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Abstract
We prove that polynomials of degree 10 over �nite �elds of even characteristic

with some conditions on their coe�cients have a di�erential uniformity greater
than or equal to 6 over F2= for all = su�ciently large.
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1 Introduction
Di�erential uniformity of polynomials over �nite �elds is a measure of non-linearity

and resistance against di�erential a�acks in cryptography. Formally, the di�erential
uniformity XF@ (5 ) of a polynomial 5 2 F@ [G] over the �nite �eld F@ with @ elements is
de�ned as the maximum number of solutions of the set of equations 5 (G +U) � 5 (G) = V
where U and V belong to F@ with U non-zero (see [7] where it has been �rst introduced).
For practical cryptographic applications, a particular study has been made over �nite
�elds of characteristic 2, whichwill be the framework of our work here. Polynomials over
F2= with low di�erential uniformity are highly sought a�er, especially those with the
smallest possible one, namely equal to 2. �e functions associatedwith these polynomials
are called APN (Almost Perfect Nonlinear) functions, and exhaustive research suggests
that they are very rare. In fact, Voloch proved in [10] that almost all polynomials have a
di�erential uniformity essentially equal to their degree. Even be�er, Aubry, Herbaut
and Voloch in [2] showed that, for a set of speci�c odd degrees, not almost all but indeed
all polynomials of these degrees have maximal di�erential uniformity for = su�ciently
large. Moreover, these results have been extended in [3] to in�nitely many explicit even
degrees and in [4] to some trinomials of degree divisible by 4.

�is work is partially supported by the French Agence Nationale de la Recherche through the SWAP
project under Contract ANR-21-CE39-0012.
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�e study of the di�erential uniformity of low-degree polynomials was conducted
by Voloch in [10]. Apart from the trivial case of polynomials of degrees less than 4,
he addressed the cases of degrees 5, 6, and 7 (the case of degree 8 is reduced to that of
lower degrees), and he stopped at degree 9.

�e main result of our paper concerns polynomials of degree 10 over �nite �elds of
even characteristic. �e methods developed in [3] and [4], although applicable to even-
degree polynomials, cannot be applied mutatis mutandis to our situation. �erefore, we
are led to develop here a speci�c approach that does not rely on the description of the
locus of polynomials with non-distinct critical values, as was the case in [2], [3] and [4].

Precisely, we prove the following results.

�eorem (�eorems 3.2 and 4.6). Let 5 =
Õ10

8=0 010�8G
8 2 F2= [G] be a polynomial of

degree 10.

1) If

(i) 0103 < 0, and

(ii) TrF2= /F2
⇣
0104+05
02103

⌘
= 0, and

(iii) 0210
2
4 + 025 + 07103 + 0410

2
3 + 0210305 + 0307 < 0,

then XF2= (5 ) � 6 if = is su�ciently large (namely if = � 13).

2) Suppose that 01 = 03 = 0 and suppose that there exists U 2 F⇤2= such that:

(i) 2 := U205+07
U < 0 and the polynomial '3 (G) := G3 + 1G2 + 22 has all its roots in

F2= where 1 := U5+U04+05
U , and

(ii) TrF2= /F2
⇣
U5+U04+05

U3

⌘
= 0,

then XF2= (5 ) = 8 if = is su�ciently large (namely if = � 15).

Remark 1.1. Functions which are APN over in�nitely many extensions of the base �eld
are called exceptional APN. Aubry, McGuire and Rodier conjectured in [1] that, up to a
certain equivalence, the Gold functions 5 (G) = G2

:+1 and the Kasami-Welch functions
5 (G) = G2

2:�2:+1 are the only exceptional APN functions. �e results of the present
paper imply that the polynomials of degree 10 satisfying the conditions of our theorem
are a fortiori not exceptional APN: we recover a known result since the conjecture in
the case of polynomials 5 of degree 24 with 4 odd and when 5 contains a term of odd
degree has been proved by Aubry, McGuire and Rodier in [1].

