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ABSTRACT. The statement of item (ii) of Proposition 3.2 of the article
referenced in the title is not correct. We provide a corrected version
and show that, under the assumption that ged(a;, a;,¢ — 1) = 1 for any
pair ¢ # j in {0,--- ,n} (with the notations of the paper), our initial
statement becomes valid, as does the remainder of the paper.

As pointed to us by Jade Nardi and Rodrigo San-José, Proposition 3.2
(ii) of our paper cited in the title is not correct. More precisely, let P be a
point lying in the set

T={P=ln: o € Plag, ) (Elye = 1P #[0:-0:1:0-: 0]}
Then, the number #r; *(P)(F,) of F,-rational preimages of P by
™ P((IO,' o 7a"i—171aa'i+17' T aa'n) — ]P)(CLQ,' t aa'n)

[zg 0+t @y e R ZEE B A S ER R

is not equal to
ged(a;, g —1)
as claimed in our Proposition 3.2. Indeed, let us for instance consider, for
fixed ag,a; > 1, the case
my:  Plag,a1,1,4) —  P(ag,a1,2,4)
(w0 : @y 1 w9 @3] = [wo:wy:wd: x)
for ¢ = 5, and the point P = [0,0,1,2] € T2 C P(ap, a1,2,4)(F;5). We thus
have ay = 2 and ¢—1 = 4, so that our Proposition 3.2 predicts ged(2,4) = 2
rational inverse preimages @) of P in P(ag,a1,1,4)(F5), while a close study
shows that it has only one, namely ) =[0:0:1:2]=[0:0:—1:2].

Instead, the following Lemma is true.
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Lemma (Corrected form of Item (ii) of Proposition 3.2). Let i € {0,...,n}
and P =[yo---:yn] € T C Pag,---,a,)(F,) with y; =1 and y; € F, for
0<j<n

Let p = ged(a;|j € Supp(P)) and 6; p = ged(a;|j € Supp(P) and j # @)
where Supp(P) denotes the support of P.

(1) Then, we have
_ ged(ai, (¢ — 1) x di.p)
i, 1(P)(Fq) = 5p -

(2) Assuming that ged(a;, aj,¢q—1) = 1forany j € {1,...,n}\{i}, this
reduces to

g (P)(F,) = ged(a;, ¢ — 1).

Note that the assumption in Item (2) is trivially satisfied, for instance
e cither if the weights a;, a; are coprime for any j # i,
e or if a; is coprime to g — 1.
Under one of the above extra conditions, the result stated in Proposi-
tion 3.2 (ii) is thus correct, as well as the whole paper.

Proof of the Lemma. Let us assume for convenience that ¢ = 0, and that
P=[1:y;::yn:0:---:0] €Ty CPlag,ar, - ,a,)(F,),
with y; € F, and y; # 0 for 1 < 57 < m. Note that we have necessarily
m > 1since [1:0:--- 0] ¢ Tp.
We begin by describing the whole set 7; '(P)(F,). Let Q = [xg : -+ :
z,] € P(1,a1,- - ,a,)(F,) and let us denote by u,.(F,) the set of r-th roots
of unity in F,.

We have Q € 7; '(P) if and only if [0 : @y @ -+t @] = [y oo
Ym 2 0 -+ : 0] in P(ag,as,- - ,a,) which means that there exists A € FZ
such that

xy? = A0 x1
r; = )\“jxyj (1§j§m)
T; = A% x 0 (m < j)

This is equivalent to saying that there exists A\ € E; and ¢ € pg, (F,)
such that

Tog = )\XC
Ty = A% ij (1§j§m)
T; = 0 (m<])
ie.such that Q =[zg: -1z = [AXC: A" Xy A Xy, 1 0---0].

Thus we have proved that

T (PYF) ={Qc=1¢C:m1:ym:0---0f; € pay(Fy)}
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Next, we determine the F-rational points inside the above set 7; *(P)(F,).

Let ¢ € fiqy(Fy). From ¢ # 0 and y] = y; # 0 for 1 <4 < m (since y; € F}),

we have that Qc = [ i g1 : - : Y : 0---0] € 7 '(P)(F,) if and only if
€Tyl -yl 209209 =[C:y1: " Ym: 0---0] which is equivalent
to saying that there exists \ € FZ such that

¢ = Ax¢

yi = Mixy; (1<j5<m)

i.e. such that

A o=t
{X’J’ =1 (1<j<m).
This means that C(q_l)aﬂ' =1 for all 1 < j < m, in other words that

¢ € M<jcmiig-1a; (Fq) = Hged((a—1)ar,(a—1)am) Fq)-

It follows that 7; ' (P)(F,) is the set of points Q¢ = [C: 41+ Y : 0-+-0
such that C € Hay (Fq) N :U“(q—l)xéo,p(Fq) = Mgcd(ao,(q—l)xéo,p)(Fq) where 6O,P =
ged(ag, -+, an).

We now need to determine the number of distinct elements in this set.

Let (1, (2 € fged(ao,(g—1)x50.p) (Fq). We have Q¢ = Q¢, if and only if [¢1 @y :

Y 200 =[Gy Y 2 0-4-0] in P(1,aq,- -, ap). This is
equivalent to the existence of \ € E; such that
G = AXG
yp = Mxy;  (1<j<m)

1.e. such that

{>\ = G/G

A= 1 (1<j<m).
It writes ((1/(2)% =1 for all 1 < 7 < m, hence we have proved that
le = QCZ — C1/<2 S lung(aO,(q—l)sto,P)(FQ) N M(So,p (Fq) = ,Ugcd(ao,&),p)(Fq)-
We deduce that

i (P)(R,) = Lol = ) o)

ged(ag, dop)

)

which proves Item ().

In order to prove Item (2), let ¢ be any prime number and let us set
a:=uwvap), K:=wv(q—1)and o :=v,(dp)

where v, stands for the ¢-adic valuation. We have

ged(ao, (¢ — 1) X do.p)
(1) ve < ng(ao, 50713)

) — min(a, % + 6) — min(a, 0)
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while
2) ve(ged(ag, g — 1)) = min(a, x).

Under the extra assumption that ged(a;, a;,q¢ —1) = 1, at least one of
the three valuations «, k or ¢ do vanish. In each case, it is a trivial matter

to observe that the right hand side in Equations ([Il) and (2) are equal, so
as their left hand side which proves Item (2)).

We end this note by drawing attention to the preprint “Maximum num-
ber of zeroes of polynomials on weighted projective spaces over a finite
field”, larXiv:2507.22597v1 [math.AG] 30 Jul 2025, in which the authors
Jade Nardi and Rodrigo San-José present a proof of the conjecture in the

general case.
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