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Abstract 

The classical generalized Reed-Muller cedes introduced by Kasami, Lin and Peterson [5], and studied also 
by Delsarte, Goethals and Mac Williams [2], are defined over the affine space An(Fq) over the finite field Fq 

with q elements. Moreover Lachand [6], following Manin and Vladut [7], has considered projective Reed-Muller 
codes, i.e. defined over the projective space pn(Fq). 
In this paper, the evaluation of the forms with coefficients in the finite field Fq is made on the points of a 

projective algebraic variety V over the projective space pn~q).  Firstly, we consider the case where V is a 

quadric hypersurface, singular or not, Parabolic, Hyperbolic or Elliptic. Some results about the number of points 
in a (possibly degenerate) quadric and in the hyperplane sections are given, and also is given an upper bound of 
the number of points in the intersection of two quadrics. 

In application of these results, we obtain Reed-Muller codes of order 1 associated to quadrics with three 
weights and we give their parameters, as well as Reed-Muller codes of order 2 with their parameters, 

Secondly, we take V as a hypersurface, which is the union of hyperplanes containing a linear variety of 
codimension 2 (these hypersurfaces reach the Serre bound). If V is of degree h, we give parameters of Reed- 
Muller codes of order d < h, associated to V. 

I. Construction of the Projective Reed-Muller codes 

W e  denote  by  p n ( F q )  the pro jec t ive  space o f  d imens ion  n over  the f ini te  f ie ld  Fq with q 

elements,  q a power  o f  a pr ime p. The number  o f  (rational) points  (over  Fq) o f  pn(Fq) is : 
n+l 

~n = l P n ( F q )  l = q n + q n - l +  + q + l =  q - 1  
"'" q - 1  



Let Wi be the set of points with homogeneous coordinates (x 0 : x 1 : ... : x n) ~ pn(Fq) such that 
x 0 = x 1 = ... = xi_ 1 = 0 and x i g 0. 

The family { W i }~i_<_n is clearly a partition of pn(Fq). 

Let Fq[X 0, X 1 . . . . .  Xn] ~ be the vector space of homogeneous polynomials of degree d with 

(n+l) variables and with coefficients in Fq. Let V be a projective algebraic variety of pn(Fq) 

and let I V I denotes the number of theirs rational points over Fq. Following G. Lachaud ([6]), 
we def'me the projective Reed-Muller code R(d,V) of order d associated to the variety V as the 
image of the linear map 

0 FqlVl c : Fq[X 0, X 1 . . . . .  Xn] d -'> 

defined by c(P) = (Cx(P) )x~ v, where 

cx(P) = P(x0 . . . . .  xn) if x = (x 0 : : x n) e Wi • 
xi d "'" 

G. Lachaud has considered in [6] the case where V = pn(Fq), with d < q.Moreover, 

A.B. Sorensen has considered in [12] the case where V is equal to pn(Fq) too, but with a 
weaker hypothesis on d. 

Now we are going, firstly, to study the case where V is a quadric, degenerate or not, but 
before we have to establish results on quadrics and this is the subject of the following 
paragraph. 

2. Results on quadrics 

In what follows the characteristic of the field Fq is supposed to be arbitrary (the results hold in 
characteristic 2 as well as in characteristic different of 2). 

2.1. The quadr ies  in pn(Fq) .  
In this paragraph, we recall some properties of quadrics in the projective space pn(Fq). 

J.F. Primrose has given in [8] the number of points in a nondegenerate quadric (see below the 
definition of the rank of a quadric), and D.K. Ray-Chaudhuri [9] gave more general results 
(which with, in a particular case, we recover those of Primrose's). We are going here to follow 
the notations of J.W.P. Hirschfeld in [4]. 
A quadric Q of Pn0Fq) is the set of zeros in pn(Fq) of a quadratic form 

F E Fq[X O, X 1, ..., Xn] O, 



that is of an homogeneous polynomial of degree 2. We set Q = Zpn(F) or simply Z(F) if no 

confusion is possible. The quadric Q is said to be degenerate if  there exists a linear change of 
coordinates with which we can write the form F with a fewer number of  variables. More 

precisely, if T is an invertible linear transformation defined over pn(Fq), denote by FT(X) the 
form F(TX). Let i(F) be the number of indeterminates appearing explicitly in F. The rank r(F) 
of F (and by abuse of language, of the quadric Q), is defined by : 

r(F) = rain i(F T) 
T 

where T ranges over all the invertible transformations defined over Fq. A form F (and by abuse 
the quadric Q) is said to be degenerate if 

r(F) < n + 1. 
Otherwise, the form and the quadric axe nondegenerate. 
Let us remark that a quadric is degenerate if and only if it is singular (see [4]). 

