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Differentially 4-uniform functions

Yves Aubry and François Rodier

Abstract. We give a geometric characterization of vectorial Boolean func-
tions with differential uniformity ≤ 4. This enables us to give a necessary
condition on the degree of the base field for a function of degree 2r − 1 to be
differentially 4-uniform.

1. Introduction

We are interested in vectorial Boolean functions from the F2-vectorial space F
m
2

to itself in m variables, viewed as polynomial functions f : F2m −→ F2m over the
field F2m in one variable of degree at most 2m−1. For a function f : F2m −→ F2m ,
we consider, after K. Nyberg (see [16]), its differential uniformity

δ(f) = max
α�=0,β

�{x ∈ F2m | f(x+ α) + f(x) = β}.

This is clearly a strictly positive even integer.
Functions f with small δ(f) have applications in cryptography (see [16]). Such

functions with δ(f) = 2 are called almost perfect nonlinear (APN) and have been
extensively studied: see [16] and [9] for the genesis of the topic and more recently
[3] and [6] for a synthesis of open problems; see also [7] for new constructions and
[20] for a geometric point of view of differential uniformity.

Functions with δ(f) = 4 are also useful; for example the function x �−→ x−1,
which is used in the AES algorithm over the field F28 , has differential uniformity 4
on F2m for any even m. Some results on these functions have been collected by C.
Bracken and G. Leander [4, 5].

We consider here the class of functions f such that δ(f) ≤ 4, called differentially
4-uniform functions. We will show that for polynomial functions f of degree d =
2r − 1 such that δ(f) ≤ 4 on the field F2m , the number m is bounded by an
expression depending on d. The second author demonstrated the same bound in
the case of APN functions [17, 18]. The principle of the method we apply here was
already used by H. Janwa et al. [13] to study cyclic codes and by A. Canteaut [8]
to show that certain power functions could not be APN when the exponent is too
large.
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Henceforth we fix q = 2m.
In order to simplify our study of such functions, let us recall the following

elementary results on differential uniformity; the proofs are straightforward:

Proposition 1. (i) Adding a polynomial whose monomials are of degree 0 or
a power of 2 to a function f does not change δ(f).

(ii) For all a, b and c in Fq, such that a �= 0 and c �= 0 we have

δ(cf(ax+ b)) = δ(f).

(iii) One has δ(f2) = δ(f).

Hence, without loss of generality, from now on we can assume that f is a
polynomial mapping from Fq to itself which has neither terms of degree a power of
2 nor a constant term, and which has at least one term of odd degree.

To any function f : Fq −→ Fq, we associate the polynomial

f(x) + f(y) + f(z) + f(x+ y + z).

Since this polynomial is clearly divisible by

(x+ y)(x+ z)(y + z),

we can consider the polynomial

Pf (x, y, z) :=
f(x) + f(y) + f(z) + f(x+ y + z)

(x+ y)(x+ z)(y + z)

which has degree deg(f)− 3 if deg(f) is not a power of 2.

2. A characterization of functions with δ ≤ 4

We will give, as in [17], a geometric criterion for a function to have δ ≤ 4. We
consider in this section the algebraic set X defined by the elements (x, y, z, t) in the

affine space A
4
(Fq) such that

Pf (x, y, z) = Pf (x, y, t) = 0.

We set also V the hypersurface of the affine space A
4
(Fq) defined by

(1) (x+ y)(x+ z)(x+ t)(y + z)(y + t)(z + t)(x+ y + z + t) = 0.

The hypersurface V is the union of the seven hyperplanes H1, . . . , H7 defined
respectively by the equations x+ y = 0, . . . , x+ y + z + t = 0.

We begin with a simple lemma:

Lemma 2. The following two properties are equivalent:
(i) there exist 6 distinct elements x0, x1, x2, x3, x4, x5 in Fq such that⎧⎪⎨

⎪⎩
x0 + x1 = α, f(x0) + f(x1) = β

x2 + x3 = α, f(x2) + f(x3) = β

x4 + x5 = α, f(x4) + f(x5) = β

(ii) there exist 4 distinct elements x0, x1, x2, x4 in Fq such that x0 + x1 + x2 +
x4 �= 0 and such that{

f(x0) + f(x1) + f(x2) + f(x0 + x1 + x2) = 0

f(x0) + f(x1) + f(x4) + f(x0 + x1 + x4) = 0.
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Proof. Suppose that (i) is true. Then we have x0+x1+x2 = α+x2 = x3 and
so f(x0)+f(x1)+f(x2)+f(x0+x1+x2) = f(x0)+f(x1)+f(x2)+f(x3) = 0. The
second equation holds true in the same way. Finally, we have x0 + x1 + x2 + x4 =
x3 + x4 �= 0.