Section 2 is dedicated to the strategy of introducing a polynomial whose spli�ing
�eld produces a Galois extension in which we will prove the existence of a place which
totally splits using Chebotarev’s density theorem. Section 3 focuses on the �rst part
of the previous theorem and relies on Morse polynomial theory to obtain monodromy
groups equal to the symmetric group. Finally Section 4 concentrates on the second part
of the previous theorem and uses the characterization of the Galois groups of quartic
polynomials through their quadratic and cubic resolvents.
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2 Monodromy groups, Morse polynomials and geo-
metric extensions

Let 5 (G) = Õ10
8=0 010�8G

8 2 F@ [G], where @ = 2= , be a polynomial of degree< = 10 (so
00 is always supposed to be non-zero). Let U 2 F⇤@ and consider⇡U 5 (G) = 5 (G+U)+ 5 (G)
the derivative of 5 with respect to U . By de�nition, the di�erential uniformity of 5 is
given by

X (5 ) := max
(U,V )2F⇤@⇥F@

•{G 2 F@ | ⇡U 5 (G) = V}.

Consider the unique polynomial !U 5 such that !U 5 (G (G + U)) = ⇡U 5 (G) (see Propo-
sition 2.3 of [2] for the existence and the unicity of such a polynomial !U 5 ) and let us
denote by 3 its degree. A simple calculation gives :

⇡U 5 (G) = (00U2 + 01U)G8 + 03UG
6 + 03U

2G5 + (03U3 + 04U
2 + 05U)G4

+ 03U
4G3 + (00U8 + 03U

5 + 04U
4 + 07U)G2 + (01U8 + 03U

6 + 05U
4 + 07U

2)G
+ 00U

10 + 01U
9 + 02U

8 + 03U
7 + 04U

6 + 05U
5 + 06U

4 + 07U
3 + 08U

2 + 09U (1)

and

!U 5 (G) = (U200 + U01)G4 + U03G
3 + (U600 + U501 + U204 + U05)G2

+ (U701 + U503 + U305 + U07)G
+ U1000 + U901 + U802 + U703 + U604 + U505 + U406 + U307 + U208 + U09. (2)

�en we consider the spli�ing �eld � of the polynomial !U 5 (G) � C over the �eld
F@ (C) with C a transcendental element over F@ and we set F�@ to be the algebraic closure
of F@ in � . We consider now the Galois groups⌧ = Gal(�/F@ (C)) and⌧ = Gal(�/F�@ (C))
which are respectively the arithmetic and geometric monodromy groups of !U 5 .

If D0, . . . ,D3�1 are the roots of !U 5 (G) = C , then we will denote by G8 a root of
G2 + UG = D8 . So the 23 elements G0, G0 + U, . . . , G3�1, G3�1 + U are the solutions of
⇡U 5 (G) = C . �en we consider ⌦ = F@ (G0, . . . , G3�1) the compositum of the �elds � (G8 )
and F⌦@ the algebraic closure of F@ in ⌦. We set also � = Gal(⌦/� ) and � = Gal(⌦/�F⌦@ ).
�en we have the diagram of Figure 1 where the constant �eld extensions from : = F2=
are drawn and where C� and C⌦ stand for the smooth projective algebraic curves
associated to the function �elds � and ⌦.

�e purpose here is to apply the Chebotarev density theorem in order to get the
existence of an element V in a �nite extension F of F2= such that the polynomial
⇡U 5 (G) + V splits in F[G]. Indeed, the Chebotarev theorem describes the distribution
of places in a Galois extension of number �elds or in a geometric Galois extension of
function �elds of one variable over a �nite �eld. It states that for any conjugacy class of
the Galois group, there exists a density of places whose Frobenius automorphism falls
within that class. For an unrami�ed place, the associated conjugacy class, that is the
Artin symbol a�ached to this place, is reduced to the identity automorphism if and only
if the place splits in the Galois extension.
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: = F2=

: (C)

: (D0)

� = : (D0, . . . ,D3�1)

� (G3�1)

⌦

. . .� (G0) �:⌦

:� (C)

:�

:⌦

:⌦ (C) P1C /:⌦

C⌦

P1D0/:

P1C /:

D0

C = !U 5 (D0)

C�

G28 + UG8 = D8 Z/2Z

⌧ = Gal(�/: (C)) ⌧

⌧̄

�

⌧̄ ⇥ �̄

�̄

Figure 1: Diagram of �eld extensions and associated algebraic curves.

