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A Few More Functions That Are Not APN Infinitely Often
Yves Aubry, Gary McGuire, and Frangois Rodier

ABSTRACT. We consider exceptional APN functions on Fam , which by defini-
tion are functions that are APN on infinitely many extensions of Fom. Our
main result is that polynomial functions of odd degree are not exceptional,
provided the degree is not a Gold number (2¥ 4 1) or a Kasami-Welch number
(4% — 2% 4+ 1). We also have partial results on functions of even degree, and
functions that have degree 2F + 1.

1. Introduction

Let L = F, with ¢ = 2" for some positive integer n. A function f: L — L is
said to be almost perfect nonlinear (APN) on L if the number of solutions in L of
the equation

fle+a)+ flz) =0
is at most 2, for all a,b € L, a # 0. Equivalently, f is APN if the set { f(z+a)+f(z) :
x € L} has size at least 2"~ ! for each a € L*. Because L has characteristic 2, the
number of solutions to the above equation must be an even number, for any function
fon L.

This kind of function is very useful in cryptography because of its good resis-
tance to differential cryptanalysis as was proved by Nyberg in [5].

The best known examples of APN functions are the Gold functions 22" +1 and
the Kasami-Welch functions 24" ~2"+1. These functions are defined over Fy, and
are APN on any field Fam where ged(k,m) = 1.

If fis APN on L, then f is APN on any subfield of L as well. We will consider
going in the opposite direction. Recall that every function f : L — L can be
expressed as a polynomial with coefficients in L, and this expression is unique if
the degree is less than q. We can “extend” f to an extension field of L by using the
same unique polynomial formula to define a function on the extension field. With
this understanding, we will consider functions f which are APN on L, and we ask
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whether f can be APN on an extension field of L. More specifically, we consider
functions that are APN on infinitely many extensions of L. We call a function
f L — L exceptional if f is APN on L and is also APN on infinitely many
extension fields of L. The Gold and Kasami-Welch functions are exceptional.

We make the following conjecture.

Conjecture: Up to equivalence, the Gold and Kasami-Welch functions are the
only exceptional APN functions.

Equivalence here refers to CCZ equivalence; for a definition and discussion of
this see [1] for example.

We will prove some cases of this conjecture. It was proved in Hernando-McGuire
[2] that the conjecture is true among the class of monomial functions. Some cases
for f of small degree have been proved by Rodier [6].

We define

f@+fy+fE)+fle+y+2)
(z+y)(z+2)(y+2)

o(z,y,2) =

which is a polynomial in F,[z,y,2]. This polynomial defines a surface X in the
three dimensional affine space A3.

If X is absolutely irreducible (or has an absolutely irreducible component de-
fined over F,) then f is not APN on F,» for all n sufficiently large. As shown in
[6], this follows from the Lang-Weil bound for surfaces, which guarantees many
F4n-rational points on the surface for all n sufficiently large.

Let X denote the projective closure of X in the three dimensional projective
space P3. If H is a another projective hypersurface in P3, the idea of this paper is
to apply the following lemma.

LeEMMA 1.1. If XNH is a reduced (no repeated component) absolutely irreducible
curve, then X is absolutely irreducible.

_ Proor. If X is not absolutely irreducible then every irreducible component of
X intersects H in a variety of dimension at least 1 (see Shafarevich [7, Chap. I,
6.2, Corollary 5]). So X N H is reduced or reducible.

O

In particular, we will apply this when H is a hyperplane. In Section 2 we study
functions whose degree is not a Gold number (2¥ + 1) or a Kasami-Welch number
(4% — 2% +1). In Section 3 we study functions whose degree is a Gold number - this
case is more subtle.

The equation of X is the homogenization of ¢(x, ¥y, z) = 0, which is ¢(z,y, z,t) =
0 say. If f(z) = E?:o ajzd write this as

d
¢(.’[, Y, z, t) = Z a’j¢j (QC, Y, Z)td_j

j=3
where
Py + 2+ (r+y+2)
(@ +y)(z+2)(y +2)

¢j(xaya Z) =
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is homogeneous of degree j — 3. We will later consider the intersection of X with
the hyperplane z = 0, and this intersection is a curve in a two dimensional projec-
tive space with equation ¢(x,y,0,t) = 0. An affine equation of this surface X is

¢($,y7271) =¢(w,y,2) =0. .
A fact we will use is that if f(z) = 22"+ then

(1.1) day)= [[ (e+ay+(a+1)2).

a€lF,, —F2

This can be shown by elementary manipulations (see Janwa, Wilson, [3, Theorem
4)).