Conversely, let us set α = x0 + x1, β = f(x0) + f(x1) and x3 = α + x2 =
x0 + x1 + x2. Then f(x2) + f(x3) = f(x2) + f(x0 + x1 + x2) = f(x0) + f(x1) = β.
Furthermore, we have x3 �= x0 because x1 �= x2 and we have x3 �= x1 since otherwise
we would have x2 = α+ x3 = α+ x1 = x0.

Setting x5 = α + x4 = x0 + x1 + x4 we have f(x4) + f(x5) = f(x4) + f(x0 +
x1 + x4) = f(x0) + f(x1) = β. We have x3 �= x4 since otherwise we would have
0 = x3 + x4 = x0 + x1 + x2 + x4 which is not the case by hypothesis.

Finally x3 �= x5 since otherwise we would have x2 = x4, and so all the six
elements x0, x1, x2, x3, x4, x5 are different. �

We can now state a geometric characterization of differentially 4-uniform func-
tions:

Theorem 3. The differential uniformity of a function f : Fq −→ Fq is not
larger than 4 if and only if:

X(Fq) ⊂ V

where X(Fq) denotes the set of rational points over Fq of X.

Proof. The differential uniformity is not larger than 4 if and only if for any
α ∈ F

∗
q and any β ∈ Fq, the equation

f(x+ α) + f(x) = β

has at most 4 solutions, that is to say

�{x ∈ Fq|f(x) + f(y) = β, x+ y = α} ≤ 4.

But this is equivalent to saying that we cannot find 6 distinct elements x0, x1, x2, x3, x4, x5

in Fq such that ⎧⎪⎨
⎪⎩
x0 + x1 = α, f(x0) + f(x1) = β

x2 + x3 = α, f(x2) + f(x3) = β

x4 + x5 = α, f(x4) + f(x5) = β.

By the previous lemma, this is equivalent to saying that we cannot find 4 distinct
elements x0, x1, x2, x4 in Fq such that x0 + x1 + x2 + x4 �= 0 and such that{

f(x0) + f(x1) + f(x2) + f(x0 + x1 + x2) = 0

f(x0) + f(x1) + f(x4) + f(x0 + x1 + x4) = 0.

But this can be reformulated by saying that the rational points over Fq of the
variety X are contained in the variety V , that is to say X(Fq) ⊂ V .

�

3. Monomial functions with δ ≤ 4

If the function f is a monomial of degree d > 3:

f(x) = xd

3
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then the polynomials Pf (x, y, z) and Pf (x, y, t) are homogeneous polynomials and
we can consider the intersection X of the projective cones S1 and S2 of dimen-
sion 2 defined respectively by Pf (x, y, z) = 0 and Pf (x, y, t) = 0 with projective

coordinates (x : y : z : t) in the projective space P
3
(Fq).

Even if X is now a projective algebraic subset of the projective space P
3
(Fq),

Theorem 3 tells us also that:

δ(f) ≤ 4 if and only if X(Fq) ⊂ V,

where V is the hypersurface of P
3
(Fq) defined by Equation (1).

Indeed, the algebraic sets X and V in this section are closely related to but not
equal to the sets X and V of the previous section. The set X of this section (resp.
V ) is the set of lines through the origin of the setX (resp. V ) of the previous section
which is invariant under homotheties with center the origin. For convenience, we
keep the same notations.

Lemma 4. The projective algebraic set X has dimension 1, i.e. it is a projective
curve.

Proof. We have to show that the projective surfaces S1 and S2 do not have
common irreducible components. Since S1 and S2 are two cones, it is enough
to prove that the vertex of one of the cones doesn’t lie in the other cone. The
coordinates of the vertex of the cone S2 is (0 : 0 : 1 : 0). To show that it doesn’t
lie in S1, we will prove that Pf (0 : 0 : 1 : 0) �= 0. Indeed, S1 is defined by the
polynomial

Pf (x, y, z) =
xd + yd + zd + (x+ y + z)d

(x+ y)(x+ z)(y + z)
·

Setting x+ y = u, we obtain:

Pf (x, y, z) =
xd + (x+ u)d + zd + (u+ z)d

u(x+ z)(x+ u+ z)
,

which gives

Pf (x, y, z) =
xd−1 + zd−1 + uQ(x, z)

(x+ z)(x+ u+ z)
,

where Q is some polynomial in x and z. This expression takes the value 1 at the
point (0 : 0 : 1 : 0). �

Now we know that X is a projective curve in P
3
(Fq), and in order to estimate

its number of rational points over Fq, we must determine its irreducibility. We will
prove that the curve C7, defined as the intersection of S2 with the projective plane
H7 of equation x+ y+ z+ t = 0, is an absolutely irreducible component of X, and
hence that X is reducible.