So the point is to work with a geometric (or regular) Galois extension ⌦/F@ (C), that
is with no constant �eld extension. In other words, we want to �nd an U such that
⌧ = ⌧ and � = �.

�e regularity of the extension ⌦/� will be derived from Proposition 4.6 of [2] (and
a generalization) and is related to a Trace equation. �e regularity of the extension
�/F@ (C), for its part, will come from the theory of Morse polynomials in Section 3 and
from quadratic and cubic resolvents in Section 4.

3 �e result with a1a3 < 0
Let 5 (G) = Õ10

8=0 010�8G
8 2 F2= [G] be a polynomial of degree< = 10 with 01 < 0 and

03 < 0. Consider the choice:
U = 01/00.

�en Formulas (1) and (2) give that the polynomial

⇡ 01
00
5 (G) =

03103

030
G6 + · · ·
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has degree 6 and the polynomial

! 01
00
5 (G) = 0103

00
G3 +

✓
02104

020
+ 0105

00

◆
G2 +

✓
081
070

+
05103

050
+
03105

030
+ 0107

00

◆
G

+
08102

080
+
07103

070
+
06104

060
+
05105

050
+
04106

040
+
03107

030
+
02108

020
+ 0109

00

has degree 3 = 3.
Recall that a polynomial 6 2 F2= [G] is said to be Morse (see the Appendix of Geyer

to the paper [6]) if it has odd degree, if the critical points of 6 are non degenerate (i.e.
the derivative 60 and the second Hasse-Schmidt derivative 6[2] have no common roots)
and if the critical values of 6 are distinct (6 does not take the same value at di�erent
zeros of 60). We have:

Proposition 3.1. Let 5 =
Õ10

8=0 010�8G
8 2 F2= [G] be a polynomial of degree 10. If

(i) 0103 < 0, and

(ii) 0400
2
10

2
4 + 0600

2
5 + 07103 + 0200

4
10

2
3 + 0400

2
10305 + 0600307 < 0,

then the polynomial ! 01
00
5 is Morse.

Proof. Let 5 =
Õ10

8=0 010�8G
8 be as in the theorem and set 6 = ! 01

00
5 . �e polynomial 6

has odd degree (its degree is 3) and the critical values of 6 are obviously distinct since
60 has degree 2 and thus has only one double root.

Now let us �nd a necessary and su�cient condition for the critical points of 6 to be
nondegenerate. We have 60 (G) = 0103

00
G2 + 081

070
+ 05103

050
+ 03105

030
+ 0107

00
.

Recall that the Hasse-Schmidt derivative 6[2] is de�ned by the equality 6(C + D) ⌘
6(C) + 60 (C)D + 6[2] (C)D2 (mod D3) where D and C are independent variables. �en we
get here: 6[2] (G) = 0103

00
G + 02104

020
+ 0105

00
which has G = 0005+0104

0003
as a root. And this root

is also a root of 60 if and only if

0400
3
10

2
4 + 060010

2
5 + 08103 + 0200

5
10

2
3 + 0400

3
10305 + 060010307 = 0.

�us condition (ii) ensures that the polynomial 6 = ! 01
00
5 is Morse. É

Theorem 3.2. For = su�ciently large, namely for = � 13, for all polynomials 5 =Õ10
8=0 010�8G

8 2 F2= [G] of degree 10 such that :

(i) 0103 < 0, and

(ii) TrF2= /F2
⇣
0104+05
02103

⌘
= 0, and

(iii) 0210
2
4 + 025 + 07103 + 0410

2
3 + 0210305 + 0307 < 0,

we have XF2= (5 ) � 6.
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Proof. Since the di�erential uniformity of a polynomial is unchanged if it is multiplied
by a non-zero scalar element, one can suppose that 5 is monic i.e. 00 = 1. Conditions (i)
and (iii) together with Proposition 3.1 imply that !01 5 is a Morse polynomial of degree
3 = 3. But the analogue of the Hilbert theorem given by Serre in�eorem 4.4.5 of [9]
(and detailed in even characteristic in the Appendix of Geyer in [6]) asserts that the
geometric monodromy group of a Morse polynomial of degree 3 is the symmetric group
S3 . But since it is contained in its arithmetic monodromy group which is also a subgroup
of S3 , they coincide. Hence we deduce that the extension �/F2= (C) is geometric.

