On a Conjecture of Helleseth

Yves Aubry ${ }^{1,2}$ and Philippe Langevin ${ }^{1, \star}$
${ }^{1}$ Institut de Mathématiques de Toulon, Université du Sud Toulon-Var, France
${ }^{2}$ Insitut de Mathématiques de Luminy, Université d'Aix-Marseille, France

Abstract

We are concerned about a conjecture proposed in the middle of the seventies by Hellesseth in the framework of maximal sequences and theirs cross-correlations. The conjecture claims the existence of a zero outphase Fourier coefficient. We give some divisibility properties in this direction.

1 Two Conjectures of Helleseth

Let L be a finite field of order $q>2$ and characteristic p. Let μ be the canonical additive character of L i.e.

$$
\mu(x)=\exp (2 i \pi \operatorname{Tr}(x) / p)
$$

where Tr is the trace function with respect to the finite field extension L / \mathbb{F}_{p}. The Fourier coefficient of a mapping $f: L \rightarrow L$ is defined at $a \in L$ by

$$
\begin{equation*}
\widehat{f}(a)=\sum_{x \in L} \mu(a x+f(x)) . \tag{1}
\end{equation*}
$$

The distribution of these values is called the Fourier spectrum of f. Note that when f is a permutation the phase Fourier coefficient $\widehat{f}(0)$ is equal to 0 .

The mapping $f(x)=x^{s}$ is called the power function of exponent s, and it is a permutation if and only if $(s, q-1)=1$. Moreover, if $s \equiv 1 \bmod (p-1)$ the Fourier coefficients of f are rational integers. Helleseth made in [3] the following conjecture on the quantity (related to Dedekind determinant, see [9)

$$
\begin{equation*}
\mathfrak{D}(f)=\prod_{a \in L^{\times}} \widehat{f}(a) . \tag{2}
\end{equation*}
$$

Conjecture 1 (Helleseth). Let L be a field of cardinal $q>2$. If f is a power permutation of L of exponent $s \equiv 1 \bmod (p-1)$ then $\mathfrak{D}(f)=0$.

For $p=2$, it generalizes Dillon's conjecture (see [2]) which corresponds to the case $s=q-2 \equiv-1(\bmod q-1)$, and known to be true because it is related to the vanishing of Kloosterman sums and the class number h_{q} of the imaginary quadratic number field $\mathbb{Q}(\sqrt{1-4 q})$ (see [5]8]). Note also that in odd characteristic the Kloosterman sums do not vanish (see [7]) except if $p=3$ (see [5]).

In the same paper [3], Helleseth proposed a second conjecture:

[^0]Conjecture 2. If $\left[L: \mathbb{F}_{p}\right]$ is a power of 2 then the spectrum of a power permutation of exponent not a power of p modulo $q-1$ takes at least four values.

In this note, we prove some results concerning the divisibility properties of the Fourier coefficients of a power permutation in connection with Conjecture 1. Our results can be seen as a proof "modulo ℓ " of Conjecture 1 for certain primes ℓ.

2 Boolean Function Case

In this section, we assume $p=2$. In [10], the second author has computed the Fourier spectra of power permutations for all the fields of characteristic 2 with degree less or equal to 25 without finding any counter-example to the above conjectures. More curiously, if we denote by nbz (s) the number of vanishing Fourier coefficients of the power function of exponent s then the numerical experience suggests that:

$$
\operatorname{nbz}(s) \geq \operatorname{nbz}(-1)=h_{q} .
$$

At this point, it is interesting to notice that Helleseth's conjecture can not be extended to the set of all permutations. Indeed, let m be a positive integer and let $g: \mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}$ be a Boolean function in m variables. One defines the Walsh coefficient of g at $a \in \mathbb{F}_{2}^{m}$ by :

$$
g^{\mathcal{W}}(a)=\sum_{x \in \mathbb{F}_{2}^{m}}(-1)^{a \cdot x+g(x)} .
$$

Identifying L with the \mathbb{F}_{2}-vector space \mathbb{F}_{2}^{m}, the Boolean function g has a trace representation i.e. there exists a mapping $f: L \rightarrow L$ such that $g(x)=\operatorname{Tr}_{L}(f(x))$ for all x in L. Of course, the trace representation is not unique. Moreover, if g is balanced then g can be represented by a permutation of L. In all the cases, the Walsh spectrum of g and the Fourier spectrum of f are identical.

