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We prove that if f : Y — X is a finite flat morphism between
two reduced absolutely irreducible algebraic projective curves
defined over the finite field Fy, then

| #Y (Fq) — #X (Fq) |< 2(my — 7x)v/4,

where 7¢ is the arithmetic genus of a curve C. As application,
we give some character sum estimation on singular curves.
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In this paper, the word curve stands for a reduced abso-
lutely irreducible algebraic projective curve defined over the
finite field F, with q elements. If X is a smooth curve, it has
been shown by Weil in [6] that the number of F,-rational points
of X, denoted by §X(F,), is related to the geometric genus gx
by :

| 8X (Fg) — (g +1) |< 29x /4 (1)
(with an improvement of Serre using the integral part, see [5]).
In fact, Weil’s statement, involving the zeta function of X,
is more precise. It implies that if there is a finite morphism
f Y — X between two smooth curves X and Y having
(geometric) genus gx and gy respectively, then (see for instance
[2], proposition 6)

| 1Y (Fg) — #X(Fg) |< 2(9y — 9x)Va- (2)
When X is the projective line, this is exactly Weil’s bound for
Y.

On the other hand, the authors proved in [1] that if X is a
singular curve, then Weil’s inequality (1) holds if one replaces
the geometric genus gx of X by its arithmetic genus mx. The
aim of this paper is to give a generalization of both (2) and
(1) for singular curves. Namely, if f: Y — X is a finite flat
morphism between two singular curves, then

| Y (Fg) — X (Fg) [< 2(my —7x)\/q (3)
holds.

We will prove (3) in the third section. The proof goes as
follows. Inequality (2) can be applied to the finite morphism
f: Y — X induced by f on the smooth models of X and
Y respectively. Furthermore the number of F,-rational points
of a curve is related to the number of F,-rational points of
its smooth model (first section). Unfortunately, this is not
sufficient to prove (3). One has to introduce (in the second
section) the auxiliary curve Z = X xx Y, birational to Y.
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Finally, we apply this result in a fifth section to obtain
some character sum estimations.

1. A lemma

The following lemma relates the number of F,-rational
points of a curve and that of its smooth model. It is given
in [1], but in order to be self contained, we give here its short
proof. If P is a Fg-rational point of a curve X, we denote
by ap (respectively ap(oo)) the number of Fy-rational points
(respectively of Fq—rational points, where Fq stands for an
algebraic closure of Fy) of X, lying over P in the normalization
map vx : X — X. Let Op be the local ring of X at P, and
Op its integral closure in the function field F,(X) of X. The
quotient Z’)_p/ Op is a Fg-vector space of finite length : let 6p
be its dimension.

Lemma 1. Let X be a reduced absolutely irreducible projec-
tive algebraic curve defined over Fy. Then

[4X(Fy) — X (Fy) [< ) |ap—1|<mx —gx.
PEX(F,)

Proof. Let us first prove that if P is a F4-rational singular point
of X, then ap—1 < 6p. Let Q1,...,Qqp(00) be the Fq-rational
points of X lying over P (the ap first beeing the F,-rational
ones), and ¢ the Fy-linear map
$: Op —> Fq "
fo— (f@))icicar
We prove that ¢ is onto : let (z1,...,Zqp) € Fg®F and
fi=o, € Fg C Fe(X) ifi < ap. For i > ap + 1, let
fi = 0. Then by the weak approximation theorem, there exists
9 € Fy(X) such that vg,(9—f;) > 1 for 1 < i < ap(oo). Hence,
#(9) = (z1,...,%Tap) and
gc ﬂ OQi = (’)—p

1<i<ap(o0)
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Since f(Q1) = -+ = f(Qqp) for f € Op, it follows that ¢(Op)
is contained in the vector-line L C F,*# spanned by (1,...,1).
One obtains a surjective linear map

¢:0p/Op — F*F /L.

Taking dimensions, we obtain that ap — 1 < ép.
Now, Lemma 1 follows from the formulas

TX —gx = Z op

PcSing X (Fy)

and

IX(F,) X (F) = > (ap—1).

2. An auxiliary curve

Let X and Y be two curves, and f : Y — X be a finite
flat morphism. In order to give an estimate for the difference
between the numbers of F,-rational points of X and Y, it is
convenient to consider the fibre product Z = X xx Y.

Lemma 2. Z is a reduced absolutely irreducible projective
curve.