We recall after J.W.P. Hirschfeld (see [4]) that in pn(Fq), the number of different types 
of nondegenerate quadrics Q is 1 or 2 as n is even or odd, and they are respectively called 
Parabolic ( P), and Hyperbolic (9-1)or Elliptic ( E). 
The maximum dimension g(Q) of linear subspaces lying on the nondegenerate quadric Q is 
called the projective index of Q. The projective index has the following values (see [4]) : 

n - 2  n - 1  n - 3  
g ( P ) -  2 , g(5-/)- 2 , g ( E ) -  2 

The character to(Q) of a nondegenerate quadric Q of  pn(Fq) is defined by : 

t0(Q) = 2g(Q) - n + 3. 
Consequently, we have : 

to ( i f )= l  , to(M)=2 , tO(E)=0 . 
Then, we have the following proposition (for a proof see [4]) : 

Propos i t ion  1 : The number of points of a nondegenerate quadric Q of pn(Fq) is : 

1Q I = nn - I + (to(Q) - 1) q(n - 1)/2. 

We want now to evaluate the number of  points of a degenerate quadric Q = Z(F) of  pn(Fq) of 
rank r (called a "cone" of rank r). 
We have the following decomposition in disjoint union (an analogous decomposition is given 

by R.A. Games in [3]) : 

Q = V n -  r u Q ' r -  1. 
w e  have set 

Vn_r  = { ( 0 : 0  : ... : 0 :  Yr: ... : yn )  ~ pn(Fq)} -= Pa-r (Fq) ,  
if we suppose that the r variables appearing in the quadratic form F are X 0, X I ..... Xr - I- The 
set V n_ r is called the vertex of  Q, and is the set of  singular points of Q. We note also 

Q ' r -  1 = {(X0 : " '"  : Xr- 1 : Yr :"-  : Yn) e pn(Fq) I F(x 0 ..... Yn) = 0 and the x i are not all zero}. 

Let Qr -  1 be the nondegenerate quadric of Pr-X(Fq) associated to Q, i.e. defined by 
Qr - 1 = Zpr - 1-(Fr - I) 



or more precisely, 

Q r -  1 ={ (x0 : ... : Xr- 1) ~ p r -  l(Fq) I F r_ l(X0 . . . . .  Xr- 1) = 0 }, 
where F r _ I(X0 . . . . .  X r -  1) = F(X0 . . . . .  Xn). The (degenerate) quadric Q will abusively be 
said to be parabolic, hyperbolic or elliptic according to the type of its associated nondegenerate 

quadric Q r -  1. Its character c0(Q) is by definition the character to(Qr- I) of Q r -  l- 
Then, we have the following result which can be found in R.A. Games [3] : 

Theorem 1 : The number of points of a quadric Q of pn(Fq) of rank r is : 

I Q I = ~n - 1 + (t0(Q) - 1) q(2ti - r)/2 

and we have to(Q) = I if r is odd, and to(Q) = 0 or to(Q) = 2 if r is even. 

In particular, a quadric of  odd rank is necessarily parabolic, and a quadric of even rank is 
hyperbolic or elliptic. 

Corollary : Let Q be a quadric of pn(Fq), with n > 2. We have : 

~ n _ 2 <  I QI < ~ n - 1  + q n - 1 ,  
and the bounds are reached. 

Observe that the lower bound is the Warning bound and that the upper bound reaches the 
following Serre bound, conjectured by Tsfasman, which says that (see [11]) if F 

0.  Fq[X 0 ..... Xn] d is a nonzero form of degree d < q, with n > 2, then the number N of zeros of F 

in Fq n is such that : 
N < d q  n - l - ( d - 1 ) q  n - 2  

2.2. Hyperplane sections of quadrics. 
This paragraph deals with the number of points in the intersection of a quadric and a 

hyperplane. When the quadric is nondegenerate, the result is known (see for example [13]). 
R.A. Games has given the result when the quadric has the size of  a hyperplane, provided the 
quadric itself is not a hyperplane (see [3]). Furthermore, I.M. Chakravarti in [1] has solved the 

case when the quadric is 1-degenerate, that is a quadric of rank n in pn(Fq). 