Our definition of exceptional APN functions is motivated by the definition of
exceptional permutation polynomials. A permutation polynomial f : F, — I, is
said to be exceptional if f is a permutation polynomial on infinitely many extensions
of ;. One technique for proving that a polynomial is not exceptional is to prove
that the curve ¢(z,y) = (f(y) — f(z))/(y — =) has an absolutely irreducible factor
over F,. Then the Weil bound applied to this factor guarantees many F,»-rational
points on the curve for all n sufficiently large. In particular there are points with
x # y, which means that f cannot be a permutation.

The authors thank the referee for relevant suggestions.

2. Degree not Gold or Kasami-Welch

If the degree of f is not a Gold number 2¥ + 1, or a Kasami-Welch number
4% — 2k 11, then we will apply results of Rodier [6] and Hernando-McGuire [2] to
prove our results.

LEMMA 2.1. Let H be a projective hypersurface. If X N H has a reduced ab-
solutely irreducible component defined over IFy then X has an absolutely irreducible
component defined over F,.

PROOF. Let Yy be a reduced absolutely irreducible component of XNH defined
over Fy,. Let Y be an absolutely irreducible component of X that contains Yj.
Suppose for the sake of contradiction that Y is not defined over ;. Then Y is
defined over Fy: for some ¢. Let o be a generator for the Galois group Gal(Fy: /F,)
of F,e over F,. Then o(Y) is an absolutely irreducible component of X that is
distinct from Y. However, o(Y) 2 o(Yg) = Yg, which implies that Y is contained
in two distinct absolutely irreducible components of X. This means that a double
copy of Yy is a component of X, which contradicts the assumption that Yy is
reduced. O

_ LEmMMA 2.2. Let H be the hyperplane at infinity. Let d be the degree of f. Then
X N H is not reduced if d is even, and X N H is reduced if d is odd and f is not a
Gold or Kasami-Welch monomial function.

PROOF. Let ¢q(x,y, z) denote the ¢ corresponding to the function z¢. In XNH
we may assume ¢ = ¢g.

If d is odd then the singularities of X N H were classified by Janwa-Wilson [3].
They show that the singularities are isolated (the coordinates must be (d — 1)-th
roots of unity) and so the dimension of the singular locus of X N H is 0.
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Suppose d is even and write d = 27e where e is odd. In X N H we have
(@+y)@+2)(y+2)ea(w,y,2) = a®+y'+20+ (x+y+2)
= @+t @ty +2)9)?
= (@)@t )y +2)oc(y.2)?.
Therefore

$a(,y,2) = de(m,y,2)” (x +y) (@ +2)(y + 2)* "
and is not reduced. O

Here is the main result of this section.

THEOREM 2.3. If the degree of the polynomial function f is odd and not a Gold
or a Kasami- Welch number then f is not APN over Fyn for all n sufficiently large.

PROOF. By Lemma 2.2, X N H is reduced. Furthermore, we know by [2] that
X N H has an absolutely irreducible component defined over F,, which is also
reduced. Thus, by Lemma 2.1, we obtain that X has an absolutely irreducible
component defined over Fy. As discussed in the introduction, this enables us to
conclude that f is not APN on F» for all n sufficiently large. O

In the even degree case, we can state the result when half of the degree is odd,
with an extra minor condition.

THEOREM 2.4. If the degree of the polynomial function f is 2e with e odd, and
if f contains a term of odd degree, then f is not APN over Fyn for all n sufficiently
large.

PROOF. As shown in the proof of Lemma 2.2 in the particular case where
d = 27e with e odd and j = 1, we can write

Pa(@,y,2) = e(x,y,2)*(x +y)(z + 2)(y + 2).
Hence, z +y = 0 is the equation of a reduced component of the curve X, = X N H
with equation ¢4 = 0 where H is the hyperplane at infinity. The only absolutely
irreducible component X of the surface X containing the line z +y = 0 in H is
reduced and defined over IF;. We have to show that this component doesn’t contain
the plane x +y = 0.

