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Abstract
We prove that polynomials of degree 10 over finite fields of even characteristic
with some conditions on their coefficients have a differential uniformity greater
than or equal to 6 over Fyr for all n sufficiently large.
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1 Introduction

Differential uniformity of polynomials over finite fields is a measure of non-linearity
and resistance against differential attacks in cryptography. Formally, the differential
uniformity Jz, (f) of a polynomial f € Fy[x] over the finite field F, with g elements is
defined as the maximum number of solutions of the set of equations f(x+a) — f(x) = f
where a and f8 belong to F, with a non-zero (see [7] where it has been first introduced).
For practical cryptographic applications, a particular study has been made over finite
fields of characteristic 2, which will be the framework of our work here. Polynomials over
Fyn with low differential uniformity are highly sought after, especially those with the
smallest possible one, namely equal to 2. The functions associated with these polynomials
are called APN (Almost Perfect Nonlinear) functions, and exhaustive research suggests
that they are very rare. In fact, Voloch proved in [10] that almost all polynomials have a
differential uniformity essentially equal to their degree. Even better, Aubry, Herbaut
and Voloch in [2] showed that, for a set of specific odd degrees, not almost all but indeed
all polynomials of these degrees have maximal differential uniformity for n sufficiently
large. Moreover, these results have been extended in [3] to infinitely many explicit even
degrees and in [4] to some trinomials of degree divisible by 4.

This work is partially supported by the French Agence Nationale de la Recherche through the SWAP
project under Contract ANR-21-CE39-0012.
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The study of the differential uniformity of low-degree polynomials was conducted
by Voloch in [[10]. Apart from the trivial case of polynomials of degrees less than 4,
he addressed the cases of degrees 5, 6, and 7 (the case of degree 8 is reduced to that of
lower degrees), and he stopped at degree 9.

The main result of our paper concerns polynomials of degree 10 over finite fields of
even characteristic. The methods developed in [3] and [4], although applicable to even-
degree polynomials, cannot be applied mutatis mutandis to our situation. Therefore, we
are led to develop here a specific approach that does not rely on the description of the
locus of polynomials with non-distinct critical values, as was the case in [2], [3] and [4].

Precisely, we prove the following results.

Theorem (”Iheoremsand . Let f = Z,!:Oo ay-ix' € Fan[x] be a polynomial of
degree 10.

I
(i) ajas # 0, and
(ii) Trg,. /F, (—a1a4+a5) =0, and

2
aias

(iii) a%d% + a% + alas + alal + aazas + aza; # 0,
then Og,, (f) > 6 if n is sufficiently large (namely ifn > 13).

2) Suppose that a; = a3 = 0 and suppose that there exists a € F}, such that:

(i) ¢c:= % # 0 and the polynomial R3(x) := x> + bx? + ¢? has all its roots in

5
+aay+
Fyn whereb = %, and

(ii) Trg,u /r, (—a5+aa4+a5) =0,

a3
then Or,, (f) = 8 if n is sufficiently large (namely if n > 15).

Remark 1.1. Functions which are APN over infinitely many extensions of the base field
are called exceptional APN. Aubry, McGuire and Rodier conjectured in [[1] that, up to a
241 and the Kasami-Welch functions
flx) = x2 =21 are the only exceptional APN functions. The results of the present
paper imply that the polynomials of degree 10 satisfying the conditions of our theorem
are a fortiori not exceptional APN: we recover a known result since the conjecture in
the case of polynomials f of degree 2e with e odd and when f contains a term of odd

degree has been proved by Aubry, McGuire and Rodier in [1].

certain equivalence, the Gold functions f(x) = x

Section|[2]is dedicated to the strategy of introducing a polynomial whose splitting
field produces a Galois extension in which we will prove the existence of a place which
totally splits using Chebotarev’s density theorem. Section [3|focuses on the first part
of the previous theorem and relies on Morse polynomial theory to obtain monodromy
groups equal to the symmetric group. Finally Section [4/concentrates on the second part
of the previous theorem and uses the characterization of the Galois groups of quartic
polynomials through their quadratic and cubic resolvents.
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2 Monodromy groups, Morse polynomials and geo-
metric extensions

