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MAXIMUM NUMBER OF RATIONAL POINTS ON

HYPERSURFACES IN WEIGHTED PROJECTIVE SPACES

OVER FINITE FIELDS

YVES AUBRY AND MARC PERRET

Abstract. An upper bound for the maximum number of rational points
on a hypersurface in a projective space over a finite field has been conjec-
tured by Tsfasman and proved by Serre in 1989. The analogue question
for hypersurfaces on weighted projective spaces has been considered by
Castryck, Ghorpade, Lachaud, O’Sullivan, Ram and the first author in
2017. A conjecture has been proposed there under the assumption that
the first weight is equal to one and proved in the particular case of the
dimension 2. We prove here the conjecture in any dimension provided
the second weight is also equal to one.

Dedicated to our friend Sudhir Ghorpade for his 60th birthday1.

1. Introduction

Let Fq be the finite field with q elements and P
n(Fq) be the set of rational

points over Fq of the projective space of dimension n ≥ 1. Let us set pn :=

qn+· · ·+q+1 for n ≥ 0 and pn := 0 for n < 0. We have clearly ♯Pn(Fq) = pn.

Answering a conjecture that Tsfasman made at the “Journées Arith-

métiques de Luminy” in 1989, Serre proved in [11] (and independently

Sørensen proved later in [12]) that if F is a nonzero homogeneous polyno-

mial in Fq[X0, . . . , Xn] of degree d ≥ 1, then the number of rational points

over Fq of the hypersurface V (F ) in P
n defined by F satisfies the so-called

Serre bound:

♯V (F )(Fq) ≤ dqn−1 + pn−2.

If d ≥ q+1 then dqn−1+ pn−2 ≥ pn = ♯Pn(Fq) and the hypersurface defined

by the degree d homogeneous polynomial Xd−q−1
0 (Xq

0X1 − X0X
q
1) has pn

rational points. Thus the Serre bound holds trivially and is reached for

hypersurfaces of degree greater than or equal to q + 1.

Furthermore, the Serre bound is reached for hypersurfaces of degree less

than or equal to q. Indeed, if d ≤ q then the number of rational points on
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the hypersurface given by the polynomial

F =

d
∏

i=1

(αiX0 − βiX1),

where (α1 : β1), . . . , (αd, βd) are distincts elements of P1(Fq), attains the

Serre bound. Note that Serre proved that the bound is reached for d ≤ q if

and only if F is of the above form, that is V (F ) is the union of d hyperplanes

containing a linear variety of codimension 2.

In 1997, Tsfasman and Boguslavsky in [5] have considered the analogue

question for a system of r polynomial equations. They propose a conjecture

for the maximum number of points in P
n(Fq) of the projective set given

by the common zeros of r linearly independent homogeneous polynomials

of degree d in Fq[X0, . . . , Xn]. The Tsfasman-Boguslavsky conjecture for

r = 1 is nothing else but the Serre bound. Boguslavsky succeded to prove

in [5] the case r = 2. In 2015, Datta and Ghorpade proved in [6] that the

Tsfasman-Boguslavsky conjecture is true if d = 2 and r ≤ n+1 but is false

in general if d = 2 and r ≥ n + 2. Moreover, in 2017 they proved in [7]

that the Tsfasman-Boguslavsky conjecture is true for any positive integer

d, provided r ≤ n+1. The case for r beyond n+1 is specifically considered

one year later by Beelen, Datta and Ghorpade in [2] and they conjectured

in 2022 in [3] a general formula when d < q that they were able to prove in

some cases

We are interested here in a generalization in another direction, namely

the question of Tsfasman and Serre in the context of weighted projec-

tive spaces P(a0, . . . , an), i.e. the study, for any homogeneous polynomial

F in Fq[X0, . . . , Xn] of degree d (with respect to the weights a0, . . . , an),

of the maximum number of rational points on the hypersurface V (F ) in

P(a0, . . . , an). In [1], the following quantity has been introduced:

eq(d; a0, a1, a2, . . . , an) := max
F

♯V (F )(Fq)

where the maximum ranges over the set of homogeneous polynomials F in

Fq[X0, . . . , Xn] of weighted degree d.