Proof. The map f beeing finite, the map Z — X is finite and
onto, which implies that dim Z = dim X =1, and Z is a curve.
In order to prove that Z is absolutely integral, one has
to prove that given an affine open set Spec A(X;) of X, the
ring A = A(X;) ®a(x,) A(Y;) is an integral domain, where A
stands for the integral closure of a ring A, and A(Y;) is defined
by Spec A(Y;) = f~(Spec A(X;)). Denote by Frac(A) the
quotient field of a domain A. By the flatness hypothesis,

0 — A(X;) — Frac(A(X;))
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induce
0 — A — Frac(A(X:)) ®a(x,) AY3).

Then, the injective map
Frac(A(X:)) ®ax,) A(Y;) — Frac(A(Y;))

proves that A is an integral domain, as a subring of a field.
Finally, Z is projective Indeed, f is proper since it is
finite, and Z — X is also proper, so that the compos1te mor-
phism Z — X — SpecF, is proper since X is complete.
Hence, Z is projective as a complete curve. O

By the universal properties of the fibre product and of
normalization maps, one can write the following diagram, where
all triangles and squares are commutative, and all morphisms
are finite :

N

f

zZ —— X

Y X
The sheaf of Ox-modules f,Oy is coherent because f is
finite. It is then locally free since f is flat. After localization,

the stalks (f.Oy)p are Ox, p-module of finite type, whose rank
doesn’t depend on P since X is connected. Let

f
—
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r = dimg,(p)(f+Ov)p ®0x. p Fq(P)

= Y dimg,(p)(Ov,q ®ox,» Fo(P))
Qef~1(P)
be this rank, where F,(P) denotes the residue field of the point
P. Note that if r = 1, then f~}(P) = {Q} contains only one
element for any P € X, and f induces a morphism of local
rings Oy, — Ox,p, so that f is an isomorphism. Hence, one
can suppose r > 2. '

Proposition 3. (i) Z is birational to Y. In particular,
9z = gy -
(ii) The arithmetic genus of Z is given by

Tz =Ty — T(WX - 9gx).

Proof. (i) This is trivial since there are dominant morphisms
Y —ZandZ—Y.

(ii) Since both arithmetic and geometric genus of a curve C
and of C' xp, F, = C are the same, it is sufficient to compute
m. To simplify notations, we continue to denote by X, Y and
Z the curves X, Y and Z respectively. The exact sequence of
O x-module sheaves

0— OX — VX,*O)"( I (VX,*O)'()/OX — 0
tensorized by the flat Ox-module f,.Oy, gives the exact se-
quence

0 — fiOy — (vxxO0%) ®ox fLOy —

— ((vx+0%)/Ox) ®ox f+Oy — 0 (4)

from which we deduce a long exact sequence of cohomology.
Let us scrutinize its different terms.
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Since HY(X, f.Oy) & HY(Y,Oy) and Y is projective, then we
have diqu H%X, fiOy) = 1 and dim;fq HY(X, f.Oy) = 7y.
In the same way,

dlqu HO(X, (VX,*OX) ®0X f*OY) =1
and
diqu HI(X, (VX,*OX) Rox f*OY> =T7Z.

Furthermore, the sheaf (vx «O%)/Ox is a sum of skyscraper
sheaves on the singular points of X. Hence, this is also the case
for ((vx+O%)/Ox) ®ox f+Oy, and this prove the vanishing of
its H!. Finally,

dimg,_ H°(X, ((vx,.0%)/0x) ®ox f+Oy)

= Z diqu ((OX,P/OX,P) Rox,p (f*OY)P) =
PeSing X (Fy)

Z dimg_ ((Ox,p/Ox,p) ®F, (Fy ®0x » (fsOy)p))
PeSing X (F,)

- Z dimg_((Ox,p/Ox,pP) ®F, (F)7)
PeSing X (Fy)

= Z diqu (Ox,p/Ox.p)"
PeSing X(Fq)

=r(rx — gx)-

The nullity of the alternating sum of the Fq-dimensions of the
different terms of the long exact sequence of cohomology given
by (4) gives :

1—1+7‘(7rx—gx)——ﬂ'y+7rz—0=0,

which was to be proved. n
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3. The main theorem

Theorem 4. Let X and Y be two reduced absolutely irre-
ducible projective algebraic curves defined over F,, with re-
spective arithmetic genus mx and my, and let f :' Y — X be
a finite flat morphism defined over Fy. Then

[ ﬂY(IFq) - hX(IFq) |§ 2('”}’ - wx)\/&.