Let f(x) = X;2 aio-ix’ € Fq[x], where g = 2", be a polynomial of degree m = 10 (so
ag is always supposed to be non-zero). Let a € [y and consider Do f (x) = f(x+a)+f(x)

the derivative of f with respect to a. By definition, the differential uniformity of f is
given by
1) = eF, | D, = B}.
=, phax #{x € Fq | Dof (x) = B}
Consider the unique polynomial L, f such that L, f (x(x + @)) = Dy f(x) (see Propo-
sition 2.3 of [2] for the existence and the unicity of such a polynomial L, f) and let us
denote by d its degree. A simple calculation gives :

Dqf(x) = (apa® + a1a)x® + azax® + asa®x® + (aza® + asa® + asa)x*
+asatx® + (agad + asd® + agat + a;0)x? + (a10® + asa® + asa + a;a)x

+apa’® + 10’ + aza® + asa” + a0 + asa® + aga* + azad® + aga® + asar (1)

and

Lof(x) = (®ap + aay)x* + aasx® + (a®ag + @’ay + a*aq + aas)x*
+(a’ay + d’as + aas + aay)x

+aPay+a’a; + abay + a’as + alay + dPas + atag + dPa; + atag + aas.  (2)

Then we consider the splitting field F of the polynomial L, f(x) — t over the field
Fg4(t) with t a transcendental element over F, and we set Fg to be the algebraic closure
of Fy in F. We consider now the Galois groups G = Gal(F/F(t)) and G = Gal(F/Fg(t))
which are respectively the arithmetic and geometric monodromy groups of L, f.

If ug,...,uq_; are the roots of L,f(x) = t, then we will denote by x; a root of
x% + ax = u;. So the 2d elements xo, X0 + @, . .., X4_1,X4—1 + @ are the solutions of
Dg f(x) = t. Then we consider Q = Fy(xy, ..., x4-1) the compositum of the fields F(x;)
and IFf; the algebraic closure of Fy in Q. We set also ' = Gal(Q/F) and T= Gal(Q/FlFf;).
Then we have the diagram of Figure [1] where the constant field extensions from k = Fn
are drawn and where Cr and Cq stand for the smooth projective algebraic curves
associated to the function fields F and Q.

The purpose here is to apply the Chebotarev density theorem in order to get the
existence of an element f in a finite extension F of Fy» such that the polynomial
Dy f(x) + B splits in F[x]. Indeed, the Chebotarev theorem describes the distribution
of places in a Galois extension of number fields or in a geometric Galois extension of
function fields of one variable over a finite field. It states that for any conjugacy class of
the Galois group, there exists a density of places whose Frobenius automorphism falls
within that class. For an unramified place, the associated conjugacy class, that is the
Artin symbol attached to this place, is reduced to the identity automorphism if and only
if the place splits in the Galois extension.
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Q
F(xo) : F(xg-1) |T
\\ GxT
xf+otxi=u,- Z/2Z
Cr F= k(uo LUg— 1)
J \ @@ R
G = Gal(F/k(t)) | PL [k w k(uo) | G kF(t)
J / k
P}/k t=Laf(u0) k(t) / KF
k = Fon

Figure 1: Diagram of field extensions and associated algebraic curves.

So the point is to work with a geometric (or regular) Galois extension Q/F,(t), that
is with no constant field extension. In other words, we want to find an « such that
G=GandI =T.

The regularity of the extension Q/F will be derived from Proposition 4.6 of [2] (and
a generalization) and is related to a Trace equation. The regularity of the extension
F[F4(t), for its part, will come from the theory of Morse polynomials in Sectlonland
from quadratic and cubic resolvents in Section[4]

3 The result with aja; # 0

Let f(x) = 2,2 0 ayo_ix' € Fyn[x] be a polynomial of degree m = 10 with a; # 0 and
as # 0. Consider the choice:
a = al/(,l().

