈ K. Since these are nonnegative, the positive value of 
WL,d must be WL,d(−1), and WL,d(a) = 0 for all other a ∈ K. But Lemma 2.5 tells 
us that 

∑
a∈K× WL,d(a) = |L|, which forces WL,d(−1) = |L|. This contradicts Corol-

lary 2.2, since WL,d was assumed to be nondegenerate over L.

9. New proof of the rationality of three-valued Weil sums

We suppose that WK,d is three-valued, and we want to show that those three values 
lie in Z. As for the rest of Theorem 1.2, the conclusion that d ≡ 1 (mod p − 1) will 
then follow immediately from Remark 5.5, and the proof that one of the three values 
is 0 is given in [27, Theorem 5.2], which is not very difficult to follow. The proof of 
rationality given here, while complex, is considerably easier than the original, given as 
[27, Theorem 4.1].

Let p and q be respectively the characteristic and order of K, and so gcd(d, q−1) = 1. 
Let ζp be a primitive pth root of unity over Q. Let WK,d(a) take the three distinct 
values A, B, and C, respectively, for NA, NB , and NC values of a ∈ K×. By Lemma 5.1, 
the Galois group Gal(Q(ζp)/Q) permutes A, B, and C. The field Q(A, B, C) is a cyclic 
Galois extension of Q since it is contained in the cyclic extension Q(ζp) of Q. Let σ be a 
generator of Gal(Q(A, B, C)/Q). There are three possible actions of σ upon {A, B, C}: 
(i) σ is the identity permutation, (ii) σ acts transitively, or (iii) σ permutes a pair of 
these elements, and fixes the third. As A, B, and C are algebraic integers, they lie in Z
if and only if they lie in Q, and this occurs precisely in Case (i). So it suffices to show 
that Cases (ii) and (iii) are impossible.

In Case (ii), Corollary 5.2 tells us that NA = NB = NC , so they all equal (q − 1)/3. 
Then Lemma 2.1(i) shows that NAA +NBB +NCC = q, so that A +B +C = 3 + 3

q−1 . 
As A + B + C is fixed by σ, it lies in Q, and is at the same time an algebraic integer, 
so it lies in Z. This means that q − 1 | 3, which forces p = 2, in which case ζp = −1, 
and so the values of WK,d lie in Z, contradicting our supposition that σ permutes them 
nontrivially. So Case (ii) is impossible.

Henceforth, we suppose that we are in Case (iii). Without loss of generality, we suppose 
that the generator σ of Gal(Q(A, B, C)/Q) has σ(A) = B, σ(B) = A, and σ(C) = C. 
Then σ is of order 2, and so Q(A, B, C) is a quadratic extension of Q lying in Q(ζp). 
There is no such thing if p = 2 (since ζp = −1, so Q(ζp) = Q). Otherwise, since Q(ζp)
is cyclic of degree p − 1 over Q, this means that Q(A, B, C) is the unique quadratic 
extension of Q contained in Q(ζp). In view of the values of the quadratic Gauss sums 
[17], we know that this unique quadratic extension must be Q(√p) if p ≡ 1 (mod 4), 
or Q(

√−p) if p ≡ 3 (mod 4). But since A, B, and C are real (see [20, Theorem 3.1(a)]
or [27, Theorem 2.1(c)]), the latter case is impossible, so we must have p ≡ 1 (mod 4)
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and Q(A, B, C) = Q(√p). Then C ∈ Z, since it is an algebraic integer fixed by σ, and 
A = a + b

√
p and B = a − b

√
p, for some a, b with 2a, 2b, and a + b ∈ Z, since this is the 

form of algebraic integers in Q(√p), as shown in [34, Chapter IV, Theorem 2.3].
Then Lemma 2.1(i),(ii) tells us that

NAA + NBB + NCC = q, (6)

NAA
2 + NBB

2 + NCC
2 = q2. (7)

Also 
∑

a∈K× WK,d(a)σ(WK,d(a)) = 0 by Corollary 5.7, so

NAAB + NBBA + NCC
2 = 0. (8)

By Corollary 5.2, we have NA = NB , and since A = a + b
√
p and B = a − b

√
p, our three 

Eqs. (6), (7), and (8) become

2NAa + NCC = q,

2NA(a2 + pb2) + NCC
2 = q2,

2NA(a2 − pb2) + NCC
2 = 0,

and this system is equivalent to the system

2NAa + NCC = q, (9)

4NAa
2 + 2NCC

2 = q2, (10)

4NApb
2 = q2. (11)

From (11) we see that p | NA. Note that C �= 0, since otherwise (9) and (10) imply that 
NA = 1, contradicting p | NA. If we subtract (10) from 2(a + C) times equation (9), we 
obtain

2(2NA + NC)aC = q(2a + 2C − q),

and since NA + NB + NC = q − 1, with NA = NB , this gives

2(q − 1)aC = q(2a + 2C − q).

Examine the p-adic valuation of each side of this equation to see that max{valp(a),
valp(C)} ≥ valp(q). Then by Corollary 2.2, we see that |C| < q, and since C �= 0, we 
must have valp(C) < valp(q) ≤ valp(a), so that q | 2a. If we reduce (9) modulo q, we 
see that q | NCC, but since q � C, we have p | NC . Thus p | NA and p | NC , and so 
p | (2NA + NC) = q − 1, which is absurd. Thus Case (iii) is impossible, and the proof is 
complete.
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