In [6], an example of a ten-variables Boolean function with a very atypical Walsh spectrum (see Tab. (1) is given. This Boolean function is balanced and its Walsh coefficients vanish only once. This numerical example, say g, implies the existence of a permutation f of \mathbb{F}_{1024} (not a power permutation) such that

$$
g(x)=\operatorname{Tr}_{\mathbb{F}_{1024}} f(x),
$$

whence the Fourier spectrum of f is equal to the Walsh spectrum of g, and thus $\sum_{x \in \mathbb{F}_{1024}} \mu(a x+f(x)) \neq 0$ for all $a \in \mathbb{F}_{1024}^{\times}$.

A possible generalization of the conjecture of Helleseth could be the following one:

Conjecture 3. If f is a permutation of L then $\prod_{\lambda \in L^{\text {times }}} \mathfrak{D}(\lambda f)=0$.
Note that Conjecture 2 is know to be true in characteristic 2 since recent works of Daniel Katz in [4] and Tao Feng in [12]. The next conjecture that appeared in the paper by Pursley and Sarwate (see [11) is still open

Table 1. An example of Walsh spectrum having only one Walsh coefficient equal to zero (see 6])

Walsh										-48	-44	-40
	-36	-32	-28	-24	-20	-16	-12					
mult.	5	30	85	70	115	100	31	62	20	10		
Walsh	0	8	16	20	24	28	32	36	40	44		
mult.	1	5	25	20	85	90	90	80	50	50		

Conjecture 4. If f is a power permutation of L where $\left[L: \mathbb{F}_{2}\right]$ is even then $\sup _{a \in L} \widehat{f}(a) \geq 2 \sqrt{q}$.

In the sequel, if $\lambda \in L$ then we denote by $\widehat{f}(a)$ the Fourier coefficient of $x \mapsto$ $\lambda f(x)$. If f is a power permutation of exponent s, denoting by t the inverse of s modulo $q-1$, for all $y \in L^{\times}$, we have :

$$
\begin{equation*}
\widehat{f_{\lambda}}(a)=\sum_{x \in L} \mu\left(\lambda x^{s}+a x\right)=\sum_{x \in L} \mu\left(\lambda y^{s} x^{s}+a x y\right)=\widehat{f}\left(a \lambda^{-t}\right) . \tag{3}
\end{equation*}
$$

Hence, one of the specifities of power permutations among the permutations of L is that the spectrum of λf does not depend on $\lambda \in L^{\times}$.

We conclude this section by giving a divisibility result. Recall that a function f defined over a field L of characteristic 2 is said to be almost perfect nonlinear (APN) if for all $u \in L^{\times}$the derivative $x \mapsto f(x+u)+f(x)$ is two-to-one. It is for example the case of $f(x)=x^{3}$ over any field L and of $f(x)=x^{-1}$ when [$L: \mathbb{F}_{2}$] is odd.

Theorem 1. Let f be a power permutation over a field L of even characteristic of cardinal $q \not \equiv 2,4 \bmod 5$. If f is almost perfect nonlinear then there exists $a \in L^{\times}$such that $\widehat{f}(a) \equiv 0 \bmod 5$ i.e.

$$
\mathfrak{D}(f) \equiv 0 \quad \bmod 5
$$

Proof. It is well-known (see [1) that an APN function f satisfies

$$
\begin{equation*}
\sum_{\lambda \in L^{\times}} \sum_{a \in L} \widehat{f_{\lambda}}(a)^{4}=2 q^{3}(q-1) \tag{4}
\end{equation*}
$$

Since the spectrum of f does not depend on λ, it implies that:

$$
\begin{equation*}
\sum_{a \in L} \widehat{f_{\lambda}}(a)^{4}=2 q^{3} \tag{5}
\end{equation*}
$$

Assuming $\mathfrak{D}(f) \not \equiv 0 \bmod 5$, we get the congruence

$$
q-1=2 q^{3} \quad(\bmod 5)
$$

implying $q \equiv 2,4 \bmod 5$.