Moreover, Proposition 4.6 of [2] gives us that the extension ⌦/� will be geomet-
ric if there exists G 2 F2= such that G2 + UG = 11/10, where the 18 ’s are given by
!U 5 (G) =

Õ3
:=0 13�:G

: . In our case, the equation reduces to G2+01G = (02104+0105)/0103.
Hilbert’90 theorem implies that the equation G2 + 01G = 0104+05

03
has a solution in F2= if

and only if TrF2= /F2
⇣
0104+05
02103

⌘
= 0, which is exactly condition (ii) of the theorem.

�us Proposition 4.6 of [2] implies that the extension ⌦/� is geometric. �en we
can apply the e�ective version of the Chebotarev density theorem given by Pollack in
[8] to get the following lower bound (depending on =, the degree 3⌦ of the extension
⌦/F2= (C) and the genus 6⌦ of the function �eld ⌦) for the number+ of places of degree
one in F2= (C) which totally split in ⌦ (see for more details the proof of�eorem 4.1 of
[3]):

+ � 2=

3⌦
� 2
3⌦

(6⌦2=/2 + 6⌦ + 3⌦).

If= is su�ciently large, this number is at least one. To be explicit, we have seen above
that⌧ = ⌧ = S3 and moreover, by Proposition 4.6 of [2], we have that � = � = (Z/2Z)2,
so 3⌦ = 3! ⇥ 22 = 24. Hence + � 1 as soon as 2= � 26⌦2=/2 � 26⌦ � 72 > 0.

Now by Lemma 14 of [8] we have 6⌦  1
2 (deg⇡U 5 � 3)3⌦ + 1 = 37. Hence if

= � 13 we have + � 1 and this gives the existence of V 2 F2= such that the polynomial
⇡U 5 (G) + V splits in F2= [G] with no repeated factors. �e di�erential uniformity of 5 is
thus greater than or equal to the degree of ⇡U 5 , which is 6 in our present case. É

It implies for example that the polynomial 5 (G) = G10 +G9 +G7 +G3 has a di�erential
uniformity over F2= greater than or equal to 6 for = � 13.

Corollary 3.3. All polynomials

5 (G) = G10 + 01G
9 + 02G

8 + 03G
7 + 06G

4 + 07G
3 + 08G

2 + 09G + 010

with 01,03 in F⇤2= and 02,06,07,08,09,010 in F2= and such that 07 < 071 + 04103 have a
di�erential uniformity over F2= greater than or equal to 6 for = su�ciently large.

4 �e case with a1 = 0 and a3 = 0
Making the choice U = 01/00 in the previous section gave a polynomial ⇡U 5 of

degree 6, so the number of solutions of any equation ⇡U 5 (G) = V could be at most 6.
If we choose U < 01/00 then the polynomial ⇡U 5 will be of degree 8 and the equation
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⇡U 5 (G) = V can have 8 solutions. Let us study what happens in a particular case of this
situation.

Suppose without loss of generality that 00 = 1 and let U 2 F⇤2= be such that U +01 < 0
i.e. U < 01. �en, by Formulas (1) and (2), we deduce that ⇡U 5 has degree 8 and !U 5 has
degree 3 = 4. �e following proposition gives conditions for the algebraic and geometric
monodromy groups of 1

U2!U 5 (G) to be the Klein group Z/2Z ⇥ Z/2Z.

Proposition 4.1. Let 5 =
Õ10

8=0 010�8G
8 2 F2= [G] be a polynomial of degree 10 with 00 = 1,

01 = 03 = 0. Let U 2 F⇤2= and set 1 := U5+U04+05
U and 2 := U205+07

U . Suppose that 2 < 0 and
that the polynomial '3 (G) := G3 + 1G2 + 22 factors over F2= as the product of three linear
factors (which means that TrF2= /F2

⇣
13

22

⌘
= TrF2= /F2 (1) and the roots of the polynomial

& () ) := ) 2 + 22) + 16 are cubes in F2= (respectively in F22= ) if = is even (respectively if =
is odd).