It has been conjectured in 2017 in [1] that:

Conjecture 1.1. If a0 = 1 and lcm(a1, a2, . . . , an)|d, and if we order the

weights such that a1 ≤ a2 ≤ . . . ≤ an then

eq(d; 1, a1, a2, . . . , an) = min{pn,
d

a1
qn−1 + pn−2}.

In the case of the projective line P(a0, a1), it has been shown in [1] that

eq(d; a0, a1) = min{p1, d/a} where a = lcm(a0, a1), so the conjecture holds
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in this case. Moreover, the conjecture has been proved in [1] for projective

planes P(1, a1, a2) with a1 and a2 coprime and a1 < a2: if F ∈ Fq[X0, X1, X2]

is a nonzero weighted homogenous polynomial of degree d ≤ a1(q + 1)

which is a multiple of a1a2 then ♯V (F )(Fq) ≤ d
a1
q + 1. The proof follows

the one given by Serre with a new notion of lines represented by either a

homogenized linear bivariate equation, or the line at infinity.

Our purpose here is to prove Conjecture 1.1 in any dimension n provided

a1 = 1.

We recall in Section 2 the basic facts about weighted projective spaces

and a lower bound for eq(d; a0, . . . , an). Then we study in Section 3 some

morphisms between weighted projective spaces and we establish a relation

between the numbers of zeros of a polynomial and its pullback. Section 4 is

devoted to the proof of an upper bound for the number of rational points on

an hypersurface in a weighted projective space. Finally we state and prove

the main result in Section 5.

2. A lower bound for the number of rational points

2.1. Weighted projective spaces. Let a0, . . . , an be positive integers and

S be the polynomial ring Fq[X0, . . . , Xn] graded by deg(Xi) = ai. The

weighted projective space P(a0, . . . , an) over Fq is the scheme

P(a0, . . . , an) = ProjS,

and can be seen as the geometric quotient

A
n+1
Fq

\ {0}/Gm,Fq

of the punctured affine space A
n+1
Fq

\ {0} over Fq under the action of the

multiplicative group Gm,Fq
over Fq given for any nonzero λ in an algebraic

closure Fq of Fq by

λ.(x0, . . . , xn) = (λa0x0, . . . , λ
anxn).

If the ai’s are all equal to 1, then we recover the usual (or straight) projective

space: P(1, . . . , 1) = P
n.

The corresponding equivalent class is denoted by [x0 : · · · : xn] with-

out any reference to the corresponding weights a0, . . . , an and is called a

weighted projective point. We say that the point is Fq-rational if [x0 : · · · :

xn] = [xq
0 : · · · : x

q
n]. Every Fq-rational point of a weighted projective space

over Fq has at least one representative in Fn+1
q \ {(0, . . . , 0)}. This result

has been quoted in [10] but without a complete proof. Due to a lack of

proof writing, we provide the following one over any field k which has been

communicated to the authors by Laurent Moret-Bailly.
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Proposition 2.1. Let k be a field and a = (a0, a1, · · · , an) be a sequence of

n + 1 nonzero integers. Then each k-rational point x ∈ P(a0, . . . , an) has a

representative x = [x0 : x1 : · · · : xn] with xi ∈ k for any 0 ≤ i ≤ n.

Proof. [Communicated by Laurent Moret-Bailly] Given a geometric point

x = [xi; 0 ≤ i ≤ n] ∈ P(a0, . . . , an), we denote by |x| := {i ∈ {0, · · · , n}, xi 6=

0} the support of x. Then the whole projective space is partitioned into

P(a0, . . . , an) =
⋃

∅6=I⊂{0,··· ,n}

W I
a ,

where W I
a := {x ∈ P(a0, . . . , an), |x| = I}, so that we have to prove that for

any nonempty subset I of {0, · · · , n}, any k-rational point in W I
a admits a

k-rational representative. For this purpose, consider the puncturing regular

map defined over k

W I
a −→ P(ai, i ∈ I)

[xi; 0 ≤ i ≤ n] 7→ [xi; i ∈ I]

into a weighted projective space of dimension ♯I − 1. This map is injective

and, in case ♯I ≥ 2, is an isomorphism onto the dense torus

T(ai,i∈I) := {[xi; i ∈ I] ∈ P(ai, i ∈ I); ∀i ∈ I, xi 6= 0}

of P(ai, i ∈ I). Now if dI denotes the gcd of the ai, i ∈ I and bi :=
ai
dI

for

all i ∈ I, then we have first that the bi, i ∈ I are coprime, second that

P(ai, i ∈ I) is k-isomorphic to P(bi, i ∈ I) (see the lemma in section 1.1. of

[9]). Hence, W I
a is k-isomorphic to the dense torus T(bi,i∈I) of P(bi, i ∈ I) and

we are reduced to prove the proposition only for x in the dense torus of a

weighted projective space P(bi, i ∈ I) whose weights (bi, i ∈ I) are coprime.