Then Formulas (1) and (2) give that the polynomial

3
asas

Da f(x) = 1—3x6+"'
ap ao
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has degree 6 and the polynomial

7 5 3

2 8 5 3
aiaq aids 9 a; aias a;as aiay
— + — | X"+ -t +—+—
a, a, ag ao

Lo f(x) = 123 3+(

ao ap
aa;, d’as aas adas a*ag aPa; d’as  aqa
1 1 1 1 1 1 195 @149

_+_ —_— _— _— —_—

as a al a; a al a’ ap
has degree d = 3.
Recall that a polynomial g € Fan [x] is said to be Morse (see the Appendix of Geyer
to the paper [6]) if it has odd degree, if the critical points of g are non degenerate (i.e.
the derivative g’ and the second Hasse-Schmidt derivative g!?! have no common roots)
and if the critical values of g are distinct (g does not take the same value at different
zeros of g’). We have:

Proposition 3.1. Let f = 312 ajo_;x' € Fyn[x] be a polynomial of degree 10. If

(i) aias # 0, and

2,42

42 2
(i) ajaia; + a0a5 +a’ 1a3 + agaja; +aoa asas + a0a3a7 #0,

then the polynomial La f is Morse.
ag

Proof. Let f = Y% ajo—;x* be as in the theorem and set g = La; f. The polynomial g
ag

has odd degree (its degree is 3) and the critical values of g are obviously distinct since
¢’ has degree 2 and thus has only one double root.
Now let us find a necessary and sufﬁcient condition for the critical points of g to be

5 3
a a: ara
nondegenerate. We have g’ (x) = “%x? +2 7 + a—3 + L 4 A
0 0

Recall that the Hasse-Schmidt derlvatlve g1?! is defined by the equality g(t + u) =
g(t) + g’ (Hu + g2l (H)u? (mod u®) where u and t are independent variables. Then we

a1a3 a? a4 a1a5

apas+aia
4193 5 4 12 4 445 0ds5Td1d4
0

> as a root. And this root
043

get here: g%l (x) = which has x =

is also a root of ¢’ if and only if

4.3 2 25 2
agaias + aja,ai + alas + alalaj + ayaiasas + ajayasa; = 0.

Thus condition (ii) ensures that the polynomial g = La f is Morse. ]
ag

Theorem 3.2. For n sufficiently large, namely for n > 13, for all polynomials f =
i= o ayo—ix' € Fan[x] of degree 10 such that :

(i) aias # 0, and

(it) Trg,. r, (_a1a24+a5) =0, and

alag
(iii) a? a4+a5+a as + a* a3+a asas + aza; # 0,

we have Jg,, (f) > 6.
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Proof. Since the differential uniformity of a polynomial is unchanged if it is multiplied
by a non-zero scalar element, one can suppose that f is monic i.e. ¢y = 1. Conditions (i)
and (iii) together with Proposition[3.1)imply that L, f is a Morse polynomial of degree
d = 3. But the analogue of the Hilbert theorem given by Serre in Theorem 4.4.5 of [9]
(and detailed in even characteristic in the Appendix of Geyer in [6]) asserts that the
geometric monodromy group of a Morse polynomial of degree d is the symmetric group
&4. But since it is contained in its arithmetic monodromy group which is also a subgroup
of Gy, they coincide. Hence we deduce that the extension F/F,n (t) is geometric.
Moreover, Proposition 4.6 of [2] gives us that the extension Q/F will be geomet-
ric if there exists x € Fan such that x> + ax = b, /by, where the b;’s are given by
Lof(x) = ZZ:O ba_x*. In our case, the equation reduces to x*>+a;x = (afa4+a1a5)/a1a3.
Hilbert’90 theorem implies that the equation x? + a;x = %:as has a solution in Fyn if

aiaq+tas

and only if Trg,, /F, (—a2a3 ) = 0, which is exactly condition (ii) of the theorem.
1
Thus Proposition 4.6 of [2] implies that the extension Q/F is geometric. Then we

can apply the effective version of the Chebotarev density theorem given by Pollack in
[8] to get the following lower bound (depending on n, the degree dg of the extension
Q/F,n (t) and the genus gq of the function field Q) for the number V of places of degree
one in [Fyn (t) which totally split in Q (see for more details the proof of Theorem 4.1 of
13):

2" 2 n/2

VZ———(gQZ + 9o +dg).
do dqg

If n is sufficiently large, this number is at least one. To be explicit, we have seen above
that G = G = &3 and moreover, by Proposition 4.6 of [2], we have that T =T = (Z/2Z)?,
sodg = 3! x 2% =24 Hence V > 1 as soon as 2" — 2992"/2 —2gq — 72> 0.

