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MAXIMUM NUMBER OF RATIONAL POINTS ON
HYPERSURFACES IN WEIGHTED PROJECTIVE SPACES
OVER FINITE FIELDS

YVES AUBRY AND MARC PERRET

ABSTRACT. An upper bound for the maximum number of rational points
on a hypersurface in a projective space over a finite field has been conjec-
tured by Tsfasman and proved by Serre in 1989. The analogue question
for hypersurfaces on weighted projective spaces has been considered by
Castryck, Ghorpade, Lachaud, O’Sullivan, Ram and the first author in
2017. A conjecture has been proposed there under the assumption that
the first weight is equal to one and proved in the particular case of the
dimension 2. We prove here the conjecture in any dimension provided
the second weight is also equal to one.

Dedicated to our friend Sudhir Ghorpade for his 60 birthda;ﬂ.

1. INTRODUCTION

Let I, be the finite field with ¢ elements and P*(FF,) be the set of rational
points over [F, of the projective space of dimension n > 1. Let us set p,, :=
q¢"+---+q+1forn > 0and p, := 0 for n < 0. We have clearly {P"(F,) = pp.

Answering a conjecture that Tsfasman made at the “Journées Arith-
métiques de Luminy” in 1989, Serre proved in [II] (and independently
Sorensen proved later in [12]) that if F' is a nonzero homogeneous polyno-
mial in F,[Xo, ..., X,] of degree d > 1, then the number of rational points
over F, of the hypersurface V(F') in P defined by F satisfies the so-called
Serre bound:

tV(F)(F,) < dg"™" + pno.
If d > g+ 1 then d¢" ' + p,_o > p, = §P"(F,) and the hypersurface defined
by the degree d homogeneous polynomial X 7 '(X{X; — X,X?) has p,
rational points. Thus the Serre bound holds trivially and is reached for
hypersurfaces of degree greater than or equal to ¢ + 1.

Furthermore, the Serre bound is reached for hypersurfaces of degree less

than or equal to ¢. Indeed, if d < ¢ then the number of rational points on
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the hypersurface given by the polynomial

d
F = H(OéiXo - 5@'X1>7

i=1
where (a; : 81),..., (a4, B4) are distincts elements of P'(F,), attains the
Serre bound. Note that Serre proved that the bound is reached for d < ¢ if
and only if Fis of the above form, that is V' (F') is the union of d hyperplanes
containing a linear variety of codimension 2.

In 1997, Tsfasman and Boguslavsky in [5] have considered the analogue
question for a system of r polynomial equations. They propose a conjecture
for the maximum number of points in P"(F,) of the projective set given
by the common zeros of r linearly independent homogeneous polynomials
of degree d in F,[Xy,...,X,]. The Tsfasman-Boguslavsky conjecture for
r = 1 is nothing else but the Serre bound. Boguslavsky succeded to prove
in [5] the case r = 2. In 2015, Datta and Ghorpade proved in [6] that the
Tsfasman-Boguslavsky conjecture is true if d = 2 and r < n+ 1 but is false
in general if d = 2 and r > n + 2. Moreover, in 2017 they proved in [7]
that the Tsfasman-Boguslavsky conjecture is true for any positive integer
d, provided » < n+ 1. The case for r beyond n + 1 is specifically considered
one year later by Beelen, Datta and Ghorpade in [2] and they conjectured
in 2022 in [3] a general formula when d < ¢ that they were able to prove in
some cases

We are interested here in a generalization in another direction, namely
the question of Tsfasman and Serre in the context of weighted projec-
tive spaces P(aq,...,a,), i.e. the study, for any homogeneous polynomial
F in F,[Xo,...,X,] of degree d (with respect to the weights aq,...,ay),
of the maximum number of rational points on the hypersurface V(F') in
P(ag,. .., a,). In [1], the following quantity has been introduced:

eq(d; ap, ay,as, ..., a,) = max tV(F)(F,)

where the maximum ranges over the set of homogeneous polynomials F' in
F,[Xo, ..., X, of weighted degree d.
It has been conjectured in 2017 in [I] that:

Conjecture 1.1. If ag = 1 and lem(aq, as, ..., a,)|d, and if we order the
weights such that ay < as < ... < a, then
: d .
eq(d; 1, a1, a9, ...,a,) = min{p,, o ' o}
1
In the case of the projective line P(ag, a1), it has been shown in [I] that
eq(d; ap, a1) = min{p,,d/a} where a = lem(ag, a1), so the conjecture holds
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in this case. Moreover, the conjecture has been proved in [I] for projective
planes P(1, a1, az) with a; and ag coprime and a; < ag: if F' € F [ X0, X7, X5
is a nonzero weighted homogenous polynomial of degree d < a;(q + 1)
which is a multiple of ajay then gV (F)(F,) < %q + 1. The proof follows
the one given by Serre with a new notion of lines represented by either a
homogenized linear bivariate equation, or the line at infinity.

Our purpose here is to prove Conjecture [[.1lin any dimension n provided
ap = 1.

We recall in Section 2] the basic facts about weighted projective spaces
and a lower bound for e,(d; ao, ..., a,). Then we study in Section [B] some
morphisms between weighted projective spaces and we establish a relation
between the numbers of zeros of a polynomial and its pullback. Section [ is
devoted to the proof of an upper bound for the number of rational points on
an hypersurface in a weighted projective space. Finally we state and prove
the main result in Section [l

2. A LOWER BOUND FOR THE NUMBER OF RATIONAL POINTS

2.1. Weighted projective spaces. Let ay,...,a, be positive integers and
S be the polynomial ring F,[Xo, ..., X,] graded by deg(X;) = a;. The
weighted projective space P(ay, ..., a,) over F, is the scheme

P(ag,...,a,) = Proj S,
and can be seen as the geometric quotient

AT\ {0}/ G,
of the punctured affine space AEH \ {0} over F, under the action of the

multiplicative group G, r, over F, given for any nonzero A in an algebraic
closure F, of F, by

A(Zoy ooy mn) = (Ax0, ..., A xy,).

If the a;’s are all equal to 1, then we recover the usual (or straight) projective
space: P(1,...,1) =P

The corresponding equivalent class is denoted by [zg : --- : x,] with-
out any reference to the corresponding weights ay, ..., a, and is called a
weighted projective point. We say that the point is F,-rational if [z : - - - :
xp) = [xd : -+ 27]. Every F,-rational point of a weighted projective space
over F, has at least one representative in F7\ {(0,...,0)}. This result
has been quoted in [I0] but without a complete proof. Due to a lack of
proof writing, we provide the following one over any field k£ which has been
communicated to the authors by Laurent Moret-Bailly.
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Proposition 2.1. Let k be a field and a = (ag,ay,- -+ ,a,) be a sequence of
n + 1 nonzero integers. Then each k-rational point x € P(aq, ..., a,) has a
representative x = [z : xy : - -+ 1 x,] with x; € k for any 0 <i < n.

Proof. [Communicated by Laurent Moret-Bailly] Given a geometric point

r=[2;0<i<n]€Pa,...,a,), wedenote by |z| := {i € {0,--- ,n},x; #
0} the support of x. Then the whole projective space is partitioned into
P(ao, ..., a,) = U W/,
0A1C{0, n}

where W/ := {z € P(ay, ..., an), |z| = I}, so that we have to prove that for
any nonempty subset I of {0,--- ,n}, any k-rational point in W/ admits a
k-rational representative. For this purpose, consider the puncturi_ng regular
map defined over k

WQI — P(ai,i S I)
[z;0<i<n] — [z;i€]]

into a weighted projective space of dimension §/ — 1. This map is injective

and, in case I > 2, is an isomorphism onto the dense torus

Tiasicry = {wisi € I) € P(a;,i € I);Vi € I, x; # 0}

of P(a;,i € I). Now if d; denotes the ged of the a;,¢ € I and b; := ;—; for
all ¢ € I, then we have first that the b;,7 € I are coprime, second that
P(a;,i € I) is k-isomorphic to P(b;,i € I) (see the lemma in section 1.1. of
[9]). Hence, W/ is k-isomorphic to the dense torus T(, ;e of P(b;, i € I) and
we are reduced to prove the proposition only for z in the dense torus of a
weighted projective space P(b;,7 € I) whose weights (b;,i € I) are coprime.