We are going, here, to consider the general case, i.e. quadrics in pn(Fq) of any rank. 

We begin by the known nondegenerate case. If Q is a nondegenerate quadric of pn(Fq) 

(i.e. of  rank r = n + 1) and if H is a hyperplane of pn(Fq), with n > 1, then Q n H can be seen 
as a quadric in a space of dimension n - 1. We know (see for example [8]) that the rank of 
Q n H is r - 1 or r - 2. Then, either Q n H is nondegenerate (in pn - l(Fq)), or Q n H is of  

rank r -  2 = n - 1 (whence degenerate in p n -  t(Fq) ) ; one says in this last case that H is tangent 
toQ.  



Now we have to know what  is the value o f  co(Q n H), i.e. what  happens  to the type o f  

the quadric. I f  the hyperplane H is not tangent to Q, it is obvious that Q n H becomes parabolic 
if  Q is hyperbolic or elliptic (indeed r(Q) is necessarily even, and if H is not tangent we have 

r (Q n H) = r(Q) - 1 hence odd, then Q n H is parabolic) ; and Q n H becomes  hyperbolic or 
elliptic if  Q is parabolic (same reason rest on the parity of  the ranks). 
Now if  the hyperplane H is tangent to Q, we have the following proposition (see [ 13]) : 

P ropos i t i on  2 : The quadric Q n H is o f  the same type as the nondegenerate  quadric Q if the 
hyperplane H is tangent to Q. 

Then, we can give the result about the hyperplane sections o f  a quadric of  any rank : 

T h e o r e m  2 : Let  Q be a quadric of  pn(Fq) of  rank r whose decomposi t ion is 

Q = Vn - r u Q ' r -  1 
and let H be a hyperplane of  pn(Fq). Then : 

a) I f  H D V n _ r then 

I Q n H I = / r  n _ 2 + (co(Qr- 1 n H . )  - 1) q(2n - r - 1)/2 

if  H ,  is not tangent to Q r -  1' and 

I Q n  H I  = gn - 2  + (CO(Q) - I) q(2n-  r)/2 

if  H ,  is tangent to Q r -  1, where H ,  is the hyperplane of  pr  - l(Fq) defined by 

H. = zr _ l(h) 

where h is the linear fo rm in Fq[Xo,...,X r_ i] 0 defining H ; moreover  c0(Qr _ 1 n H . )  is equal 

to 1 if Q is hyperbolic or elliptic, and equal to 0 or 2 if  Q is parabolic. 

b) I f  H ~ V n_ r then 

I Q n H t = ~ n  - 2 + (co(Q) - 1) q(2n - r -  2 ) /2  

Proof : W e  suppose  that the r var iables  appearing in the quadratic fo rm F defining Q are 
Xo,X1 ..... X r -  1 • 
I f  we set H i the hyperplane whose equation is X i -- 0, we have 

V n _ r  = H0 n H1 n . . .  n H r _  1 • 
But 

Q n H = ( V n _ r  u Q ' r _  1) ~ H = ( V n _ r  n H) u ( Q ' r _  1 ~ H), 
Thus 

I Q n H l = l V n _ r n H l + l Q r _ l n H I  - I V n _ r n  Q r _ l n H I ;  

but V n_ r n Q*r - 1 = 0 ,  thus : 

I Q n H I = I V n _ r n H I + I Q  r _ l  n H I .  



1 °) Suppose  that H D V n _  r . 

Then,  we  have  : t V n - r  n H 1 = I V n - r  I = I p n -  r(Fq) I = Xn - r .  

Fur thermore ,  the l inear f o r m  h def in ing H is such that h ~ Fq[X 0 ..... X r _  1] 0. Indeed,  i f  

n 

h = ~ aiX i , 
i=0 

we  have  for  all i > r, Pi = (0 : ... : 0 : 1 : 0 : ... : 0) where  the 1 is at the i th - coordinate ,  

Pi E V n _ r and  H D V n _ r thus h(Pi) = 0. But  h(Pi) = a i , thus a i = 0 for  all i > r. Hence ,  
* q n - r +  1 I Q  r _ l n H l =  I Q r _  1 n H ,  I. 