To do this, let (ui; i ∈ I) ∈ ZI such that
∑

i∈I uibi = 1, and consider the

subset

VI = {(xi; i ∈ I) ∈ A
I
Fq

\ {0I};
∏

i∈I

xui

i = 1}

of the affine space of dimension ♯I. It is then easily checked that for any

x = [xi, i ∈ I] in the dense torus of P(bi, i ∈ I), its only representative

(λbixi, i ∈ I) lying on VI , for λ ∈ k, is the one for λ =
∏

i∈I x
−ui

i . This

proves that W I
a , the dense torus T(ai,i∈I) and the affine subvariety V I are

k-isomorphic, and we are done in case ♯I ≥ 2.

In case ♯I = 1, the weighted projective space with only one weight a ∈ N∗

is P(a) = A∗
k/Gm,k for the action λ.x = λax, so that for any x ∈ k

∗
, we have

[x] = [1] (take λ be any a-th rooth of x in k
∗
), so that any point in P(a) is

k-rational which concludes the proof. �



HYPERSURFACES IN WEIGHTED PROJECTIVE SPACES 5

Furthermore, Laurent Moret-Bailly has communicated to us the follow-

ing more general scheme theoretic statement.

Proposition 2.2. (Moret-Bailly) Let S = ⊕n≥0Sn be a positively graded

ring. Let X = Proj(S), C = Spec(S) \ Spec(S0) be the punctured cone, and

ρ : C −→ X be the natural projection. Then, for any x : Spec(k) −→ X,

the reduced fiber (C ×ρ,X,x Spec(k))red is isomorphic to Spec(k[t, t−1]).

In particular, for any field k, the map C(k) −→ X(k) induced by ρ is

surjective.

Proof. Let x : Spec(k) −→ X be a rational point of X over k. There exists

some f ∈ Sd with d > 0, such that the image of x is contained in the affine

open subset D+(f) := SpecS(f) ⊂ X , the spectrum of the localization at

(f). Taking the fiber product from the morphisms ρ and x, we get the

diagram

Spec(S[ 1f ]⊗S(f)
k) = Spec(S[ 1f ])×Spec((S(f)) Spec(k) Spec(k)

Spec(S[ 1f ]) = ρ−1(D+(f)) D+(f) = Spec(S(f))

C X

� x

ρ

∩ ∩

ρ

with C ×X Spec(k) = Spec(S[ 1
f
]) ×Spec((S(f)) Spec (k). We conclude us-

ing the following Lemma 2.3 for the graded algebra B = S[ 1
f
] ⊗S(f)

k,

whose degree zero homogeneous part is a field. Indeed, the k-rational point

x : Spec(k) −→ D+(f) := SpecS(f) ⊂ X corresponds to a morphism of

rings x♯ : S(f) → k, whose kernel M is a maximal ideal of S(f). From the

isomorphism induced by x♯ : S(f)/MS(f) ≃ k, we deduce the isomorphism

of graded rings

B = S[
1

f
]⊗S(f)

(

S(f)/MS(f)

)

≃ S[
1

f
]/MS[

1

f
],

whose degree zero homogeneous part is S(f)/MS(f), which is isomorphic to

k hence is a field. �

Lemma 2.3. (Moret-Bailly) Let B =
⊕

n∈Z Bn be a Z-graded ring. Assume

that Bd contains an element f invertible in B, for some d > 0.

(1) Then, the morphism of Z-graded rings

φf : B0[t, t
−1] −→ B(d) =

⊕

n∈dZ Bn

t 7→ f

is an isomorphism.
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(2) If moreover B0 is a field and d is minimal for the properties d > 0

and Bd ∩ B∗ 6= ∅, then the composite map

B0[t, t
−1]

φf

−→ B(d) →֒ B → Bred

is a graded ring isomorphism.