The function = + y doesn’t divide ¢(z,y, z) if and only if the function (x + y)?
doesn’t divide f(z) + f(y)+ f(2) + f(x +y+ 2). Let 2" be a term of odd degree of
the function f. We show easily that (z+y)? doesn’t divide 2" +y" +2" + (z+y+2)"
by using the change of variables s = x + y which gives:

xr+yr+zr+($+y+z)r :s(x“1+z'”’1)+52P
where P is a polynomial.
Hence X has an absolutely irreducible component defined over IF; and then f

is not APN on Fy» for all n sufficiently large.
O

Remark: This theorem is false if 2e is replaced by 4e in the statement. A coun-
terexample is 12 +cx?, where ¢ € Fy satisfies c?+c+1 = 0, which is APN on Fy» for
any n which is not divisible by 3, since it is CCZ-equivalent to z>. Indeed this func-
tion is defined over Fy, and is equal to Lo f, where f(x) = 2% and L(z) = 2% + cz.
Certainly L is Fy-linear, and it is not hard to show that L is bijective on Fyn if
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and only if n is not divisible by 3. The graph of #3 is {(z,23) | © € F4n} and it
is transformed in the graph of z'% + cz® which is {(z,2'? + c23) | z € Fyn} by
the linear permutation I'd x L where Id is the identity function. So when n is not
divisible by 3, L o f is APN on Fy» because f is APN. This example shows in
particular that our conjecture has to be stated up to CCZ-equivalence.

3. Gold Degree

Suppose the degree of f is a Gold number d = 2* + 1. Set d to be this value
for this section. Then the degree of ¢ is d — 3 = 2F — 2.

3.1. First Case. We will prove the absolute irreducibility for a certain type
of f.
THEOREM 3.1. Suppose f(z) = x¢ + g(x) where deg(g) < 2¥"1 +1 . Let

k—1 .
g(z) = Z?:o + a;jz’. Suppose moreover that there exists a nonzero coefficient
a; of g such that ¢;(x,y, z) is absolutely irreducible. Then ¢(z,y,z) is absolutely
irreductble.

PROOF. We must show that ¢(x, y, ) is absolutely irreducible. Suppose ¢(z,y, 2)=
P(z,y,2)Q(x,y, z). Write each polynomial as a sum of homogeneous parts:

d
(31) Zaj¢j($,y,2) = (P5+Ps—1 ++P0)(Qt+Qt—1++Qo)
Jj=3

where P;,Q; are homogeneous of degree j. Then from (1.1) we get

PQi= [ @+ay+(a+1)2).
(XEF2k —Fy

In particular this implies that Ps; and Q; are relatively prime as the product is
made of distinct irreducible factors.

The homogeneous terms in (3.1) of degree strictly less than d — 3 and strictly
greater than 2¥~1 — 2 are 0, by the assumed bound on the degree of g. Equating
terms of degree s+t — 1 in the equation (3.1) gives PsQ;—1 + Ps—1Q: = 0. Hence
P, divides P;_1@Q: which implies P, divides Ps_; because ged(Ps, Q) = 1, and we
conclude P;_1 = 0 as deg P;_1 < deg P;. Then we also get ;1 = 0. Similarly,
Ps o =0=Qt_2, Ps_3=0= Q;_3, and so on until we get the equation

PSQO—’—PSftQt =0

where we suppose wlog that s > ¢. (Note that when s > ¢, one gets from s + t =
d —3 that s > (d —3)/2 and t < (d — 3)/2, and the bound on deg(g) is chosen:
deg(g) < t+3 < 2F~1 4+ 2.) This equation implies P, divides P,_;Q;, which implies
Py divides Ps_y, which implies P;_; = 0. Since P; # 0 we must have Q¢ = 0.

We now have shown that QQ = @ is homogeneous. In particular, this means
that ¢;(x,y, z) is divisible by « + ay + (o + 1)z for some a € For. — F5 and for all j
such that a; # 0. We are done if there exists such a j with ¢;(z,y, z) irreducible.