�en the quartic polynomial 1
U2!U 5 (G) has algebraic and geometric monodromy groups

isomorphic to the Klein group.

Proof. If we suppose that 00 = 1 and 01 = 03 = 0, then we get by Formula (2), for any
U 2 F⇤2= :

!U 5 (G) = U2G4 + (U6 + U204 + U05)G2 + (U305 + U07)G
+ U10 + U802 + U604 + U505 + U406 + U307 + U208 + U09

We set 6 := 1
U2!U 5 and we consider the irreducible polynomial

6(G) � C =
1
U2!U 5 (G) � C 2 F2= (C) [G]

(recall that any polynomial % (G) 2 F2= [G] gives rise to an irreducible polynomial % (G)�C
in the ring F2= (C) [G]). We have:

6(G) � C = G4 + U5 + U04 + 05
U

G2 + U205 + 07
U

G

+ U9 + U702 + U504 + U405 + U306 + U207 + U08 + 09
U

+ C .

So we have
6(G) � C = G4 + 1G2 + 2G + 3

with 1 := U5+U04+05
U , 2 := U205+07

U and 3 := U9+U702+U504+U405+U306+U207+U08+09
U + C .

�e monic quartic polynomial 6(G) � C in F2= (C) [G] with no cubic term is separable
if and only if 2 < 0 (see the illustration of�eorem 3.4. of [5]) and its quadratic resolvent
'2 (G) and its cubic resolvent '3 (G) are given by (see equations (3.4) and (3.5) of [5]):

'2 (G) = G2 + 22G + (13 + 22)22
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and
'3 (G) = G3 + 1G2 + 22.

It is well-known that '2 (- ) is reducible if and only if TrF2= /F2
⇣
(13+22 )22

24

⌘
= 0 i.e.

TrF2= /F2
⇣
13

22

⌘
= TrF2= /F2 (1).

Let us consider now the reducibility of the polynomial '3 (G) = G3 + 1G2 + 22. �e
substitution I = G +1 eliminates the quadratic term: it gives the equation I3+12I+22 = 0.

�eorem 1 of [11] gives that the polynomial I3 + 12I + 22 (with 2 < 0) is reducible if
and only if

(i) TrF2= /F2
⇣
16

24

⌘
< TrF2= /F2 (1) (in this case the polynomial has a unique root in F2= ),

or

(ii) TrF2= /F2
⇣
16

24

⌘
= TrF2= /F2 (1) and the roots of the polynomial & () ) := ) 2 + 22) + 16

are cubes in F2= if = is even, or in F22= if = is odd (in this case the polynomial
I3 + 12I + 22 factors over F2= as the product of three linear factors).

So if U 2 F⇤2= is such that TrF2= /F2
⇣
16

24

⌘
= TrF2= /F2 (1), i.e. TrF2= /F2

⇣
13

22

⌘
= TrF2= /F2 (1),

and also such that the roots of the polynomial& () ) are cubes in F2= or in F22= (according
as = is even or odd), then the polynomials '2 (G) and '3 (G) are reducibles.

Finally, with the hypothesis of the proposition, 6(G) � C is a separable irreducible
quartic polynomial of F2= (C) [G] such that its quadratic and cubic resolvents are re-
ducibles. By �eorem 3.4. of [5], we obtain that the Galois group ⌧6 of the polynomial
6(G) � C = 1

U2!U 5 (G) � C , which is the arithmetic monodromy group of the polynomial
6(G) = 1

U2!U 5 (G), is isomorphic to the Klein group Z/2Z ⇥ Z/2Z.
Since the polynomial 6(G) � C is irreducible over F2= (C), the arithmetic and the

geometric monodromy groups of 1
U2!U 5 (G), seen as permutation groups, are transitive

subgroups of the symmetric group S4. It is well-known (see [5] for example) that the
only transitive subgroups ofS4 areS4 himself, the alternate group A4, three conjugate
subgroups isomorphic to the dihedral group ⇡4 of order 8, three conjugate subgroups
isomorphic to the cyclic group Z/4Z and one subgroup isomorphic to the Klein group
Z/2Z ⇥ Z/2Z.