Proof. Let m ∈ Z. Since f ∈ Bd ∩ B∗, the restriction of φf to the homoge-

neous part of some degree m ∈ Z

B0t
m −→ Bdm

b0t
m 7→ b0f

m

is an isomorphism of Z-modules, from which the first item follows.

For the second item, we begin by proving that for any e /∈ dZ and

g ∈ Be, we have gd = 0B. Considering the Euclidean division e = dq + r

with 0 < r < d of e by d, we have that gf−q ∈ Be−dq = Br with r > 0, so

by minimality of d we deduce that gf−q /∈ B∗. Since f ∈ B∗, it follows that

g /∈ B∗, and then that gdf e /∈ B∗. But gdf e ∈ Bed−de = B0 which is a field,

so gdf e = 0B, hence gd = 0B.

Now, let N be the nilradical of B and let π : B → Bred = B/N be the

canonical morphism. We have to prove, thanks to the first item, that the

graded ring morphism

π|
B(d)

: B(d) →֒ B
π
→ B/N

is an isomorphism.

The morphism π is onto from B = B(d)⊕
(
⊕

e/∈dZ Be

)

to B/N and sends

the right part
⊕

e/∈dZ Be to 0B by the previous paragraph, so π remains onto

from the first part B(d).

Now let h ∈ B(d) ∩Ker(π) and b0,mf
m be the homogeneous part of some

degree dm with b0,m ∈ B0. Since π is a graded ring morphism, we have

b0,mf
m ∈ Ker(π) = N. From f ∈ B∗ we deduce that b0,m ∈ N ∩ B0 is a

nilpotent element in the field B0, hence is equal to zero. We conclude that

π|
B(d)

is an isomorphism. �

Consider a rational point of a weighted projective space over a finite field

k with q elements. Starting from a rational representative whose existence

follows from Proposition 2.1, one can prove (see Lemma 7 in [10]) that

it has exactly q − 1 representatives in kn+1 \ {0}. In particular we have

♯P(a0, . . . , an)(Fq) = pn.

For many more details about weighted projective spaces, one can con-

sult the article of Beltrametti and Robbiano (see [4]) for a theory over an

algebraically closed field of characteristic 0, the article of Dolgachev (see
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[9]) for a theory over a field of characteristic prime to all the ai’s, and the

Appendix of [1] for a survey of the different points of view.

2.2. A lower bound. Let F be a homogeneous polynomial in S of degree

d, so that

F (λa0X0, . . . , λ
anXn) = λdF (X0, . . . , Xn) for all λ ∈ F

∗

q

and let V (F ) be the hypersurface defined by F in P(a0, . . . , an).

We define, as in the introduction, the quantity:

eq(d; a0, . . . , an) := max
F∈Sd\{0}

♯V (F )(Fq)

where Sd stands for the space of weighted homogeneous polynomials in S

of weighted degree d. Remark that the previous quantity is only defined for

d ∈ a0N+ · · ·+ anN.

Consider now the polynomial

F =

d/ars
∏

i=1

(αiX
ars/ar
r − βiX

ars/as
s )

where r, s ∈ {0, . . . , n} are distincts indices, ars = lcm(ar, as), d is a multiple

of ars satisfying d ≤ ars(q + 1) and the (αi, βi)’s are distinct elements of

P1(Fq). It has been proved in [1] that ♯V (F )(Fq) = (d/ars)q
n−1 + pn−2. So,

if a := min{lcm(ar, as), 0 ≤ r < s ≤ n} and a | d, then it implies that

eq(d; a0, . . . , an) ≥ min{pn,
d

a
qn−1 + pn−2}.

3. Some morphisms between weighted projective spaces

3.1. The morphisms πi. For i = 0, . . . , n, we consider the following mor-

phims πi :

πi : P(a0, . . . , ai−1, 1, ai+1, . . . , an) −→ P(a0, . . . , an)
[x0 : · · · : xn] 7−→ [x0 : · · · : x

ai
i : · · · : xn].

Our purpose in this Section is to study the behaviour of the rational

points with respect to these morphisms. For this purpose, let us fix some

generator δ of the multiplicative group F
∗
q.

For any given i ∈ {0, . . . , n}, set ri = (ai, q − 1) the gcd of ai and q − 1

and consider the map ϕai :

ϕai : F∗
q −→ F∗

q

z 7−→ zai .