To do this, let (us;i € I) € Z! such that 5
subset

se1 Wib; = 1, and consider the

Vi ={(zsiel)e Ay, \{0r}; Hﬁ =1}
iel
of the affine space of dimension #/. It is then easily checked that for any
x = [x;,1 € I] in the dense torus of P(b;,i € I), its only representative
(Abiz;, i € I) lying on Vi, for A € k, is the one for A = [],.; ;. This
proves that WaI , the dense torus T\, ;ery and the affine subvariety VI are
k-isomorphic, and we are done in case t > 2.

In case #I = 1, the weighted projective space with only one weight a € N*
is P(a) = A% /G,, 1 for the action .z = A%z, so that for any = € k, we have
[z] = [1] (take X be any a-th rooth of z in k'), so that any point in P(a) is
k-rational which concludes the proof. O
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Furthermore, Laurent Moret-Bailly has communicated to us the follow-
ing more general scheme theoretic statement.

Proposition 2.2. (Moret-Bailly) Let S = @©,>0S, be a positively graded
ring. Let X = Proj(S), C = Spec(S) \ Spec(Sy) be the punctured cone, and
p: C — X be the natural projection. Then, for any x : Spec(k) — X,
the reduced fiber (C' X, x5 Spec(k))req is isomorphic to Spec(k[t, t71]).

In particular, for any field k, the map C(k) — X (k) induced by p is
surjective.

Proof. Let z : Spec(k) — X be a rational point of X over k. There exists
some f € S; with d > 0, such that the image of = is contained in the affine
open subset D*(f) := SpecS(yy C X, the spectrum of the localization at
(f). Taking the fiber product from the morphisms p and z, we get the
diagram

Spec(S[4] ®s;, k) = Spec(S[5]) Xspec((s;,) Spec(k) ———— Spec(k)

| : [

Spec(S[§]) = p~H(D*(f)) < » DF(f) = Spec(S(y))
C P s X

with C' X x Spec(k) = Spec(S[%]) Xspec((S s Spec (k). We conclude us-
ing the following Lemma [2.3] for the graded algebra B = S [%] ®s ;s K
whose degree zero homogeneous part is a field. Indeed, the k-rational point
x : Spec(k) — D*(f) := SpecS(yy C X corresponds to a morphism of
rings zf : S¢f)y — k, whose kernel M is a maximal ideal of S(y. From the
isomorphism induced by z* : Sip)/MS(5) ~ k, we deduce the isomorphism
of graded rings

1 1 1
B = S[?] ®s,, (Sip/MS(p)) =~ S[?]/MS[?L
whose degree zero homogeneous part is S()/M.S(yy, which is isomorphic to
k hence is a field. O

Lemma 2.3. (Moret-Buailly) Let B = €, ., By be a Z-graded ring. Assume
that By contains an element f invertible in B, for some d > 0.

(1) Then, the morphism of Z-graded rings

(bf: BO[tvt_l] — B(d) = @nGdZBn
t > f

s an isomorphism.
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(2) If moreover By is a field and d is minimal for the properties d > 0
and By N B* # (0, then the composite map

_17 ¢r
Bylt,t™'] =% B — B — Bireq
1 a graded ring isomorphism.

Proof. Let m € Z. Since f € By N B*, the restriction of ¢ to the homoge-
neous part of some degree m € 7Z

B(]tm — Bdm
botm — b()fm

is an isomorphism of Z-modules, from which the first item follows.

For the second item, we begin by proving that for any e ¢ dZ and
g € B., we have g = 0p. Considering the Euclidean division e = dgq + r
with 0 < r < d of e by d, we have that gf~9 € B._4, = B, with r > 0, so
by minimality of d we deduce that gf~7 ¢ B*. Since f € B*, it follows that
g ¢ B*, and then that g¢f¢ ¢ B*. But g¢f¢ € Beg_4o = By which is a field,
so g% f¢ = 0p, hence g% = 0p.

Now, let 91 be the nilradical of B and let 7 : B — B,y = B/ be the
canonical morphism. We have to prove, thanks to the first item, that the
graded ring morphism

M wBY <= B5B/M

is an isomorphism.