Since the geometric monodromy group⌧6 of 6(G) = 1
U2!U 5 (G) is a normal subgroup

of⌧6 and a transitive subgroup ofS4, we obtain that⌧6 is also the Klein group Z/2Z ⇥
Z/2Z. É

Remark 4.2. �e condition 2 < 0 in the previous theorem is equivalent to saying that
the polynomial 6(G) � C := 1

U2!U 5 (G) � C 2 F2= (C) [G] is separable (see the illustration of
�eorem 3.4. of [5]).
Remark 4.3. �e condition in the previous theorem saying that the polynomial '3 (G) :=
G3 + 1G2 + 22 factors over F2= as the product of three linear polynomials is equivalent
to saying that (see�eorem 1 of [11]): TrF2= /F2

⇣
13

22

⌘
= TrF2= /F2 (1) and the roots of the

equation ) 2 + 22) + 16 are cubes in F2= (respectively in F22= ) if = is even (respectively if
= is odd).
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Example 4.4. Let 5 =
Õ10

8=0 010�8G
8 2 F2= [G] be a polynomial of degree 10 with 00 = 1,

01 = 03 = 04 = 05 = 0 and 07 = 1, i.e. the polynomial 5 has the form

5 (G) = G10 + 02G
8 + 06G

4 + G3 + 08G
2 + 09G + 010

with 02,06,08,09,010 in F2= . Let us show that if = ⌘ 0 (mod 4) then there exists U 2 F⇤2=
such that the polynomial 1

U2!U 5 (G) has algebraic and geometric monodromy groups
isomorphic to the Klein group.

Indeed, let U 2 F⇤2= and consider, as in the proof of Proposition 4.1, the irreducible
polynomial

6(G) � C :=
1
U2!U 5 (G) � C 2 F2= (C) [G] .

So we have
6(G) � C = G4 + 1G2 + 2G + 3

with 1 := U4, 2 := 1
U and 3 := U9+U702+U306+U2+U08+09

U + C .
Since 2 < 0 then, by Remark 4.2, the polynomial 6(G) � C is separable. Moreover, the

condition TrF2= /F2
⇣
13

22

⌘
= TrF2= /F2 (1) in Proposition 4.1 remains to

TrF2= /F2 (U7) = TrF2= /F2 (1) = = (mod 2).

Now the equation ) 2 + 22) + 16 = 0 becomes

) 2 + 1
U2) + U24 = 0.

We are looking for U in F⇤2= such that the solutions of this equation are cubes in F2= .
Note that these roots belong to F2= if and only if TrF2= /F2 (U28) = 0, i.e. TrF2= /F2 (U7) = 0.

But one can show that there exists U 2 F⇤24 such that the polynomial) 2+ 1
U2) +U24 has

roots which are cubes in F⇤16 and with TrF24/F2 (U
7) = 0. Indeed, take F16 = F2 [- ]/(- 4 +

- 3 + 1) = F2 (\ ) and choose U = \ 10. �en

& () ) = ) 2 + \ 10) + 1 = ) 2 + 1
(\ 10)2) + (\ 10)24 = () + (\ 2)3) () + (\ 3)3)

with

TrF24/F2 (U
7) = TrF24/F2 (\

70) = TrF24/F2 (\
10) = TrF24/F2 (\

5) = TrF24/F2 (U
2) = 0.

In conclusion, if 5 =
Õ10

8=0 010�8G
8 2 F2= [G] is a polynomial of degree 10 with

00 = 07 = 1 and 01 = 03 = 04 = 05 = 0, and if = ⌘ 0 (mod 4) there exists U 2 F⇤2= (since
in this case F16 is included in F2= ) such that 2 < 0 and, by Remark 4.3, such that the
polynomial '3 (G) := G3 + 1G2 + 22 has all its roots in F2= . Hence by Proposition 4.1 the
polynomial 1

U2!U 5 (G) has algebraic and geometric monodromy groups isomorphic to
the Klein group.
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Recall that � is the spli�ing �eld of the polynomial !U 5 (G) � C over the �eld F2= (C)
and ⌦ = F2= (G0, . . . , G3�1) is the compositum of the �elds � (G8 ), where D0, . . . ,D3�1 are
the roots of !U 5 (G) = C and G8 are the roots of G2 + UG = D8 .