Recall that the map ϕai is a group homomorphism with kernel Ker(ϕai) =<

δ
q−1
ri >=: µai , the subgroup of F∗

q of ai-th roots of unity in F∗
q which has
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order ri, and with image Im(ϕai) =< δai >=: ∆ai , the subgroup of F∗
q of

ai-th powers which has order q−1
ri

.

Let P be the whole set of rational points over Fq of P(a0, . . . , an). We

have a partition P = Ri ∪Ti ∪Ii with respect to the i-th coordinate, where

Ri := {[y0 : · · · : yn] ∈ P(a0, . . . , an)(Fq) | yi = 0} ∪ {Oi},

Ti := {[y0 : · · · : yn] ∈ P(a0, . . . , an)(Fq) | yi = 1} \ {Oi},

Ii := {[y0 : · · · : yn] ∈ P(a0, . . . , an)(Fq) | yi ∈ F
∗
q \∆

ai}

and Oi := [0 : · · · : 0 : 1 : 0 : · · · : 0] is the point where 1 appears at the

index i.

Let us scrutinize more narrowly the sets Ii and Ti. In order to do this,

consider, for j ∈ {1, . . . , q − 1}, the sets Zi(j) defined by

Zi(j) := {[y0 : · · · : yn] ∈ P(a0, . . . , an)(Fq) | yi = δj}.

Lemma 3.1. We have:

(i) Zi(j1) = Zi(j2) if j1 ≡ j2 (mod ri).

(ii) Zi(ri) = Ti.

(iii) Ii = ∅ if ri = 1 and

Ii = Zi(1) ∪ . . . ∪ Zi(ri − 1)

otherwise.

Proof. We begin by proving that δri = λai for some λ ∈ F∗
q, which will be

used in the proof of the three items. Indeed, there exist by Bézout Theorem

some integers u, v such that ri = uai+v(q−1), so that δri = (δu)ai×(δq−1)v =

λai for λ = δu.

Suppose now that j2 = j1 +mri for some integer m and consider some

[y0 : · · · : yn] ∈ Zi(j2). By writing δri = λai , it is easily checked from

δj2 = (δri)m × δj1 = (λm)ai × δj1 that [y0 : · · · : yi−1 : δj2 , yi+1 : · · · , yn] =

[(λ−m)a0y0 : · · · : (λ
−m)ai−1yi−1 : δ

j1 : (λ−m)ai+1yi+1 : · · · : (λ
−m)anyn] which

lies in Zi(j1), so that Zi(j2) ⊂ Zi(j1). The reverse inclusion follows similarly.

The second item can be proved likewise by writing δri = λai , since then

[y0 : · · · : yi−1 : δri : yi+1 : · · · : yn] = [(λ−1)a0y0 : · · · : (λ−1)ai−1yi−1 : 1 :

(λ−1)ai+1yi+1 : · · · : (λ
−1)anyn].

Finally, the set Ii contains of course the union Zi(1) ∪ . . . ∪ Zi(ri − 1).

Conversely, given some P = [y0 : · · · : yi−1 : δh : yi+1 : · · · : yn] ∈ Ii with

1 ≤ h ≤ q− 1 and h not divisible by ai, then writing the Euclidean division
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of h by ri gives the existence of integers m and j such that h = rim + j

with 0 ≤ j ≤ ri − 1. Thus, writing δh = (δri)m × δj = (λm)ai × δj, we get

[y0 : · · · : yi−1 : δh : yi+1 : · · · : yn] = [(λ−m)a0y0 : · · · : (λ−m)ai−1yi−1 : δj :

(λ−m)ai+1yi+1 : · · · : (λ
−m)anyn], so that P ∈ Zi(j) for this j ∈ {1, · · · , ri−1}

which concludes the proof.

�

The following proposition describes the number of pre-images of points

by the morphism πi according to the set of the partition that they belong

to.

Proposition 3.2. Let P be a rational point of P(a0, . . . , an).

(i) If P ∈ Ri then P has exactly one pre-image rational over Fq by πi.

(ii) If P ∈ Ti then P has exactly ri pre-images rational over Fq by πi.

(iii) If P ∈ Ii then P has no pre-image rational over Fq by πi.