Proposition 5. The intersection of the curve X with the plane H7 with the
equation x+ y + z + t = 0 is equal to the curve C7 := S2 ∩H7.

Proof. Since X = S1 ∩ S2, it is enough to prove that C7 ⊂ S1. Since t =
x+ y + z the points of intersection of the cone S2 with the plane x+ y + z + t = 0
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satisfy:

0 = Pf (x, y, t) =
xd + yd + td + (x+ y + t)d

(x+ y)(x+ t)(y + t)

=
xd + yd + (x+ y + z)d + zd

(x+ y)(y + z)(x+ z)

= Pf (x, y, z),

so they belong to S1. �
Proposition 6. The projective plane curve C7 is isomorphic to the projective

plane curve C with equation

Pf (x, y, z) =
xd + yd + zd + (x+ y + z)d

(x+ y)(x+ z)(y + z)
= 0.

Proof. The projection from the vertex of the cone S1 defines an isomorphism
of the projective plane H7 with equation x + y + z + t = 0 onto the plane with
equation t = 0, and it maps C7 onto the curve C with equation Pf (x, y, z) = 0. �

Proposition 7. Let C be a plane curve of degree deg(C) and which is not
contained in V . Then:

�(C ∩ V )(Fq) ≤ 7 deg(C).
Proof. The variety V is the union of seven projective planes. Each plane

cannot contain more than deg(C) points, therefore V contains at most 7 deg(C)
rational points in C. �

In order to get a lower bound for the number of rational points over Fq on the
curve C, hence on the curve X, we need to know if C is absolutely irreducible or
not. This question has been discussed by H. Janwa, G. McGuire and R. M. Wilson
in [14] and very recently by F. Hernando and G. McGuire in [10].

Proposition 8. If d = 2r − 1 with r ≥ 3, then the projective curve X has an
absolutely irreducible component C ′ defined over F2 in the plane x+ z + t = 0 and
this component C ′ is isomorphic to the curve C.

Proof. One checks that the intersection of the cone S1 with the plane x+ z+
t = 0 is the same as the intersection of the cone S2 with that plane. Hence one
can show, as in Proposition 6, that the intersection of the curve X with the plane
x + z + t = 0 is isomorphic to the curve C. Furthermore, it is proved in [14] that
the curve C is absolutely irreducible since, deg(C) = 2r − 1 ≡ 3 (mod 4). �
Hence we can state

Theorem 9. Consider the function f : Fq −→ Fq defined by f(x) = xd with

d = 2r − 1 and r ≥ 3. If 5 ≤ d < q1/4 + 4.6 , then f has differential uniformity
strictly greater than 4.

Proof. The curve C ′ is an absolutely irreducible plane curve of arithmetic
genus πC′ = (d − 4)(d − 5)/2. According to [1] (see also [2] for a more general
statement), the number of rational points of the (possibly singular) absolutely ir-
reducible curve C ′ satisfies

|#C ′(Fq)− (q + 1)| ≤ 2πC′q1/2.
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Hence

#C ′(Fq) ≥ q + 1− 2πC′q1/2.

The maximum number of rational points on the curve C ′ on the surface V is
7(d−3) by Proposition 7. If q+1−2πCq

1/2 > 7(d−3), then C ′(Fq) �⊂ V , therefore
X(Fq) �⊂ V , and δ(f) > 4 by Theorem 3. But this condition is equivalent to

q − 2πC′q1/2 − 7(d− 3) + 1 > 0.

The condition is satisfied when

q1/2 > πC′ +
√
7(d− 3)− 1 + π2

C′

hence when

q ≥ d4 − 18d3 + 121d2 − 348d+ 362

or

5 ≤ d < q1/4 + 4.6.

�

4. Polynomials functions with δ ≤ 4

If the function f is a polynomial of one variable with coefficients in Fq of degree
d > 3, we consider again as in section 3 the intersection X of S1 and S2, which are

now cylinders in the affine space A
4
(Fq) with equations respectively Pf (x, y, z) = 0

and Pf (x, y, t) = 0 and which are of dimension 3 as affine varieties.

Lemma 10. The algebraic set X has dimension 2, i.e. it is an affine surface.
Moreover, it has degree (d− 3)2.