The morphism 7 is onto from B = B @ (@e¢dz Be) to B/M and sends
the right part @e¢ 1z Be to 0p by the previous paragraph, so m remains onto
from the first part B,

Now let h € B NKer(r) and by, f™ be the homogeneous part of some
degree dm with by,, € By. Since 7 is a graded ring morphism, we have
bom [T € Ker(m) = M. From f € B* we deduce that by,, € M N By is a
nilpotent element in the field By, hence is equal to zero. We conclude that

M| is an isomorphism. O
B(d)

Consider a rational point of a weighted projective space over a finite field
k with ¢ elements. Starting from a rational representative whose existence
follows from Proposition 2.1 one can prove (see Lemma 7 in [10]) that
it has exactly ¢ — 1 representatives in k"' \ {0}. In particular we have
iP(ao, - . ., a,)(Fy) = pn.

For many more details about weighted projective spaces, one can con-
sult the article of Beltrametti and Robbiano (see [4]) for a theory over an
algebraically closed field of characteristic 0, the article of Dolgachev (see
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[9]) for a theory over a field of characteristic prime to all the a;’s, and the
Appendix of [I] for a survey of the different points of view.

2.2. A lower bound. Let F' be a homogeneous polynomial in .S of degree
d, so that

F(A°Xo,...,\"X,) = \NF(Xy,...,X,) forall \eF,

and let V' (F) be the hypersurface defined by F' in P(ao, ..., a,).
We define, as in the introduction, the quantity:

€q(d; ap, - - - 7an) = Fé’gj@%()} ﬁV(F)(Fq)

where Sy stands for the space of weighted homogeneous polynomials in .S
of weighted degree d. Remark that the previous quantity is only defined for
deaN+---+a,N.

Consider now the polynomial

d/ars
F — H (angrs/ar _ ﬁiX;l'rs/as)
i=1
where r, s € {0, ..., n} are distincts indices, a,s = lem(a,, as), d is a multiple

of a,s satisfying d < a,s(q + 1) and the (o, 5;)’s are distinct elements of
PY(F,). It has been proved in [I] that §V (F)(F,) = (d/avs)¢" "' + pn—2. So,
if @ := min{lem(a,, as),0 <r < s <n} and a | d, then it implies that

. d ,_
6q(d; ag, - - -, a'n) Z mln{pm aq ! +pn—2}~

3. SOME MORPHISMS BETWEEN WEIGHTED PROJECTIVE SPACES

3.1. The morphisms ;. For i =0,...,n, we consider the following mor-
phims 7; :
mo Plag, ... ai-1, 1, ai01,...,0n) —> P(ag, ..., an,)
[Tg -t @y > [mo e ralti i ay).

Our purpose in this Section is to study the behaviour of the rational
points with respect to these morphisms. For this purpose, let us fix some
generator ¢ of the multiplicative group Fy.

For any given i € {0,...,n}, set r; = (a;,q — 1) the ged of a; and ¢ — 1
and consider the map ,,:

o,  Fy — I
z o 2%
Recall that the map ,, is a group homomorphism with kernel Ker(¢,,) =<
-1
5 >=: Ma;, the subgroup of F; of a;-th roots of unity in F; which has
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order 73, and with image Im(p,,) =< 6% >=: A%, the subgroup of F; of
1

Let P be the whole set of rational points over F, of P(ay,...,a,). We

a;~th powers which has order

have a partition P = R; UT; UZ; with respect to the i-th coordinate, where
Ri={lyo: vyl €P(ag,...,a,)(Fy) | yi = 0} U{Oi},

7; = {[yO o yn] € ]P)(a()a .- .,&n)(Fq) | Y = 1} \ {Ol}>

i :={lyo: - yn] € Plag,...,a,)(Fy) | ys € F; \ A%}
and Q; :==[0:---:0:1:0:---:0] is the point where 1 appears at the
index 1.
Let us scrutinize more narrowly the sets Z; and 7;. In order to do this,
consider, for j € {1,...,q — 1}, the sets Z;(j) defined by

Zi(7) = {lyo: - ynl €Pao, ..., an)(Fy) [ y: = &’}
Lemma 3.1. We have:
(i) Zi(j1) = Zi(J2) if j1 = j2 (mod 7).
(1)) Z; =0 if r; =1 and

otherwise.