Proof. (i) The point Oi := [0 : · · · : 0 : 1 : 0 : · · · : 0] ∈ P(a0, . . . , an) has

only one pre-image by πi, namely the point [0 : · · · : 0 : 1 : 0 : · · · : 0] ∈

P(a0, . . . , ai−1, 1, ai+1, . . . , an). Moreover, the point [y0 : · · · : yi−1 : 0 : yi+1 :

· · · : yn] has only one pre-image by πi, that is the point [y0 : · · · : yi−1 : 0 :

yi+1 : · · · : yn].

(ii) The point [y0 : · · · : yi−1 : 1 : yi+1 : · · · : yn] has ri pre-images by

πi, which are precisely the points [y0 : · · · : yi−1 : δ
(q−1)k

ri : yi+1 : · · · : yn] for

k = 1, . . . , ri (the elements δ
(q−1)k

ri are the ai-th roots of unity in F∗
q i.e. the

elements of the group µai).

(iii) The points [y0 : · · · : yn] with yi 6∈ ∆ai have no rational pre-image

by πi since yi is not a ai-th power in F∗
q . �

3.2. Number of zeros of the pullback. Let F be a homogeneous poly-

nomial in Fq[X0, . . . , Xn] of (a0, . . . , an)-weighted degree d ≤ q + 1, i.e.

F (λa0X0, . . . , λ
anXn) = λdF (X0, . . . , Xn)

for any λ ∈ F
∗

q. Let

π∗
i F (X0, . . . , Xn) := (F ◦ πi)(X0, . . . , Xn) = F (X0, . . . , X

ai
i , . . . , Xn)

be the pullback of F , an homogeneous polynomial of (a0, . . . , ai−1, 1, ai+1, . . . , an)-

weighted degree d. We consider the hypersurface VP(a0,...,an)(F ) of zeros of

F in P(a0, . . . , an) whose number of rational points over Fq is denoted by

N(F ). We also consider the hypersurface VP(a0,...,ai−1,1,ai+1,...,an)(π
∗F ) of ze-

ros of π∗F in P(a0, . . . , ai−1, 1, ai+1, . . . , an) whose number of rational points

over Fq is denoted by N(π∗
i F ).
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Let us set:

A(F ) := ♯(VP(a0,...,an)(F ) ∩A)

for A ∈ {Ri, Ti, Ii,Zi(j)}. So, N(F ) denotes the number of rational points

of VP(a0,...,an)(F ) and Ri(F ), Ti(F ), Ii(F ) and Zi(j)(F ) denote the number of

those rational points lying on Ri, Ti, Ii and Zi(j) respectively.

Proposition 3.3. We have :

(i)

N(F ) = Ri(F ) + Ti(F ) + Ii(F ).

(ii)

N(π∗
i F ) = riTi(F ) +Ri(F ).

(iii) Consider the automorphism σi : [y0 : · · · : yn] 7−→ [y0 : · · · : yi−1 :

δyi : yi+1 : · · · : yn] of P(a0, . . . , an). If ri := (ai, q − 1) 6= 1 then:

(a) for j = 1, . . . , ri − 1, we have Ti(F ◦ σj
i ) = Zi(j)(F ),

(b) for j = ri − 1, we have Ti(F ◦ σj
i ) = Ti(F )

(c) and Ri(F ) = Ri(F ◦ σj
i ) for 1 ≤ j ≤ ri − 1.

Proof. The first equality comes from the partition P = Ri ∪ Ti ∪ Ii.

The second one from Proposition 3.2 and the fact that if P is a ra-

tional point over Fq of VP(a0,...,ai−1,1,ai+1,...,an)(π
∗F ) then πi(P ) is a point of

VP(a0,...,an)(F ) which is rational over Fq.

The third one follows from the fact that the automorphism σi sends Ti

to Zi(1) and Zi(j) to Zi(j +1) for 1 ≤ j ≤ ri − 1, and by Lemma 3.1 sends

Zi(ri − 1) to Ti, and leaves Ri stable. �

Now we are enable to prove a relation on the numbers of points between

two floors.