The  quadric  Q r -  1 n H ,  o f  p r -  2(Fq) is degenera te  o r  not,  accord ing  as H ,  is tangent  or  not  

to Q r _  1. N o w  : 

- -  I f  H ,  is no t  t angen t  to Q r -  1 , then by  p ropos i t i on  1, (s ince Q r -  1 n H .  i s  

nondegenera te  in p r -  2(Fq) ), we  have  : 

I Q r -  1 c~ H ,  I = X r - 3  + (co(Qr-  1 n H . )  - 1) q ( r -  3)/2. 
Thus  

1Q n H 1 = / r . n _ r +  q n - r +  1 I Q r _  1 n H .  1 = n n _ 2  + (co(Qr_ 1 n H , ) -  1) q ( 2 n - r -  1)/2 • 

- -  I f  H ,  is tangent  to Q r -  1,  then by theorem 1, we  have : 

1 Q r -  1 n H ,  I = Xr -  3 + (co(Qr-  1 n H , )  - 1) q(r - 2)/2, 

but  by  p ropos i t ion  2 w e  k n o w  that c o ( Q r -  1 n H , )  = c o ( Q r -  1), wh ich  is equal  to co(Q) by  

definition. Finally,  

I Qc~  H I  = X n _ r  + q n - r +  1 ( n r _  3 + (co(Q)_  1) q ( r - 2 ) / 2 )  

= n n  - 2 + (co(Q) - 1) q(2n - r)/2 

2 °) Suppose  n o w  that H not contains  V n _ r .  

W e  have  Vn _ r n H = H 0 n H 1 n ... n H r _  1 n H ,  thus 

t V n _ r n  H I  = I p n - r -  l (Fq)  I = X n _ r _  1 .  
n 

I f  h = . ~  a iX i is the l inear f o r m  def in ing  H, there exist  necessar i ly  one  j, r _< j < n, such that 
1--0 

aj * 0 .  Thus  

Q * r - l n H = {  (x 0 : . . . : x  r _ l : y r : . . . : y j _ l : t : y j + l : . . . : y n )  ~ Pn(Fq)  
with Q r -  l(X0 ..... Xr -  1) = 0 and  the x i are no t  all zero  }, 

where  t is such that 

ajt = - a0x 0 - . . .  - a r _ lXr_ 1 - a rYr-  .-- - aj _ lYj - 1 - aj + lYj + 1 - .-- - anYn" 

T h u s  
* q ( n  - r + 1) - 1 I Q r _ l n H l =  I Q r _ l  I 

with Q r -  1 a nondegenera te  quadric  o f  p r -  l(Fq) ' then : 
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I Q  r - 1  n H l  = q n - r  ( n r _ 2  + (co(Qr_ 1 ) -  1) q ( r -  2)'t2 ) 

and finally : 

I Q n H I  = rc n - r -  1 + qn - r (  X r - 2  + (c°(Qr-  1) - 1) q ( r -  2)/2 ) 
= Xn - 2  + (o~(Q) - 1) q(2n-  r -  2)/2, 

which concludes the p r o o f . ,  

2 .3 .  I n t e r s e c t i o n  o f  t w o  q u a d r i e s  in p n ( F q ) .  

The subject mat ter  o f  this paragraph is to estimate the number  of  points in the intersection of 

two quadrics in pn(Fq) with n > 1 .  W e  give an exact value of  this number  in a particular case, 

and an upper  bound in the general case (Theorem 3), inspired by an another upper  bound o f  
W.M. Schmidt  ([10] p.152). We  need first a l emma : 

L e m m a  : I f  Q1 and Q2 are two distinct quadrics in pn(Fq), then : 

I Q I A Q 2  I <Trn_ 1 + q n - 2  

Proof: By theorem 1, I Q1 [ =/rn - 1 + (~(Q1) - 1) q(2n -0 /2  i f r  is the rank of  Q1. Thus : 

- -  i f  r > 4, we have ~ < n - 2 and then I Q11 < rc n _ 1 + qn - 2 ,  hence a fortiori 

t Q1 n Q 2 1 - < ~ n - 1  + q n - 2 .  
- -  i f r  = 3 o r r  = 1 then Q1 is parabolic and 

I Q1 n Q21 <_1 Q11 = ~ n -  1 < / r n -  1 + q n - 2 .  

- -  i f  r = 2 : either Q1 is elliptic, and then I QI  I = rr n _ l - qn - 1 and the result holds ; or 
Q1 is hyperbolic,  and then Q1 is the union of  two distinct hyperplanes. We  can suppose that the 
quadric Q2 is also hyperbolic of  rank 2, otherwise the same reasoning which we have made to 
Q1 must hold for Q2. 