O

Remark: The hypothesis that there should exist a j with ¢;(z,y, z) is absolutely
irreducible is not a strong hypothesis. This is true in many cases (see the next
remarks). However, some hypothesis is needed, because the theorem is false without
it. One counterexample is with g(z) = 2° and k > 4 and even.
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Remark: It is known that ¢; is irreducible in the following cases (see [4]):

e j =3 (mod 4);

e j=5 (mod 8) and j > 13.
Remark: The theorem is true with the weaker hypothesis that there exists a
nonzero coefficient a; such that ¢;(z,y, z) is prime to ¢ (recall d = 2% 4 1). This
is the case for

e j=2"+411is a Gold exponent with r prime to k;

e jis a Kasami exponent (see [3, Theorem 5]);

e j = 2/¢ with e odd and e is in one of the previous cases.
Example: This applies to 232 + g(z) where g(z) is any polynomial of degree < 17.
Remark: The proof did not use the fact that f is APN. This is simply a result
about polynomials.
Remark: The bound deg(g) < 28~!+1 is best possible, in the sense that there is an
example with deg(g) = 2~ +2 in Rodier [6] where ¢ is not absolutely irreducible.
The counterexample has k = 3, and f(z) = 2° 4+ ax® + a?2®. We discuss this in the
next section.

3.2. On the Boundary of the First Case. As we said in the previous
section, when f(z) = 22"+ 4 g(z) with deg(g) = 2F~! + 2, it is false that ¢ is
always absolutely irreducible. However, the polynomial ¢ corresponding to the
counterexample f(z) = 2% + ax® + a*2® where a € F, factors into two irreducible
factors over F,. We generalize this to the following theorem.

THEOREM 3.2. Let ¢ = 2. Suppose f(x) = 2% + g(x) where g(z) € F,[z] and
deg(g) = 281 + 2. Let k be odd and relatively prime to n. If g(z) does not have
the form az? T2 4 6223 then ¢ is absolutely irreducible, while if g(x) does have
the form az? ' F2 4 a2 then either ¢ 1s irreducible or ¢ splits into two absolutely
irreducible factors which are both defined over F.

PROOF. Suppose ¢(z,y,2) = P(z,y,2)Q(x,y, z) and let

Write each polynomial as a sum of homogeneous parts:
d
Z%@(L%Z’) = (Ps+ Ps—1+ -+ P)(Qt + Qt—1+ -+ Qo).
j=3

Then
PQi= ][] @+oay+(1+a)p).

a€F ;. —F2
In particular this means Py and @, are relatively prime as in the previous theorem.
We suppose wlog that s > ¢, which implies s > 2¥~1 — 1. Comparing each degree
gives Ps_1 = 0= Q¢_1, Ps_o =0 = Q;_2, and so on until we get the equation of
degree s+ 1

PSQI + PsftJrth =0
which implies Py_;y1 = 0 = Qy. If s # t then s > 2¥~!. Note then that as,3¢s,3 =
0. The equation of degree s is

P,Qo + Ps—1Q = as+3¢s+3 =0.
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This means that P,_; = 0, so Qo = 0. We now have shown that () = @Q; is
homogeneous. In particular, this means that ¢(x, y, z) is divisible by x+ay+(1+«)z
for some a € For —IFy, which is impossible. Indeed, since the leading coefficient of g
is not 0, the polynomial ¢ox—15 occurs in ¢; as gor—1,9 = gzﬁgk,QH(x—f-y)(y—i—z)(z—i—
x), this polynomial is prime to ¢, because if  + ay + (1 4+ «)z occurs in the two
polynomials ¢or—145 and ¢or 1, then a would be an element of For N For—2 = Fy
because k is odd.
Suppose next that s = ¢ = 2¥~1 — 1 in which case the degree s equation is

P,Qo + PyQs = asy30s43.
If Qo =0, then

d
$(x,y,2) = > a;6;(x,y,2) = (Ps + Po) Qs
j=3

which implies that

d(w,y, 2) = aqda(x, Y, 2) + agr—110Por-119(2,Y, 2) = PsQr + PoQy

and Py # 0, since g # 0. So one has ¢or—1, 5 divides ¢q4(z,y, z) which is impossible
as

Pok—149 = ¢§k72+1(95 +y)(y +2)(z + z).

We may assume then that Py = Qo, and we have ¢or-1,9 = 0. Then we have

(3.2) oz, y,2) = (Ps + Po)(Qs + Qo) = PsQs + Po(Ps + Q) + P3.