Proposition 3.4. Let F be a homogeneous polynomial in Fq[X0, . . . , Xn]

with respect to the weights (a0, a1, . . . , an). For i ∈ {0, . . . , n}, let

πi : P(a0, . . . , ai−1, 1, ai+1, . . . , an) −→ P(a0, . . . , an)
[x0 : · · · : xn] 7−→ [x0 : · · · : x

ai
i : · · · : xn]

and π∗
i F (X0, . . . , Xn) := (F ◦ πi)(X0, . . . , Xn) = F (X0, . . . , X

ai
i , . . . , , Xn)

be the pullback of F .

Let also δ be a primitive element of F∗
q, and σi : [y0 : · · · : yn] 7−→ [y0 :

· · · : yi−1 : δyi : yi+1 : · · · : yn] inside P(a0, . . . , an). Denote by ri = (ai, q−1)

the gcd of ai with q − 1.
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Then, the number N(F ) of rational points over Fq of the hypersurface of

the weighted projective space P(a0, a1, . . . , an) defined by F satisfies

N(F ) ≤
1

ri

ri−1
∑

j=0

N(π∗
i (F ◦ σj

i )).

Proof. If ri = 1, then the set Ii is empty and by (i) and (ii) of Proposition

3.3, we have N(F ) = Ri(F ) + Ti(F ) = N(π∗
i F ) which gives the result.

Suppose now that ri 6= 1. By (i) of Proposition 3.3, we have:

riN(F ) = (riTi(F ) +Ri(F )) + (riIi(F ) + (ri − 1)Ri(F )).

On one hand, we have by (ii) of Proposition 3.3 that riTi(F ) +Ri(F ) =

N(π∗
i F ) and on the other hand, by Lemma 3.1, we can write Ii(F ) ≤

∑ri−1
j=1 Zi(j)(F ). Thus, we have:

riIi(F ) + (ri − 1)Ri(F ) ≤ ri

(

ri−1
∑

j=1

Zi(j)(F )

)

+ (ri − 1)Ri(F )

=

ri−1
∑

j=1

(riZi(j)(F ) +Ri(F )) .

Moreover, by Proposition 3.3 (iii), we have:

riZi(j)(F ) +Ri(F ) = riTi(F ◦ σj
i ) +Ri(F ◦ σj

i )

and we obtain with Proposition 3.3 (ii):

riZi(j)(F ) +Ri(F ) = N(π∗
i (F ◦ σj

i )).

Thus we deduce that:

riIi(F ) + (ri − 1)Ri(F ) =

ri−1
∑

j=1

N(π∗
i (F ◦ σj

i ))

and we obtain the desired formula.

�

Remark 3.5. Note that under the additional assumption that (ai, aj) = 1

for any 1 ≤ i 6= j ≤ n, we have equality in the above Proposition 3.4.

This comes from the fact that, under this assumption, the sets Zi(j) for

1 ≤ j ≤ ri − 1 form a partition of Ii, hence both inequalities in the above

proof are equalities. It remains to show that the sets Zi(j) for 1 ≤ j ≤ ri−1

are pairwise disjoint. Indeed, suppose that there is some common point with

Fq-coordinates

[y0 : · · · : yi−1 : δ
j1 : yi+1 : · · · : yn] = [y′0 : · · · : y

′
i−1 : δ

j2 : y′i+1 : · · · : y
′
n]
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inside Zi(j1) ∩ Zi(j2), with say 1 ≤ j1 ≤ j2 ≤ ri − 1. Since this point does

not lie in Ri, there is at least one position k 6= i, such that yk 6= 0 6= y′k.

Since they are equal, there is some λ ∈ F
∗

q such that

(y′0, · · · , y
′
i−1, δ

j2, y′i+1, · · · , y
′
n) = (λa0y0, · · · , λ

ai−1yi−1, λ
aiδj1 , λai+1yi+1, · · · , λ

anyn).

Looking at the k-th and the i-th position, we get y′k = λakyk and δj2 =

λaiδj1. It follows first that λak =
y′
k

yk
∈ F∗

q , second that λai = δj2−j1. But from

a Bézout relation uak + vai = 1, we deduce that

λ = (λak)u × (λai)v = (
y′k
yk

)u × (δj2−j1)v ∈ F
∗
q.

Hence, we have λ = δm for some m ∈ N, so that δj2−j1 = λai = δmai . It

follows that j2 − j1 ≡ mai (mod q − 1). Since ri = (ai, q − 1) divides both

ai and q − 1, it divides j2 − j1 ∈ {0, · · · , ri − 1}, hence j1 = j2 and we are

done.