Proof. We begin by proving that §" = A% for some A € Fy, which will be
used in the proof of the three items. Indeed, there exist by Bézout Theorem
some integers u, v such that r; = ua;+v(g—1), so that §" = (§*)% x (§971)? =
A% for A = 0%

Suppose now that j, = j; + mr; for some integer m and consider some

(Yo -+ yn] € Zi(j2). By writing 6" = A%, it is easily checked from
52 = <5n)m x 0 = ()\m)ai % 91 that [yo R TR 5j27yi+1 C 7yn] —
[()\—m)aoyo ca ()\—m)ai—lyi_l <90 ()\—m)aiJrlyH_l Cas ()\—m)anyn] which

lies in Z;(j1), so that Z;(j2) C Z;(j1). The reverse inclusion follows similarly.
The second item can be proved likewise by writing ¢ = A%, since then

o r ot yica 0T sy sy = (AT g0 e s (AT gy 1
(ATD) % g oo (AT ).

Finally, the set Z; contains of course the union Z;(1)U...U Z;(r; — 1).
Conversely, given some P = [y : «++ g1 : 0"t yip1 1 -+ yn) € I; with

1 < h < q—1 and h not divisible by a;, then writing the Euclidean division
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of h by r; gives the existence of integers m and j such that h = r;m + j
with 0 < j < 7; — 1. Thus, writing 6" = (6")™ x 6 = (A™)% x &, we get
ot it O g et ga] = [0y s e s (AT 6
(A7) %ty g o e e (AT™) %y, ] so that P e Z,(j) for this j € {1,--- ,m;—1}
which concludes the proof.

O

The following proposition describes the number of pre-images of points
by the morphism m; according to the set of the partition that they belong
to.

Proposition 3.2. Let P be a rational point of P(ay, ..., a,).
(i) If P € R; then P has exactly one pre-image rational over F, by ;.
(i1) If P € T; then P has exactly r; pre-images rational over F, by ;.
(i11) If P € Z; then P has no pre-image rational over F, by ;.

Proof. (i) The point O; :=[0:---:0:1:0:---:0] € P(ag,...,a,) has
only one pre-image by 7;, namely the point [0 : ---:0:1:0:---:0] €
P(ag,...,ai-1,1,a;41,...,a,). Moreover, the point [y : -+ : yi—1:0: yipq :

- yn| has only one pre-image by m;, that is the point [yo : -+ : y;—1 : 0 :
Vil D Yn)-

(73) The point [yo : -+ : yi—1 : 1 : yp1 : -+ : Ys] has r; pre-images by
m;, which are precisely the points [yo : -« : yi—1 : 5% S Yig1 ¢t yp) for
k=1,...,7; (the elements 5((1:—% are the a;-th roots of unity in I i.e. the
elements of the group ).

(7ii) The points [yo : - - : y,] with y; € A% have no rational pre-image
by m; since y; is not a a;-th power in F}. O

3.2. Number of zeros of the pullback. Let F' be a homogeneous poly-
nomial in F,[Xo, ..., X,] of (ap,...,a,)-weighted degree d < ¢+ 1, i.e.
F(A*X,, ..., A" X,) = XF(X,,..., X,)
for any \ € FZ. Let
i F(Xo, ..., Xp) = (Fom)(Xo,...,X,) =F(Xo,..., X"

I

) Xn)

be the pullback of ', an homogeneous polynomial of (ag, ..., a;-1,1, @jx1, ..., an)-

weighted degree d. We consider the hypersurface Vp(,,,.. a,)(F) of zeros of
F in P(ay, ..., a,) whose number of rational points over I, is denoted by
N(F). We also consider the hypersurface Vi, . a; 1.1,ai11,...an) (7 F) of ze-
ros of 7™ F in P(ay, .. .,a;-1,1,a;11, .. .,a,) whose number of rational points
over F, is denoted by N (7} F).
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Let us set:

A(F) = 8(Veag,...an) (F) N A)

for A€ {R;, Ti,Z;, Z;(7)}. So, N(F') denotes the number of rational points
,,,,, an)(F') and R;(F), T;(F), I;(F) and Z;(j)(F) denote the number of
those rational points lying on R;, T;,Z; and Z;(j) respectively.