Now by Lemma 14 of [8] we have go < 1(degD.f — 3)dg + 1 = 37. Hence if
n > 13 we have V > 1 and this gives the existence of € F,» such that the polynomial
Dy f(x) + B splits in Fan [x] with no repeated factors. The differential uniformity of f is

thus greater than or equal to the degree of D, f, which is 6 in our present case. ]

It implies for example that the polynomial f(x) = x1°+x° + x7 + x> has a differential
uniformity over F,» greater than or equal to 6 for n > 13.

Corollary 3.3. All polynomials
F(x) = x4+ a;x° + apx® + azx” + agx® + a;x> + agx® + agx + ayg
with ay, az in F,, and ay, as, a7, ag, ag, ayo in Fyn and such that a; # az + a‘l*ag, have a
differential uniformity over Fan greater than or equal to 6 for n sufficiently large.
4 The case witha; =0andas; =0

Making the choice @ = a;/ay in the previous section gave a polynomial D, f of
degree 6, so the number of solutions of any equation D, f(x) = § could be at most 6.
If we choose a # a;/ay then the polynomial D, f will be of degree 8 and the equation
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D, f(x) = p can have 8 solutions. Let us study what happens in a particular case of this
situation.

Suppose without loss of generality that ay = 1 and let a € F;, be such that a+a; # 0
ie. a # ay. Then, by Formulas (1) and (2), we deduce that D, f has degree 8 and L f has
degree d = 4. The following proposition gives conditions for the algebraic and geometric
monodromy groups of %L‘X f(x) to be the Klein group Z/2Z X Z/2Z.

Proposition 4.1. Let f = 3% ajo—;x' € Fan[x] be a polynomial of degree 10 with ag = 1,
5 2

a; = a3 = 0. Let « € F}, and set b := “X2%4% gpd ¢ = %ﬂh Suppose that ¢ # 0 and

that the polynomial Rs(x) := x> + bx? + ¢* factors over Fon as the product of three linear

b3

factors (which means that Trg,, r, (c2

) = Trg,./r, (1) and the roots of the polynomial

Q(T) := T? + ¢®T + b® are cubes in Fyn (respectively in Fyn ) if n is even (respectively if n
is odd).

Then the quartic polynomial %Laf(x) has algebraic and geometric monodromy groups
isomorphic to the Klein group.

Proof. If we suppose that ay = 1 and a; = a3 = 0, then we get by Formula (2), for any
aeF,:
Zn

of (x) = a*x™ + (@” + a“ay + aas)x* + (@’as + aar)x
L 2 4 6, 2 2 3
+a'% +abay + alas + @’as + atag + aPa; + atag + aae
We set g := ﬁLa f and we consider the irreducible polynomial
1
g(x) -t = pLaf(x) —t € Fon(8)[x]

(recall that any polynomial P(x) € Fan [x] gives rise to an irreducible polynomial P(x)—t
in the ring Fan (t)[x]). We have:

5 2

a” + aaq + as a“as + ay

g(x)—t=x*+ x? + x
a a

a®+ Of7(,12 + a5a4 + 6t'4615 + (13(16 + a2a7 + aag + ag

a
So we have
g(x)—t=x"+bx* +cx+d
. a’+aastas a’as+a; o’ +a’ ap+a® ag+at as+a ag+al a;+aag+as
with b = ,C = and d := +t.

a [4
The monic quartic polynomial g(x) — t in Fz» (¢) [x] with no cubic term is separable

if and only if ¢ # 0 (see the illustration of Theorem 3.4. of [5]) and its quadratic resolvent
Ry(x) and its cubic resolvent R;(x) are given by (see equations (3.4) and (3.5) of [5]):

Ry(x) = x% + ?x + (B + c)c?
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and
R3(x) = x> + bx? + ¢%.