We set Q1 = H0 u H 1 and Q2 = H2 u H t , and without loss of  generality, we can take for H i 
the hyperplane X i = 0. Since, by hypothesis,  the quadrics Q1 and Q2 are distincts, two cases 
can appear : 

1 °) The  four  hyperplanes are distincts, i.e. t is different o f  0 and I. We obtain, simply in 
"counting" the points : 

I Q1 ~ Q21 = ~ n - 4  + 4 qn-2_< ~ n -  1 + q n - 2  

(the preceding inequality is equivalent to (q - 1) 2 -> 0 ). 
2°) Q1 and Q2 have a common  hyperplane, i.e. t = 0 or t = 1. Suppose that t = 0. Then, 

we have : 

Q1 n Q2 = { (0 : Xl: ... : x n) ~ pn(Fq) } u { ( t  : 0 : 0 : x 3 : ... : x n) ~ Pn(Fq) }, 
where the union is disjoint. Hence  : 
t Q1 n Q21 = n n _  1 + q n -  2 ,  and the upper bound of  this l emma is reached in this c a s e . ,  
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T h e o r e m  3 : Let F I (X 0 ..... Xn) and F2(X 0 ..... X n) be two non zero quadratic forms with 

coefficients in Fq, and let Q! and Q2 respectively the two associated quadrics of  pn(Fq). Three 
cases can appear : 

1 °) the forms F 1 and F 2 are proportional (i.e there exists ~,~ Fq such that F 1 = XF 2 ) and then : 

I Q1 n Q21 = I Q I I =  I Q21. 
2 °) F 1 and F 2 have a common factor of degree 1, and then : 

I Q l n Q 2 1 = n n _ l  + q  n - 2  
3 °) F 1 and F 2 have no common factor (no constant), and then : 

q n - 1  _ 6 q n - 2  
I Q l n Q 2 1 < n n _ 2 + 7  _ 1 q - 1 

(for q > 7 this upper bound is indeed better than the lemma). 

Proof: 1 °) Trivial. 
2 °) We are necessarily in the case where Q1 and Q2 are the union of two hyperplanes with one 
in common ; it is proved in the lemma. 
3 °) Let F 1 and F 2 be two quadratic forms without nonconstant common factor. 
The result is obvious if q <_ 4. Indeed, by the lemma, we have : 

I Q 1 n Q 2 1  < rCn_ 1 + q n - 2  
and furthermore, 

gn _ 1 + q n - 2  < g n _ 2  +.. 7 q n -  1 6 q  n - 2  - q -  1 - q -  1 is equivalent to q_<5. 

Suppose now that q > 4. 
We set, for i equal 1 and 2 : 

F ' i (X 0 ..... X n) = Fi(X 0 , XI+ClX 0 , X2+c2Xo . . . . .  Xn+cnX O) 

= Pi(Cl,C2 ..... Cn) X~ + . . . .  

The polynomials P1 and P2 are not the zero polynomial (otherwise F 1 and F 2 would be too), 
and are'not also identically zero, since they have degree at most 2, and q > 4 implies that F 1 and 

F 2 have at most 2q n - 1 < qn zeros in Fq n (because a polynomial of  degree d in Fq[XI,...,X n] 

have at most dq n - lzeros in Fq n , see for example [10]). 
Moreover, the total number of zeros of  P1 added to those of P2 is then at most 

4 q n - 1  

which is < qn since q > 4 .  

Thus it is possible to choose (c 1 ..... c n) ~ Fq n such that 
Pl(Cl ..... Cn) ~ 0 and P2(Cl ..... Cn) ~ 0. 

Thus, after a nonsingular linear transformation and after divided by Pl(Cl ..... Cn) and 
P2(Cl ..... Cn) respectively, we may suppose without loss of  generality that : 

F I (X 0 ..... Xn) = X 2 + X 0 gl(X1 ..... Xn) + g2(X1 ..... Xn) and 

2 
F2(X 0 ..... X n ) = X  0 + X  0hl (X1 ..... X n ) + h 2 ( X  1 ..... X n) 
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where g l , h l ~  Fq[X 1 ..... Xn]01 and.g2,h2~ Fq[X 1 ..... Xn] 0 . 