-----

Proposition 3.3. We have :

(i)

(ii)
N(miF) =r/T,(F)+ R;i(F).

(iii) Consider the automorphism o; @ [yo @ =+ Yn) —> [Yo @ =+ ¢ Yioq -
it Yiv1 : -+ Yn) of Plag, ..., an). If 1y := (a;,q — 1) # 1 then:
(a) for j=1,...,1 — 1, we have T;(F o o}) = Z;(j)(F),
(b) for j =r; — 1, we have Ty(F o o)) = Ty(F)
(¢c) and Ri(F) = Ri(Fod?!) for1<j<wr;—1.

Proof. The first equality comes from the partition P = R; U T, UZ,.

The second one from Proposition and the fact that if P is a ra-
tional point over Fy of Viag, . ai 1,1,0501,..0n) (7 F) then 7;(P) is a point of
Vb(ao,....an) (F') Which is rational over IF,.

The third one follows from the fact that the automorphism o; sends 7;
to Z;(1) and Z;(j) to Z;(j +1) for 1 < j <r; —1, and by Lemma B.1] sends
Z;(r; — 1) to T;, and leaves R; stable. O

Now we are enable to prove a relation on the numbers of points between
two floors.

Proposition 3.4. Let F' be a homogeneous polynomial in F,[Xo, ..., X,]
with respect to the weights (ag, a1, ..., a,). Fori € {0,... ,n}, let
ULV P(CL(],...,ai_l,l,ai+1,...,an> — P(ao,...,an)

aq

[Tg @+ 1y e L R FAR R

and i F(Xo, ..., X,) = (Fom)(Xo,...,Xn) = F(Xo,..., X", ...,, X))
be the pullback of F.
Let also & be a primitive element of F;, and o; = [yo : -+ 1 Y] = [y0 :
SYic1 D OYi t Yir1 t et Yn) inside P(ag, . . ., a,). Denote by r; = (a;,q—1)
the gcd of a; with g — 1.
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Then, the number N(F') of rational points over IF, of the hypersurface of
the weighted projective space P(ag, ay, ..., a,) defined by F' satisfies

m—l

<—ZN (Foo?)

Proof. If r; = 1, then the set I; is empty and by (i) and (ii) of Proposition
3.3, we have N(F) = R;(F)+ T;(F) = N(n;F) which gives the result.
Suppose now that r; # 1. By (i) of Proposition 3.3 we have:

riN(F) = (rT;(F)+ Ri(F)) + (rili(F) + (r; — 1)R;(F)).

On one hand, we have by (i) of Proposition B3 that r,T;(F') + R;(F') =
N(7fF) and on the other hand, by Lemma Bl we can write [;(F) <
S Zi(5)(F). Thus, we have:

7j=1

j=1
Moreover, by Proposition B.3 (#i7), we have:
riZi()(F) + Ri(F) = r/L,(F o o)) + Ri(F 0 o)
and we obtain with Proposition B3] (77):
riZi(j)(F) + Ry(F) = N(x} (F 0 o).

Thus we deduce that:
rili(F) + (ri = YRi(F) = Y _ N(x}(Fool))

and we obtain the desired formula.
O

Remark 3.5. Note that under the additional assumption that (a;, a;) =1
for any 1 < i # j < n, we have equality in the above Proposition 3.4l
This comes from the fact that, under this assumption, the sets Z;(j) for
1 <j <r;—1 form a partition of Z;, hence both inequalities in the above
proof are equalities. It remains to show that the sets Z;(j) for 1 < j <r;—1
are pairwise disjoint. Indeed, suppose that there is some common point with
[F,-coordinates

[yo:---:yi_lzdjl:yHl:---:yn]:[y(/):---:y;_l:éh:y£+1:---:y;]
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inside Z;(j1) N 2Z;(j2), with say 1 < 73 < jo < r; — 1. Since this point does
not lie in R;, there is at least one position k # i, such that y, # 0 # y;.
Since they are equal, there is some A € FZ such that

(y67 o 7yz/'—17 5j27 yz/'-i-l? o 7y;) = (Aaoyov Ty )‘aiilyi—lv >\ai5j17 )‘ai+1yi+17 Ty )‘anyn)'
Looking at the k-th and the i-th position, we get y, = A%y, and 62 =
X671 Tt follows first that A = Z& € Fy, second that A% = ¢7277t. But from
a Bézout relation uay + va; = 1, we deduce that
/
A= (%)% x (A9 = (Leye x (527 € T
Yk
Hence, we have A\ = 6™ for some m € N, so that 62771 = \% = jmai It
follows that js — j; = ma; (mod ¢ — 1). Since r; = (a;,q — 1) divides both
a; and g — 1, it divides jo — j; € {0,--- ,r; — 1}, hence j; = j, and we are
done.