Now let us give a su�cient condition for the extension ⌦/� to be geometric.

Lemma 4.5. Let 5 =
Õ10

8=0 010�8G
8 2 F2= [G] be a polynomial of degree 10 with 00 = 1,

01 = 03 = 0. Let U 2 F⇤2= and set 1 := U5+U04+05
U and 2 := U205+07

U . Suppose that 2 < 0 and
that the polynomial '3 (G) := G3 + 1G2 + 22 factors over F2= as the product of three linear
factors.

�en the extension ⌦/� is geometric as soon as the equation G2 + UG = U5+U04+05
U has a

solution in F2= .

Proof. We begin proving that if D is a root of !U 5 (G) � C in � , then, for each place ® of
� above the place 1 at in�nity of F2= (C), we have that D has a simple pole at ®.

Indeed, the �eld F2= (C) (D) is just the rational function �eld F2= (D). �e place at
in�nity %1 of F2= (D) is the pole of D and it is the place above the place at in�nity 1 of
F2= (C) (which corresponds to the pole of C ). �us the valuation of D at %1 is given by
E%1 (D) = �1 and therefore E%1 (!U 5 (D)) = � deg(!U 5 (G)). Since the rami�cation index
4 (%1 |1) of %1 over1 verify:

E%1 (!U 5 (D)) = E%1 (C) = 4 (%1 |1)E1 (C) = �4 (%1 |1)

thus we obtain:
4 (%1 |1) = deg(!U 5 (G)) = 4.

But the hypotheses on 2 and '3 (G) imply by Proposition 4.1 that the Galois extension
�/F2= (C) has Galois group the Klein group of order 4 ( the place at in�nity of F2= (C) is
then totally rami�ed in F2= (D)). We conclude that � = F2= (D) and then D has a simple
pole at ® = %1.

Now we show that if � ⇢ {0, 1, 2, 3} is neither empty nor the whole set then
Õ

92 � D 9

has a pole at the place at in�nity %1 of � . Since the coe�cient of G3 in the polynomial
!U 5 is zero (see Formula (2)), we have that D0 + D1 + D2 + D3 = 0. We are then reduced
to show that D0 + D1, D0 + D2 and D0 + D3 have a pole at %1. But we are in the situation
where the Galois extension �/F2= (C) has a Galois group isomorphic to Z/2Z ⇥ Z/2Z, so
the following diagram summarize the situation (where : := F2= and all the extensions
have degree 2).

: (C)

: (D0 + D2)

�

: (D0 + D3): (D0 + D1)
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If we denote by18 the place at in�nity of F2= (D0 + D8 ), for 8 = 1, 2, 3, we have that
the rami�cation index 4 (%1 |18 ) = 4 (18 |1) = 2 for all 8 since1 is totally rami�ed in
the extension �/F2= (C).

So we have

E%1 (D0 + D8 ) = 4 (%1 |18 )E18 (D0 + D8 ) = 2 ⇥ (�1) = �2  �1

which proves that %1 is a pole of D0 + D8 .
�en, the proof of Proposition 4.6 of [2] remains true with polynomials of degree 10

with geometric and arithmetic monodromy groups the Klein group: if there exists G 2
F2= such that G2 +UG = 11/10 where the 108B are de�ned by 1

U2!U 5 (G) =
Õ4

8=0 14�8G
8 then

Gal (� (G0, G1, G2, G3)/� ) and Gal
�
�F⌦2= (G0, G1, G2, G3)/�F⌦2=

�
are isomorphic to (Z/2Z)3,

where F⌦2= denotes the algebraic closure of F2= in ⌦ and �F⌦2= denotes the compositum
of the �elds � and F⌦2= . �e coe�cients 18 ’s come from Equation (2): 11/10 = U5+U04+05

U ,
and the existence of a solution in F2= of the equation G2 + UG = 11/10 is exactly the last
condition of the Lemma. �us we conclude that the extension ⌦/� is geometric. É

Theorem 4.6. Let 5 =
Õ10

8=0 010�8G
8 2 F2= [G] be a polynomial of degree 10 with 01 =

03 = 0.
Suppose that there exists U 2 F⇤2= such that:

(i) 2 := U205+07
U < 0 and the polynomial '3 (G) := G3 + 1G2 + 22 has all its roots in F2=

where 1 := U5+U04+05
U , and

(ii) TrF2= /F2
⇣
U5+U04+05

U3

⌘
= 0.