4. An upper bound for the number of rational points

We prove in this section that an hypersurface in a weighted projective

space cannot have more rational points than in a standard projective space.

The proof is based on an unscrewing and uses Proposition 3.4.

P(a0, a1, a2, . . . , an)

P(1, a1, a2 . . . , an)

...

P(1, 1, 1, . . . , 1) = P
n

π0

π1

πn

Figure 1. Screwing of weighted projective spaces

Theorem 4.1. Let F be a homogeneous polynomial in Fq[X0, . . . , Xn] of

(a0, a1, . . . , an)-weighted degree d ≤ q + 1. Then the number N(F ) of ra-

tional points over Fq of the hypersurface of the weighted projective space

P(a0, a1, . . . , an) given by the set of zeros of F satisfies:

N(F ) ≤ dqn−1 + pn−2.

Proof. Let F be a homogeneous polynomial in Fq[X0, . . . , Xn] of (a0, a1, . . . , an)-

weighted degree d. We consider the successive pullbacks π∗
0(F ◦ σj0

0 ) with
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j0 ∈ {0, . . . , r0 − 1}, and π∗
1(π

∗
0(F ◦ σj0

0 ) ◦ σj1
1 ) with j1 ∈ {0, . . . , r1 − 1}, and

so on, of F .

By Proposition 3.4, considering the morphism

π0 : P(1, a1, . . . , an) −→ P(a0, a1, . . . , an)
[x0 : x1 : · · · : xn] 7−→ [xa0

0 : x1 : · · · : xn]

we have:

N(F ) ≤
1

r0

r0−1
∑

j0=0

N(F0(j0))

where F0(j0) = π∗
0(F ◦ σj0

0 ). Then, considering the morphism

π1 : P(1, 1, a2 . . . , an) −→ P(1, a1, . . . , an)
[x0 : x1 : x2 : · · · : xn] 7−→ [x0 : x

a1
1 : x2 : · · · : xn]

we have for 0 ≤ j0 ≤ r0 − 1:

N(F0(j0)) ≤
1

r1

r1−1
∑

j1=0

N(F1(j1))

where F1(j1) = π∗
1(F0(j0) ◦ σ

j1
1 ).

Thus:

N(F ) ≤
1

r0r1

r0−1
∑

j0=0

r1−1
∑

j1=0

N(F1(j1)).

Continuing this process, we obtain

N(F ) ≤
1

r0 . . . rn

r0−1
∑

j0=0

. . .
rn−1
∑

jn=0

N(Fn(jn)).

The last polynomials are homogeneous polynomials of degree d in the

standard n-dimensional projective space Pn = P(1, . . . , 1). Then we apply

the Serre bound

N(F ) ≤
1

r0 . . . rn
r0 . . . rn(dq

n−1 + pn−2) = dqn−1 + pn−2

and we get the result. �

5. The main result

We are now enable to state and prove Conjecture 1.1 provided a1 = 1

(it was already assumed in the conjecture that a0 = 1).

Theorem 5.1. For any degree d and for any nonnegative integers a2, . . . , an,

we have:

eq(d; 1, 1, a2, . . . , an) = min{pn, dq
n−1 + pn−2}.

In other words, Conjecture 1.1 is true for any (a1, a2, . . . , an) with a1 = 1

and without any assumption on the degree d.
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Proof. As seen in Subsection 2.1, a hypersurface of P(1, 1, a2 . . . , an) has

obviously a number of rational points less than or equal to pn and the hy-

persurface defined by the homogeneous polynomial Xd−q−1
0 (Xq

0X1 −X0X
q
1)

of degree d ≥ q + 1 has pn rational points (the degree is equal to d since

we have supposed that the weights of X0 and X1 are equal to 1 in the

graded ring Fq[X0, . . . , Xn]). Now if d ≤ q + 1, by Theorem 4.1 we have

eq(d; 1, 1, a2, . . . , an) ≤ min{pn, dq
n−1 + pn−2} and the bound is met using

the following degree d homogeneous polynomial:

F =
d
∏

i=1

(αiX0 − βiX1)

where (α1 : β1), . . . , (αd : βd) are distinct elements of P1(Fq). �
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