(b3+c?)c?
P!

It is well-known that R,(X) is reducible if and only if Trg,, /r, (

Ttg,n /R, (i’—j) = Trg,. /r, (1).
Let us consider now the reducibility of the polynomial R3(x) = x> + bx? + ¢%. The
substitution z = x+b eliminates the quadratic term: it gives the equation z°+b?z+c? = 0.
Theorem 1 of [11] gives that the polynomial 2> + bz + ¢? (with ¢ # 0) is reducible if
and only if

) =01ie.

(i) Tre,./r, (IC’—:) # Trg,, /r, (1) (in this case the polynomial has a unique root in FFon),
or

(i) Trg,,/r, (i’—j) = Trg,, /F, (1) and the roots of the polynomial Q(T) := T? + ¢*T + b°
are cubes in Fy» if n is even, or in Fyn if n is odd (in this case the polynomial
23 + b?z + ¢? factors over Fyn as the product of three linear factors).

Soif a € F;, is such that Trg,, /, (i’—j) = Trg,, /5, (1), i.e. Trg,, /R, (ﬁ—;) = Trg,, /5, (1),
and also such that the roots of the polynomial Q(T) are cubes in F» or in Fy2n (according
as n is even or odd), then the polynomials Ry (x) and R;(x) are reducibles.

Finally, with the hypothesis of the proposition, g(x) — t is a separable irreducible
quartic polynomial of Fj» (#)[x] such that its quadratic and cubic resolvents are re-
ducibles. By Theorem 3.4. of [5], we obtain that the Galois group G, of the polynomial
g(x) —t = ﬁLa f(x) — t, which is the arithmetic monodromy group of the polynomial
g(x) = ﬁLaf(x), is isomorphic to the Klein group Z/2Z X Z/2Z.

Since the polynomial g(x) — ¢ is irreducible over Fy.(t), the arithmetic and the
geometric monodromy groups of ﬁLd f(x), seen as permutation groups, are transitive
subgroups of the symmetric group &4. It is well-known (see [5] for example) that the
only transitive subgroups of G4 are G4 himself, the alternate group 24, three conjugate
subgroups isomorphic to the dihedral group Dy of order 8, three conjugate subgroups
isomorphic to the cyclic group Z/47Z and one subgroup isomorphic to the Klein group
Z/2Z X Z|2Z.

Since the geometric monodromy group G, of g(x) = %Lu £ (x) is a normal subgroup

of G, and a transitive subgroup of G4, we obtain that Eg is also the Klein group Z/2Z x
Z/2Z. O

Remark 4.2. The condition ¢ # 0 in the previous theorem is equivalent to saying that
the polynomial g(x) — t := éLa f(x) —t € Fan(t)[x] is separable (see the illustration of
Theorem 3.4. of [5])).

Remark 4.3. The condition in the previous theorem saying that the polynomial R (x) =
x3 + bx? + ¢ factors over Fys as the product of three linear polynomials is equivalent

to saying that (see Theorem 1 of [[11]): Tr,. /r, (b—j) = Trg,, /r, (1) and the roots of the

C
equation T2 + ¢2T + b® are cubes in Fyn (respectively in Fyen) if 7 is even (respectively if
n is odd).



Poly. . Math. 1 (2) 9

Example 4.4. Let f = 3.1% ajo_;x’ € Fan[x] be a polynomial of degree 10 with ay = 1,
a; =as =ay = as = 0 and a; = 1, i.e. the polynomial f has the form

F(x) = x4+ apx® + agx® + x> + agx® + aox + ayo

with ay, ag, as, as, a1o in Fon. Let us show thatif n = 0 (mod 4) then there exists o € F;,
such that the polynomial ﬁLa f(x) has algebraic and geometric monodromy groups
isomorphic to the Klein group.