The proof depends on the following lemma.
Lemma 5.
| (§2(F,) — £X (Ey)) — (§Y (F,) — EX(B) |< (r — (mx — gx)
(recall that r = dimg,_(p)(f«Oy)p ®ox » F(P))-
Proof. If P € X (Fy), let

ap = H{P € X(F,) | vx(P) =P}
and

Br=HQeY(F,) | f(Q) =P}
Then
Bp < Z 1< Z dimg,(p) (Oy,Q ®0x.p Fq(P)) =T

Qef-1(P) Qef~1(P)
Moreover,
Z(Fy) = {(P,Q) € X(Fy) x Y(Fy) | vx(P)=f(Q)}

hence

1Z(Fy) —tX(Fg)= Y apBp— », ap

PeX(Fq) PeX(Fq)
= Z aP(/BP - 1),
PeX(Fy)

and

HY (Fg) — X (Fg)= > Bp— > 1

PeX(F,) PeX(F,)

= >, Bpr-1.

PeX(F,)
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By lemma 1, and since r > 2, we obtain
| (HZ(Fy) — 41X (Fq))— (Y (Fq) — §X (Fy)) |<
<r-1) Y Jap—1]
PeX(F,)
<(r—1)(mx — gx).

The theorem follows easily from the preceding and the trian-
gular inequality
| Y (Fq) — 81X (Fy) |<| 47 (Fy) —#2(F,) |
+ 1 (12 (Fq) — 8X (o)) — (#Y (Fg) — X (Fy)) |
+ [ X (Fg) — Y (Fy) |

4. Remarks

4.1. The proof of theorem 4 gives a better upper bound, namely
| Y (Fy) — X (Fy) < (my —gv) — (7x — gx) + (9v — 9x)[2V/3]-

See lemma 4.1 of [3] for the reason of the integer part [2,/g] of

2./7.

4.2. It couldn’t be expected theorem 4 to be true for any
finite morphism f : ¥ — X. For instance, this is false for
the normalization map of a singular curve. Here is another
example : let X be the plane curve Y2Z = X3. This is a
singular cubic curve, its arithmetic genus is mx = 1, and for
any integer n, we have §X(Fyn) = 2™ + 1. Let us consider the
morphism
T P — X
(w:v) — (v2v:ud:03)

Suppose theorem 4 would be true for any finite morphism f,
and let C be any smooth curve of genus g¢, defined over Fy.
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There is a finite morphism #n’ : C — P!, hence by composition
a finite morphism f = ron’ : C — X, and theorem 4 would
imply that for ¢ = 27",

| 4C(Fq) — (¢ + 1) |< 2(9¢c — 1)v/3,
which is false : one can consider for instance the smooth curve
C given by X3 +Y3 + Z3 = 0, which has 9 rational points over
F4 and genus go = 1.

4.3. If X is smooth (in particular if X is the projective line),
then any finite morphism ¥ — X is flat. Indeed, if f(Q) = P,
then the local ring Oy,q is a finitely generated Ox p-module
without torsion element. But Ox p is a principal ideal domain
since X is supposed to be smooth, so that Oy g is a flat Ox p-
module. This shows that theorem 4 contains all known results
(1) and (2) of the introduction.

Note that there are many other situations where Y — X
is flat. This is the case for instance if X = Y/G, where G is a
finite group of automorphisms of Y (see [4]), or (by stability of
flatness by base change) if f is the reduction modulo a prime
ideal of a flat morphism between two curves defined over a
number field, or (also by base change, see section 5 below) if f
is a Kummer, or an Artin-Schreier morphism.

5. Application to exponential sums

Let X be a curve over a finite field F; of odd characteristic
and f € Fyo(X) a function on X. When X is smooth, there
is an extensive literature on estimations of the character sums
Y Pex(F,) (—fi;—ﬁ), where (E) is the Legendre symbol on F,

(with the convention that (_f%_?l) = 0 if P is a zero or a pole

of f). In fact, this character sum equals to §Y (Fgq) — §X (Fy),
where Y is the Zariski closure of the curve {(P,y) € X x P! |
y? = f(P)} in the surface X x P!. Indeed, there are exactly

1+ (ﬂ;—)l) points in Y (FF,) above a given point P € X(F,).
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The geometric genus gy of Y is given from gx by Hurwitz
formula, and its arithmetic genus is given by the following
lemma, whose proof is a standard and tedious calculation using
Cech cohomology.

Lemma 6. Let Y be the Zariski closure of {(P,y) € X x P! |
y" = f(P)}. Then, ny = nnx + (n — 1)(deg(f)o — 1), where
(f)o denotes the divisors of zeroes of f.

Since the squaring map P! — P!, y — 9?2 is flat, then by
base change Y = X xp1 P! — X is also flat. Hence, theorem
4 applies, so that the following holds :

Theorem 7.

LY (22 <2t - 1)mx + deg(1)o - Dva

PEX(F,) 1

Of course, one can give a better upper bound using remark
4.1., and one can study additive character sums via Artin-
Schreier coverings.
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