I f  we look at now the polynomials F 1 and F 2 as polynomials  in X 0, their resultant is a 
homogeneous  po lynomia l  R(X 1 ..... Xn) o f  degree 4. By the well known properties o f  the 

resultant, we can say that for any common  zero (in Fq n+l ) (x0,x 1 ..... Xn) o f  F I (X 0 ..... Xn) and 
F2(X 0 ..... Xn), we have R(x 1 ..... x n) = 0. 
If  we apply the Serre bound (see § 2.1) to the resultant R, we obtain that 

the number o f  zeros in Fq n o f  R(X 1 ..... Xn) is < 4 qn - 1 _ 3 qn - 2 

Moreover ,  for  such n -up le ,  the number  o f  possibilities for x 0 is at most  2, and the forms F 1 
and F 2 are o f  degree 2, thus the total number  o f  c o m m o n  zeros (x 0 ..... Xn) o f  F 1 and F 2 in 
Fq n+ l i s  < 8 q n - 1  _ 6 q n - 2  

And by the following usual equality : 
NA(F) = 1 + ( q -  1) Np(F) 

where NA(F) represent the number o f  zeros in An+l(Fq) = Fq n+l of  F and Np(F) the number 

o f  zeros in pn(Fq) o f  F, we deduce : 
8 q  n - 1  - 6 q  n - 2  - 1 

t Q l C ~ Q 2 1 <  - q - 1 
qn - 1 7 qn - 1 6 qn - 2 

= ~ X n - 2 + 6 q n - 2 + q  - 1 = r ~ n - 2 + q  - 1 - q  - 1 "* 

3. P r o j e c t i v e  R e e d - M u l l e r  c o d e s  o f  o r d e r  1 a s s o c i a t e d  to a q u a d r i c  

Let Q be a quadfic in pn(Fq) o f  rank r, decomposing in disjoint union of  its vertex V n _ r and of  

Q*r - 1, where Qr - 1 is the nondegenerate associated quadric o f  pr  - l(Fq)" We  will apply the 
results o f  § 2.2 to determine the parameters o f  the projective Reed-Muller codes o f  order 1 
associated to Q. Since these parameters vary according to the type o f  the quadric Q, we have to 
distinguish three cases. 

T h e o r e m  4 (parabolic case) : Let Q be a parabolic quadric of  pn(Fq) o f  rank r # 1. Then the 

projective Reed-Muller code o f  order 1 associated to Q is a code with three weights : 
Wl = qn - 1 _ q(2n - r - 1)/2, w2 = qn - 1+ q(2n - r - 1)/2, w3 = qn - 1 

with the following parameters : 
length = nn - 1, dimension = n + 1, distance = qn - 1 _ q(2n - r - 1)t2 

Theorem 5 (hyperbolic case) : Let Q be an hyperbolic quadric o f  pn(Fq) o f  rank r. Then the 
projective Reed-Muller code o f  order 1 associated to Q is a code with three weights : 

Wl = qn - 1 + q(2n - r)/2, w2 = qn - 1, w3 = qn - 1 + q(2n - r)/2 _ q(2n - r - 2)/2 

with the following parameters : 
length = n n _ 1 + q(2n -r)/2, dimension = n + 1, distance = qn - 1 
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Theorem 6 (elliptic case) : Let  Q be an elliptic quadric o f  pn(Fq)  o f  rank r > 2. Then the 
projective Reed-Muller  code o f  order 1 associated to Q is a code with three weights : 

Wl = qn - 1 _ q(2n - 0 /2 ,  w2 = qn - 1, w3 = qn - 1 _ q(2n - 0/2 + q(2n - r - 2)/2 

with the following parameters : 
length =/ha - 1 - q (2n-  0/2, d imension = n + 1, distance = qn - 1 _ q (2n-  0/2 .  

Le t  us r emark  that we  recover  the results o f  J. Wol fmann  as a particular case o f  these results 
(see [13]), indeed he had considered the case o f  nondegenerate quadrics : his results correspond 

to the case where  the rank r = n+l .  Note that, here, the case H ~b V n _ r is excluded,  and then 

we fred only two weights for  the hyperbolic and elliptic quadrics, but still three weights for  the 
parabolic  one. W e  recover  also the results o f  I.M. Chakravart i  (see [1]) : it corresponds to the 
case where the rank r = n. 