Note that this implies a; = 0 for all j except j = 3 and j = s+ 3. This means
f(z) = 2% + agp32° 3 + asa’.

So if f(x) does not have this form, this shows that ¢ is absolutely irreducible.

If on the contrary ¢ splits as (Ps + Po)(Qs + Qo), the factors Ps + Py and
Qs + Qg are irreducible, as can be shown by using the same argument.

Assume from now on that f(x) = 2% + as,37°T2 + azz® and that (3.2) holds.
Then a3 = P§, so clearly Py = Va3 is defined over IF;. We claim that P, and Q)
are actually defined over Fy.

We know from (1.1) that P,Q; is defined over Fo.

Also Py(Ps+Qs) = as43hs+3, 50 Ps+ Qs = (as43/+/a3)Ps+3. On the one hand,
P + Qs is defined over Fyr by (1.1). On the other hand, since ¢4 3 is defined over
F, we may say that Ps+ Q) is defined over F,. Because (k,n) = 1 we may conclude
that Ps; 4+ Qs is defined over F5. Note that the leading coefficient of Ps + @ is 1,
so a? 43 = a3. Whence if this condition is not true, then ¢ is absolutely irreducible.

Let o denote the Galois automorphism x ~— 2. Then P,Q, = o(P;Qs) =
o(Ps)o(Qs), and Ps + Qs = o(Ps + Qs) = o(Ps) + 0(Qs). This means o either
fixes both P and s, in which case we are done, or else ¢ interchanges them. In
the latter case, o2 fixes both P, and Q,, so they are defined over F;. Because
they are certainly defined over Fyr by (1.1), and k is odd, they are defined over
For NFy = TFs.

Finally, we have now shown that X either is irreducible, or splits into two
absolutely irreducible factors defined over F,. O
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3.3. Using the Hyperplane y = z. We study the intersection of ¢(z,y, z) =
0 with the hyperplane y = z.

LEMMA 3.3. ¢(x,y,y) is always a square.

ProoF. It suffices to prove the result for f(z) = 2¢. This is equivalent to

proving that ¢4(x, 1, 1) is a square. This is equivalent to showing that its derivative
with respect to x is identically 0. This is again equivalent to showing that the partial
derivative with respect to = of ¢4(x,y, 1), evaluated at y = 1, is 0. In Lemma 4.1 of
[6] Rodier proves that y+ z divides the partial derivative of ¢4(z,y, z) with respect
to x, which is exactly what is required. ([

LEMMA 3.4. Let H be the hyperplane y = z. If_y N H is the square of an
absolutely irreducible component defined over F, then X is absolutely irreducible.

PRrOOF. We claim that for any nonsingular point P € X NH, the tangent plane
to the curve X N H at P is H. The equation of the tangent plane is

(x = 20)¢,(P) + (y — y0) ¢, (P) + (2 — 20)¢-(P) = 0

where P = (g, Y0, 20). Since P € H we have yo = 2. It is straightforward to show
that ¢}, (P) = 0 and ¢ (P) = ¢ (P), so this equation becomes

(y + 2)¢y,(P) = 0.
But y + z = 0 is the equation of H. O

COROLLARY 3.5. If f(z) = 2 + g(x), and d = 2¥ 4 1 is a Gold exponent, and
é(z,y,y) is the square of an irreducible, then X is absolutely irreducible.

Note that any term x? in g(x) where d is even will drop out when we calculate
o(z,y,y), because if d = 2e then

e+ oyl 427+ (z+y+2)?
(z+y)(z+2)(y+2)

(¢ 4+ y° + 2° + (z + y + 2)¢)?
(z+y)(z+2)(y+2)

= Pe(z,y,2)(x+y*+2°+ (x+y+2)°)

= 0 onH

qbd(x,y,z) =

because the right factor vanishes on H.
In order to find examples of where we can apply this Corollary, if we write

$(x,y,y) = (x+9)> "2 + h(z,y)?

then to apply this result we want to show that

(@ +)* )
is irreducible. The degree of h is smaller than 2~ — 1. Letting t = x 4+ y we want
an example of h with ¢2° 1 4+ h(z,x +t) is irreducible.
Example: Choose any h so that h(z,z +t) is a monomial, and then P21y
h(z,z +t) is irreducible.
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