Indeed, let a € F}, and consider, as in the proof of Proposition@ the irreducible
polynomial

g(x) —t:= éLaf(x) —t € Fon(t)[x].

So we have
g(x) —t=x"+bx’+cex+d

9 7 3 2
. +a’ ay+ad ag+aP+aag+
w1thb:=(x4,c:=$andd:=a O dptor de¥X *rdstdy 4

24
Since ¢ # 0 then, by Remark[4.2, the polynomial g(x) — t is separable. Moreover, the

condition Trg,, /F, (lc’—j) = Trg,, /7, (1) in Proposition |4.1|remains to

Trg,, /]Fz(a7) =Trg,, /5, (1) =n  (mod 2).

Now the equation T2 + ¢*T + b® = 0 becomes
2, 1 24
"+ =5T+a” =0.
a

We are looking for « in F,, such that the solutions of this equation are cubes in Fn.
Note that these roots belong to Fy» if and only if Trg,, /5, (@®®) = 0, i.e. Trg,, /5, (¢”) = 0.

But one can show that there exists a € F, such that the polynomial T?+ -5 T+a** has
roots which are cubes in Fj, and with Trg,, /z, (o) = 0. Indeed, take Fq¢ = Fo[X]/(X* +
X3 +1) = F5(0) and choose a = 6'°. Then

1
(610)2

oM =T>+0"T+1=T"+ T+ (0'9% = (T + (6%)*)(T + (6°)°)

with
7y — 70\ _ 10y _ 5\ _ 2y _
TI‘]F24/]FZ(OC ) = TrFZ4/]F2(9 ) = TrFZ4/FZ(9 ) = Tr]g24/]1:2 (9 ) = Tl‘]p24/]yz (0{ ) =0.

In conclusion, if f = Y12 ajo_ix* € Fyn[x] is a polynomial of degree 10 with
ay=ay;=1anda; =as=a, =as =0,and if n = 0 (mod 4) there exists a € F;, (since
in this case Fy; is included in Fyn) such that ¢ # 0 and, by Remark such that the
polynomial Rs(x) := x> + bx? + ¢? has all its roots in Fyx. Hence by Proposition [4.1]the
polynomial %La f(x) has algebraic and geometric monodromy groups isomorphic to
the Klein group.
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Recall that F is the splitting field of the polynomial L, f (x) — ¢ over the field Fan (t)
and Q = Fan(xq, ..., x4-1) is the compositum of the fields F(x;), where uy, ..., uy_; are
the roots of L, f(x) = t and x; are the roots of x? + ax = u;.

Now let us give a sufficient condition for the extension Q/F to be geometric.

Lemma 4.5. Let f = Y% ajo_ix' € Fan[x] be a polynomial of degree 10 with ay = 1,
5 2
a; =as =0. Let a € F, and set b := 5435 gnd ¢ := S5 Syppose that ¢ # 0 and
that the polynomial R3(x) := x> + bx? + ¢* factors over Fyn as the product of three linear
factors.
. . . . 2 _ &+aastas

Then the extension Q/F is geometric as soon as the equation x° + ax = =—_*== has a

solution in Fan.

Proof. We begin proving that if u is a root of L, f (x) — t in F, then, for each place g of
F above the place oo at infinity of Fan (¢), we have that u has a simple pole at .

Indeed, the field Fan (t)(u) is just the rational function field F,»(u). The place at
infinity Pe of Fan (1) is the pole of u and it is the place above the place at infinity co of
Fyn (t) (which corresponds to the pole of t). Thus the valuation of u at Py, is given by
vp,, (u) = —1 and therefore vp (L, f(u)) = —deg(Ly f(x)). Since the ramification index
e(Ps|0) of Py, over oo verify:

0P, (Laf () = vp, (1) = e(Peo|00)0eo (1) = —€(Poo|e0)

thus we obtain:
e(Po|oo) = deg(Lo f(x)) = 4.