Proof: The lengths o f  the respect ive codes are equal to the number  of  points o f  the respective 
quadrics : theorem 1 gives the result. 
The  map  e defining the code ( see § 1 ) is one to one, and thus the dimension of  the code is 

equal  to the dimension o f  Fq[X 0 ..... Xn]01 over  F q ,  i.e. n + 1 : indeed, i f  H is a hyperplane  of  

pn(Fq), ( which amounts  to taking a linear form o f  Fq[X 0 ..... Xn] ), it is sufficient to apply the 

results o f  Theorem 2 to see that t Q c~ H I < I Q 1, and to have also the different we igh t s . ,  

4. P r o j e c t i v e  R e e d - M u l l e r  c o d e s  o f  o r d e r  2 a s s o c i a t e d  to  a q u a d r i c  

0 The  m a p  c : Fq[X 0 ..... Xn] 2 --> Fq IQI as introduced in § 1 defining the projective Reed-Muller  

code of  order  2 associated to the quadric Q has for domain  the vector  space of  quadratic forms 
over  Fq ; this is why we gave previously  some results on the intersection of  two quadrics of  
pn(Fq).  

Theorem 7 (parabolic case) : Let  Q be a parabolic quadric in pn(Fq),  n >_ 2. I f  q -> 8 then the 
projective Reed-Muller  code of  order 2 associated to Q has the following parameters : 

n(n + 3) distance > qn - 1 6 qn - 2 qn - 1 length = nn - 1, d imension = 2 ' - - - q  - 1 " 

Theorem 8 (elliptic case) : Let  Q be an elliptic quadric in pn(Fq) o f  rank r > 2. I f  q > 8 then 
the projective Reed-Muller  code of  order 2 associated to Q has the following parameters : 

length = r~ n _ 1 - q(2n - 0/2, dimension - n(n + 3) 
2 ' 

d i s tance  > qn - 1 q(2n - 0/2 _ 6 qn - 2 qn - 1 
- - - q -  1 " 
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We reserve the case where the quadric is hyperbolic of  rank 2 for the theorem 10 (we have 
indeed more precise results). 

Theo rem 9 (hyperbolic case of  rank r > 4) : Let Q be an hyperbolic quadric in pn(Fq) of  rank 
r >- 4. If q > 8 then the projective Reed-Muller code of order 2 associated to Q has the following 
parameters : 

length = x n 1 + q(2n - r)/2, dimension = n(n + 3 )  
- 2 ' 

q n -  1 
distance > qn - I+ q(2n - 0/2 _ 6 qn - 2+ q _ 1 " 

Let us remark that we can have, for the theorem 9, the same results with a weaker hypothesis 
on q when the rank of Q is equal to 4 or 6, namely q > 5. 

Now we consider the case of maximal quadrics, that is hyperbolic quadrics of rank 2. By the 
corollary of theorem 1, the number of points of these quadrics reaches the maximum number of 
points of a quadric, and it is in this sense that we call them "maximal". We can remark that they 
are particular quadrics (they are the union of two distinct hyperplanes). The codes which are 
associated to them have a minimum distance precisely known. These codes will have a 
generalization in the next paragraph. 

Theorem 10 (hyperbolic case of  rank --- 2) : Let Q be an hyperbolic quadric in pn(Fq) of rank 
2. The projective Reed-Muller code of  order 2 associated to Q has the following parameters : 

length = Xn 1+ qn - 1, dimension n(n + 3) ,  distance = qn - 2 ( q _ 1 ) 
- - 2 " 

Proof : The length of  the codes is the number of points of the quadric Q, and is given by 
Theorem 1. 

Let F'E Fq[X 0 ..... Xn] 0 and Q'  = Zpn(F'), Q = Zpn(F ). 

Either F and F' are proportional, and then Q = Q'. Remark that there is q - 1 such non zero 
forms F ; thus there is at least q quadratic forms vanishing in Q, hence in the kernel of the map 
c defining these codes. We claim that there are no other forms in Ker(c), and thus the 
dimension of  this codes is : 

Fq Ix0 ..... Xn]0 (n + 1)(n + 2) 
dim(Im c) = dim Ker(c) = 2 - logq( I Ker(c) I ) 

n 2 +  3n n(n + 3) ( n +  1 ) ( n + 2 )  _ 1 -  = 
2 2 2 

Indeed, suppose now that F and F are not proportional, we have by Theorem 3 : 

I Q n  Q' I _<'~n_ 2 + 
7 q n -  1 6 q n  - 2 

q - 1  - q - l "  
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- if  Q is parabolic (Th 7), we have 
7 qn - 1 6 qn - 2 q2 

; Z n - 2 +  q -  1 - q -  1 < i Q I ¢ : ~  - 8 q + 6 > 0 ¢ = ~ q - > 8 .  