3 Hyperplane Section

The key point of view of this note is to consider the number, say $N_{n}(u, v)$, of solutions in L^{n} of the system

$$
\left\{\begin{array}{r}
x_{1}+x_{2}+\ldots+x_{n}=u \tag{6}\\
f\left(x_{1}\right)+f\left(x_{2}\right)+\ldots+f\left(x_{n}\right)=v .
\end{array}\right.
$$

By a counting principle using characters, we can state:
Lemma 1. Let f be a permutation of L. The number $N_{n}(u, v)$ of solutions in L^{n} of the system (6) verifies

$$
q^{2} N_{n}(u, v)=q^{n}+\sum_{\alpha \in L^{\times}} \sum_{\beta \in L^{\times}} \widehat{f_{\beta}}(\alpha)^{n} \bar{\mu}(\alpha u+\beta v) .
$$

Proof. For any function $f: X \longrightarrow G$ where X is a set and G is a finite abelian group, the number N of solutions in X of $f(x)=y$ for $y \in G$ is

$$
N=\frac{1}{|G|} \sum_{x \in X} \sum_{\chi \in \widehat{G}} \chi(f(x)-y)
$$

where \widehat{G} denotes the group of characters of G.
For any $\alpha \in L$, we denote by μ_{α} the additive character of L defined by $\mu_{\alpha}(x)=\mu(\alpha x)$, then we have:

$$
\begin{aligned}
q^{2} N_{n}(u, v) & =\sum_{x_{1}, x_{2}, \ldots, x_{n}} \sum_{\beta \in L} \sum_{\alpha \in L} \bar{\mu}_{\beta}\left(v-\sum_{i=1}^{n} f\left(x_{i}\right)\right) \bar{\mu}_{\alpha}\left(u-\sum_{i=1}^{n} x_{i}\right) \\
& =\sum_{\beta} \sum_{\alpha}\left(\sum_{y \in L} \mu(\beta f(y)+\alpha y)\right)^{n} \bar{\mu}(\alpha u+\beta v) \\
& =\sum_{\beta} \sum_{\alpha} \widehat{f_{\beta}}(\alpha)^{n} \bar{\mu}(\alpha u+\beta v) \\
& =\sum_{\alpha} \widehat{f_{0}}(\alpha)^{n} \bar{\mu}(\alpha u)+\sum_{\beta \neq 0} \sum_{\alpha} \widehat{f_{\beta}}(\alpha)^{n} \bar{\mu}(\alpha u+\beta v) \\
& =q^{n}+\sum_{\alpha \neq 0} \sum_{\beta \neq 0} \widehat{f_{\beta}}(\alpha)^{n} \bar{\mu}(\alpha u+\beta v) .
\end{aligned}
$$

Proposition 1. Assuming the Fourier coefficients of $\lambda f, \lambda \in L$, are integers. Let $\ell \neq p$ be a prime such that $\prod_{\lambda \in L^{\times}} \mathfrak{D}(\lambda f) \not \equiv 0 \bmod \ell$. Then

$$
q^{2} N_{\ell-1}(u, v) \equiv 1+\left(q \delta_{0}(u)-1\right)\left(q \delta_{0}(v)-1\right) \bmod \ell
$$

where $\delta_{a}(b)$ is equal to 1 if $b=a$ and 0 otherwise.

Proof. By the Fermat's little Theorem, we have the congruence

$$
\widehat{f_{\lambda}}(a)^{\ell-1} \equiv 1-\delta_{0}(a) \bmod \ell .
$$

Hence, by Lemma (1), we have:

$$
\begin{aligned}
q^{2} N_{\ell-1}(u, v) & =q^{\ell-1}+\sum_{\alpha \neq 0} \sum_{\beta \neq 0} \widehat{f_{\beta}}(\alpha)^{\ell-1} \bar{\mu}(\alpha u+\beta v) \\
& \equiv 1+\sum_{\alpha \neq 0} \sum_{\beta \neq 0} \bar{\mu}(\alpha u+\beta v) \quad \bmod \ell
\end{aligned}
$$

and we conclude remarking that $\sum_{\alpha \in L^{\times}} \bar{\mu}(\alpha u)=q \delta_{0}(u)-1$.

4 Divisibility of Fourier Coefficients

In [3], it is proved that for the exponents $s \equiv 1(\bmod p-1)$, the Fourier coefficients are multiple of p. In this section, we are interested in divisibility properties modulo a prime $\ell \neq p$.