4. AN UPPER BOUND FOR THE NUMBER OF RATIONAL POINTS

We prove in this section that an hypersurface in a weighted projective
space cannot have more rational points than in a standard projective space.
The proof is based on an unscrewing and uses Proposition [3.4

P(1,1,1,...,1) =P~

T,

US!

P(1,aq,as...,a,)

o

]P)(a07a17a27 s 7an)

FIGURE 1. Screwing of weighted projective spaces

Theorem 4.1. Let F' be a homogeneous polynomial in F,[Xo,...,X,] of
(ag, a1, ..., a,)-weighted degree d < q + 1. Then the number N(F') of ra-
tional points over F, of the hypersurface of the weighted projective space
P(ag, ai, ..., a,) given by the set of zeros of F' satisfies:

N(F) <dg"™ + pn_o.

Proof. Let F be a homogeneous polynomial in F,[ Xy, ..., X,] of (ap, a1, ..., a,)-

weighted degree d. We consider the successive pullbacks 7§ (F' o 030) with



HYPERSURFACES IN WEIGHTED PROJECTIVE SPACES 13

jo €{0,..., 70— 1}, and 7} (i (F o 0l°) 0 o) with j; € {0,...,7 — 1}, and
so on, of F.
By Proposition [3.4], considering the morphism

m - P(l,a,...,a,) —> Plag,as,...,a,)
[T :xy - ixy] — [xg’ txy e xy
we have:
1 ro—1
N(F) < —ZN Fo(jo))
0 jo=0
where Fy(jo) = 73 (F o 6°). Then, considering the morphism
T P(1,1,ay...,a,) — P(1,a4,...,a,)
[Ko:xy 1wy x| — [ro:al* ixg - xy

we have for 0 < jo < rg — 1:

ri—1

1
N(Fojo)) < -3 N(F(51))
31 =0
where F(j1) = 7 (Fy(jo) o of').
Thus:
ro—1lr;—1
N(F)< — Z Z N(Fi(5))
"o 1]0 0 j1=0

Continuing this process, we obtain

ro—1 rn—1

N(F)

]O 0 Jn=0

The last polynomials are homogeneous polynomials of degree d in the

standard n-dimensional projective space P" = P(1,...,1). Then we apply
the Serre bound
1 _ e
N(F)Sr r TO~~~Tn(dqn 1+pn—2):dq 1+pn—2
0---Tnp
and we get the result. 0

5. THE MAIN RESULT

We are now enable to state and prove Conjecture [I.1l provided a; = 1
(it was already assumed in the conjecture that ag = 1).

Theorem 5.1. For any degree d and for any nonnegative integers as, . . ., Gy,
we have:

eq(d; 1,1, ay, ..., a,) = min{p,, dq" " + p,_2}.
In other words, Conjecture [11] is true for any (aq,as,...,a,) with a3 =1
and without any assumption on the degree d.
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Proof. As seen in Subsection 2] a hypersurface of P(1,1,as...,a,) has
obviously a number of rational points less than or equal to p, and the hy-
persurface defined by the homogeneous polynomial X5 7' (X{X; — X(X7)
of degree d > ¢ + 1 has p, rational points (the degree is equal to d since
we have supposed that the weights of Xy and X; are equal to 1 in the
graded ring F,[Xo, ..., X,]). Now if d < ¢ + 1, by Theorem 1] we have
eq(d; 1,1, aq,. .., a,) < min{p,,dq" ' 4+ p,—_2} and the bound is met using
the following degree d homogeneous polynomial:

d
F = H(OéiXo - ﬁiX1>

i=1
where (ay : B1), ..., (aq : B4) are distinct elements of P'(TF,). O
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