�en XF2= (5 ) = 8 if = is su�ciently large (namely if = � 15).

Proof. Let 5 be a polynomial as in the theorem. Looking at its di�erential uniformity,
one can suppose that 5 is monic. Condition (i) implies by Proposition 4.1 that the
polynomial 1

U2!U 5 (G) has algebraic and geometric monodromy groups isomorphic to
the Klein group. Hence the spli�ing �eld � of the polynomial 6(G) := 1

U2!U 5 (G) � C is a
geometric extension of F2= (C).

Moreover, by Lemma 4.5, the extension ⌦/� is geometric as soon as the equation
G2 + UG = U5+U04+05

U has a solution in F2= . By the Hilbert’90 �eorem, this is equivalent
to TrF2= /F2

⇣
U5+U04+05

U3

⌘
= 0, which is precisely Condition (ii).

�en we use the Chebotarev theorem, as in the proof of�eorem 3.2, to obtain, if
= is su�ciently large (namely here if = � 15), the existence of V 2 F2= such that the
polynomial ⇡U 5 (G) + VU2 splits in F2= [G] with no repeated factors.

�us the di�erential uniformity of 5 is equal to the degree of ⇡U 5 that is 8. É

Example 4.7. Let us come back to Example 4.4, and since the di�erential uniformity
is unchanged if we add an additive polynomial, let us just consider the polynomial
5 (G) = G10 + G3 2 F2= [G]. We have seen that, if = ⌘ 0 (mod 4), then there exists
U 2 F⇤16 ⇢ F⇤2= such that the polynomial ) 2 + 1

U2) + U24 has roots which are cubes in
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F⇤16 and with TrF16/F2 (U7) = TrF16/F2 (U2) = 0. Hence there exists U 2 F⇤2= such that
the polynomial 1

U2!U 5 (G) has algebraic and geometric monodromy groups isomorphic
to the Klein group. Moreover the equation G2 + UG = 11

10
has a solution in F2= since

TrF2= /F2
⇣
U5+U04+05

U3

⌘
= TrF2= /F2 (U2) = 0. Finally we conclude by �eorem 4.6 that if = is

su�ciently large and = ⌘ 0 (mod 4) then XF2= (5 ) = 8.
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[2] Yves Aubry, Fabien Herbaut, and José Felipe Voloch. Maximal di�erential uniformity
polynomials, Acta Arithmetica, Vol. 188 no. 4 (2019), 345-366.

[3] Yves Aubry, Fabien Herbaut, and Ali Issa. Polynomials with maximal di�erential
uniformity and the exceptional APN conjecture, J. Algebra, Vol. 635 no. 4 (2023),
822-837.

[4] Yves Aubry, Fabien Herbaut, and Ali Issa. Trinomials with high di�erential unifor-
mity, arXiv: 2404.09594v1 [math.NT], 15 Apr 2024.

[5] Keith Conrad. Galois groups of cubics and quartics in all characteristics. https:
//kconrad.math.uconn.edu/blurbs/galoistheory/cubicquarticallchar.pdf

[6] Moshe Jarden and Aharon Razon. Skolem density problems over large Galois
extensions of global �elds. In Hilbert’s tenth problem: relations with arithmetic and
algebraic geometry (Ghent, 1999), volume 270 of Contemp. Math., pages 213–235.
Amer. Math. Soc., Providence, RI, 2000. With an appendix by Wulf-Dieter Geyer.

[7] Kaisa Nyberg. Di�erentially uniform mappings for cryptography. In Advances in
cryptology—Eurocrypt’93, pages 55–64. Springer, 1994.

[8] Paul Pollack. Simultaneous prime specializations of polynomials over �nite �elds.
Proc. London Math. Soc., 97(3):545–567, 2008.

[9] Jean-Pierre Serre. Topics in Galois theory. CRC Press, 2007.
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