Assuming that the Fourier coefficients of any permutation f are rational integers, we can see that if 3 does not divide $\mathfrak{D}(f)$ then we have necessarily $q \equiv 2$ mod 3. Indeed, using Parseval relation, we can write

$$
1 \equiv q^{2}=\sum_{a \in L}|\widehat{f}(a)|^{2} \equiv q-1 \quad \bmod 3
$$

Theorem 2. Let f be a power permutation of $\mathbb{F}_{p^{n}}$ (with $p^{n}>2$) of exponent $s=1 \bmod (p-1)$. Then

$$
\mathfrak{D}(f) \equiv 0 \quad \bmod 3 .
$$

Moreover, if n is a power of a prime ℓ and $p \not \equiv 2 \bmod \ell$ then

$$
\mathfrak{D}(f) \equiv 0 \quad \bmod \ell .
$$

Proof. First point. Since p divides $\mathfrak{D}(f)$, we may assume that $p \neq 3$. Suppose that $\mathfrak{D}(f) \not \equiv 0 \bmod 3$. Applying Proposition 1 with $\ell=3$, we get

$$
\begin{equation*}
\forall u \in L^{\times}, \quad \forall v \in L^{\times}, \quad N_{2}(u, v) \not \equiv 0 \quad(\bmod \ell) \tag{7}
\end{equation*}
$$

In order to obtain a contradiction, we prove the existence of $v \in L^{\times}$such that $N_{2}(1, v)=0$. The mapping $x \mapsto(1-x)^{s}+x^{s}$ sends x and $1-x$ to the same point. An element v in the image has at least 2 preimages except when $x=1-x$, which can only happen when p is odd and $x=1 / 2$. So this means that if $p=2$, the cardinality of the image is less or equal to $q / 2$ elements, while if p is odd, the image of the map has at most $(q+1) / 2$ elements. If $q>3$ the complementary of the image contains at least two elements whence a nonzero v such that $N(1, v)=0$.

Second point. Suppose now that n is a power of a prime ℓ and $p \not \equiv 2$ $\bmod \ell$. The Frobenius automorphism acts on the solutions of the system (6) with $u=0, v=1$. Since $s \equiv 1 \bmod (p-1)$, the system has no \mathbb{F}_{p}-solutions, thus $N_{\ell-1}(0,1) \equiv 0 \bmod \ell$. On the other hand, by Proposition 1] if $\mathfrak{D}(f) \not \equiv 0$ $\bmod \ell$ then

$$
q^{2} N_{\ell-1}(0,1) \equiv 2-q \equiv 2-p \quad \bmod \ell .
$$

References

1. Chabaud, F., Vaudenay, S.: Links between differential and linear cryptanalysis. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 356-365. Springer, Heidelberg (1995)
2. Dillon, J.F.: Elementary Hadamard Difference Sets. PhD thesis, Univ. of Maryland (1974)
3. Helleseth, T.: Some results about the cross-correlation function between two maximal linear sequences. Discrete Math. 16(3), 209-232 (1976)
4. Katz, D.J.: Weil sums of binomials, three-level cross-correlation, and a conjecture of Helleseth. J. Comb. Theory, Ser. A 119(8), 1644-1659 (2012)
5. Katz, N., Livné, R.: Sommes de Kloosterman et courbes elliptiques universelles en caractéristiques 2 et 3. C. R. Acad. Sci. Paris Sér. I Math. 309(11), 723-726 (1989)
6. Kavut, S., Maitra, S., Yücel, M.D.: Search for boolean functions with excellent profiles in the rotation symmetric class. IEEE Transactions on Information Theory 53(5), 1743-1751 (2007)
7. Keijo, K., Marko, R.A., Keijoe, V.: On integer value of Kloosterman sums. IEEE Trans. Info. Theory (2010)
8. Lachaud, G., Wolfmann, J.: Sommes de Kloosterman, courbes elliptiques et codes cycliques en caractéristique 2. C. R. Acad. Sci. Paris Sér. I Math. 305, 881-883 (1987)
9. Lang, S.: Cyclotomic fields I and II, 2nd edn. Graduate Texts in Mathematics, vol. 121. Springer, New York (1990), With an appendix by Karl Rubin
10. Langevin, P.: Numerical projects page (2007), http://langevin.univ-tln.fr/project/spectrum
11. Pursley, M.B., Sarwate, D.V.: Cross correlation properties of pseudo-random and related sequences. Proc. IEEE 68, 593-619 (1980)
12. Tao, F.: On cyclic codes of length $2^{2^{r}}-1$ with two zeros whose dual codes have three weights. Designs, Codes and Cryptography 62(3) (2012)

[^0]: * The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to improve this manuscript.