Proof. We have to show that the hypersurfaces S1 and S2 do not have a
common irreducible component. Since these hypersurfaces are two cylinders, it is
enough to prove that the polynomial defining S1 does not vanish on the whole of
a straight line (x0, y0, z, t0) where x0, y0, t0 are fixed and satisfy Pf (x0, y0, t0) = 0.
Indeed, S1 is defined by the polynomial Pf (x, y, z), which takes the value

Pf (x0, y0, z) =
f(x0) + f(y0) + f(z) + f(x0 + y0 + z)

(x0 + y0)(x0 + z)(y0 + z)

at the point (x0, y0, z, t0). If we set x0 + y0 = s0, the homogeneous term of degree
di in Pf (x, y, z) becomes

di(x
di−1
0 + zdi−1) + s0Qi(x0, z)

(z + s0 + x0)(z + x0)

where Qi is a polynomial in x0 and z of degree di − 2. If di is odd, the numerator
of this term is of degree di − 2, and hence does not vanish, so it is the same
for the polynomial Pf (x0, y0, z). Hence, X has dimension 2. Moreover, X is the
intersection of two hypersurfaces of degree d− 3, thus it has degree (d− 3)2. �

The surface X is reducible. Let X =
⋃

i Xi be its decomposition in absolutely
irreducible components.

We embed the affine surfaceX into a projective space P
4
(Fq) with homogeneous

coordinates (x : y : z : t : u). Consider the hyperplane at infinity H∞ defined by
the equation u = 0 and let X∞ be the intersection of the projective closure X of
X with H∞. Then X∞ is the intersection of two surfaces in this hyperplane, which

6
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are respectively the intersections S1,∞ and S2,∞ of the cylinders S1 and S2 with
that hyperplane. The homogeneous equations of S1,∞ and S2,∞ are

Pxd(x, y, z) =
xd + yd + zd + (x+ y + z)d

(x+ y)(x+ z)(y + z)

and

Pxd(x, y, t) =
xd + yd + td + (x+ y + t)d

(x+ y)(x+ t)(y + t)
·

By Proposition 8, the intersection of the curve X∞ with the plane x+z+ t = 0
(inside the hyperplane at infinity) is an absolutely irreducible component C ′ of the
curve X∞ of multiplicity 1, defined over F2. So the only absolutely irreducible
component of X, say X1, which contains C ′ is defined over Fq.

Proposition 11. Let X be an absolutely irreducible projective surface of degree
> 1. Then the maximum number of rational points on X which are contained in
the hypersurface V ∪H∞ is

�(X ∩ (V ∪H∞)) ≤ 8(deg(X )q + 1).

Proof. As deg(X ) > 1, the surface X is not contained in any hyperplane.
Thus, a hyperplane section of X is a curve of degree deg(X ). Using the bound on
the maximum number of rational points on a general hypersurface of given degree
proved by Serre in [19], we get the result. �

Theorem 12. Let q = 2m. Consider a function f : Fq −→ Fq of degree

d = 2r − 1 with r ≥ 3. If 31 ≤ d < q1/8 + 2, then δ(f) > 4. For d < 31, we get
δ(f) > 4 for d = 7 and m ≥ 22 and also if d = 15 and m ≥ 30.

Proof. From an improvement of a result of S. Lang and A. Weil [15] proved
by S. Ghorpade and G. Lachaud [11, section 11], we deduce

|#X1(Fq)− q2 − q − 1| ≤ ((d− 3)2 − 1)((d− 3)2 − 2)q3/2 + 36(2d− 3)5q

≤ (d− 3)4q3/2 + 36(2d− 3)5q.

Hence

#X1(Fq) ≥ q2 + q + 1− (d− 3)4q3/2 − 36(2d− 3)5q.

Therefore, if

q2 + q + 1− (d− 3)4q3/2 − 36(2d− 3)5q > 8((d− 3)q + 1),

then #X(Fq) ≥ #X1(Fq) > 8((d − 3)q + 1), and hence X1(Fq) �⊂ V ∪ H∞ by

Proposition 11. As X is the set of affine points of the projective surface X, we
deduce that X(Fq) �⊂ V and so the differential uniformity of f is at least 6 from
Theorem 3. This condition can be written

q − (d− 3)4q1/2 − 36(2d− 3)5 − 8(d− 3) > 0.

This condition is satisfied when

q1/2 > d4 − 12d3 + 54d2 + 1044d+ 5265 + 25920/d

if d ≥ 2, or d < q1/8 + 2 if d ≥ 31. �
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