Moreover ,  F and F cannot have a c o m m o n  factor o f  degree I since Q would be the union of  
two hyperplanes and thus would be hyperbolic. 
The min imum distance follows from the same inequality of  the Theorem 3. 
- if  Q is elliptic (Th 8), F and F' cannot also have a common factor of  degree 1, and we have : 

7q--q'1-1 6 qn - 2  q(2n - 0/2 if  and only if  q > 8 for  r = 4, and r ~ n - 2 +  _ 1 - q -  1 < l Q l = x n - 1  - 

thus a fortiori for  r >_ 4, i.e. since r is even, r > 2. 
- i f  Q is hyperbol ic  o f  rank > 4 (Th 9), the same reasoning gives a for t io r i  the results (indeed 
the hypothesis  q > 8 holds for  more  "smallest  "quadrics) .  
- i f Q  is hyperbolic of  rank = 2 (Th 10) : 
• either F and F' have a common  factor o f  degree 1, and by the Theorem 3 : 

I Q n  Q '  I = g n -  1 + q n - 2 w h i c h i s  < I Q I  = Un-  1 + q n -  1. 
• or F and F' have not a c o m m o n  factor o f  degree 1, and by the l e m m a  preceding Theorem 3 

we have : I Q n Q '  I < gn - 1 + qn - 2 which is < I Q I.  
The min imum distance in this case is : 

I Q I  - ( X n _ l + q n - 2 ) = q  n - l -  q n - 2 = q n - 2 ( q _ l ) . ,  

5. P r o j e c t i v e  R e e d - M u l l e r  c o d e s  a s s o c i a t e d  to a m a x i m a l  

h y p e r s u r f a c e  

We consider here hypersurfaces  of  degree h < q reaching the Serre bound, i.e. which are the 
union of  h distinct hyperptanes  containing a linear variety of  codimension 2. The  Serre bound 
enunciated in § 2.1 has the following projective version : if  F is a non zero fo rm of  degree h < q 
o f  Fq[X 0 ..... Xn], then 

I Zpn(F) 1 _< rc n _ 2 + h qn - 1. 

The construction of  such varieties (called maximal)  is easy ; indeed we can take for  example : 

F =  11 ( X 0 -  ~.iX1) 
l<i<h 

where  the ~.i are h distinct e lements  of  Fq. We  are going to construct project ive Reed-Muller  
codes associated to such varieties. 

Theorem U : Let  V = Zpn(F)  be  a var ie ty  o f  p n ( F q )  which is the union o f  h distinct 

hyperplanes containing a linear variety o f  codimension 2, with h < q. Then the projective Reed- 
Muller code of  order d < h associated to V has the following parameters : 

length = ~n - 2 + h qn - 1, d imension = ( n ;  d) ,  distance = (h - d) qn - 1 
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Let us remark that we find again the projective Reed-Muller codes of  order 1 associated to a 
maximal quadric (in the particular case h = 2 and d = 1). 

Proof: The length of  the code is equal to the number of  points of  the variety V which is, by 
construction, 

g n _ 2 + h q  n - 1  

The map e: Fq[X 0 ..... Xn] 0 --~ Fq IVI defining the code is obviously one to one since d < h. 

Thus  the d imens ion  of  the code  is equal  to the d imens ion ,  ove r  F q, of  

Fq[X0 ..... X.]  ° i.e. (n d + d). 

If  V = H 1 u ... U H h then the subvariety V' of  degree d of  V defined by V '  = H I ~A ... u H d 
where the d hyperplanes are taken among the h defining V, is such that : 

I V '  I = g n _ 2 + d q  n -1 .  

Thus the minimum distance of the code is equal to : 
I V I  - ( g n _ 2 + d q n - 1 ) = h q  n - l -  d q n - 1  = ( h - d )  q n - l . *  

We can say more if we consider the particular case of  the codes above of  order I. Indeed, 
it is easy to see that the hyperplane sections of  such maximal varieties have three possible sizes, 

namely rc n _ 1, :~n - 2 or ~n - 3 + h qn - 2. Thus, the projective Reed-Muller code of  order 1 
associated to V (with h > 1) is a code with three weights : 

W l = ( h  - 1 ) q  n - 1  , w 2 = h q  n - 1  , w 3 = h q n - l + ( 1  _ h ) q  n - 2  

and with the following parameters • 
length = rgn_ 2+ h q n -  1, dimension = n + 1 ,  distance = (h - 1) q n -  1 
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