But the hypotheses on ¢ and Rs (x) imply by Proposition[4.1 that the Galois extension
F/Fyn () has Galois group the Klein group of order 4 ( the place at infinity of Fn (1) is
then totally ramified in F,» (u)). We conclude that F = Fy» (u) and then u has a simple
pole at p = Pw.

Now we show that if J c {0, 1, 2, 3} is neither empty nor the whole set then Zje] u;
has a pole at the place at infinity P, of F. Since the coefficient of x* in the polynomial
Ly f is zero (see Formula ), we have that ug + u; + uy + u3 = 0. We are then reduced
to show that uy + uy, ug + uz and ug + us have a pole at Po,. But we are in the situation
where the Galois extension F/Fn (t) has a Galois group isomorphic to Z/2Z X Z/27Z, so
the following diagram summarize the situation (where k := Fa» and all the extensions
have degree 2).

k(uo +u1) k(uo+uz) k(uo+us)

N

k(t)
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If we denote by oo; the place at infinity of Fan (ug + u;), for i = 1, 2, 3, we have that
the ramification index e(Ps|00;) = e(c0;|00) = 2 for all i since oo is totally ramified in
the extension F/Fan (t).

So we have

Z}Pm(uo + u,-) = e(Poo|ooi)vooi(uo + ul-) =2X (—1) =-2<-1

which proves that P, is a pole of uy + u;.

Then, the proof of Proposition 4.6 of [2] remains true with polynomials of degree 10
with geometric and arithmetic monodromy groups the Klein group: if there exists x €
Fzn such that x? + ax = by /by where the b/s are defined by iLaf(x) = 3%, bs_ix' then
Gal (F(xg, x1, X2, x3) /F) and Gal (FFS, (xo, x1, %2, x3) / FF%, ) are isomorphic to (Z/2Z)°,
where F5, denotes the algebraic closure of Fz» in Q and FFj, denotes the compositum

5
of the fields F and F3,. The coefficients b;’s come from Equation (12}): bi/by = %,
and the existence of a solution in Fy» of the equation x% + ax = b, /by is exactly the last

condition of the Lemma. Thus we conclude that the extension Q/F is geometric. = O

Theorem 4.6. Let f = 31% ajo_;x’ € Fan[x] be a polynomial of degree 10 with a; =
as = 0.
Suppose that there exists a € F;, such that:

2
(i) ¢ :== “=1 £ 0 and the polynomial Ry (x) = x* + bx® + ¢* has all its roots in Fyn
a’+aau+as
(04

(it) Trg,,/r, (—aswg?ms) =0.

Then O, (f) = 8 if n is sufficiently large (namely if n > 15).

where b := ,and

Proof. Let f be a polynomial as in the theorem. Looking at its differential uniformity,
one can suppose that f is monic. Condition (i) implies by Proposition that the
polynomial ﬁLa f(x) has algebraic and geometric monodromy groups isomorphic to
the Klein group. Hence the splitting field F of the polynomial g(x) := ﬁLa f(x)—tisa
geometric extension of Fyn (t).

Moreover, by Lemma [4.5] the extension Q/F is geometric as soon as the equation
X +ax = “5+oi++“5 has a solution in F;». By the Hilbert’90 Theorem, this is equivalent

a’+aas+as

to Tr]an /By ( e
Then we use the Chebotarev theorem, as in the proof of 'Iheorem to obtain, if
n is sufficiently large (namely here if n > 15), the existence of f € F;» such that the
polynomial D, f(x) + fa? splits in Fyn [x] with no repeated factors.
Thus the differential uniformity of f is equal to the degree of D, f that is 8. ]

) = 0, which is precisely Condition (ii).

Example 4.7. Let us come back to Example and since the differential uniformity
is unchanged if we add an additive polynomial, let us just consider the polynomial
f(x) = x1 + x> € Fyn[x]. We have seen that, if n = 0 (mod 4), then there exists
a € Fj¢ C F}, such that the polynomial T? + LT + &** has roots which are cubes in
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Ft, and with Trg, /5, (a’) = Trp, 5, (a?) = 0. Hence there exists a € F}, such that
the polynomial éLa f(x) has algebraic and geometric monodromy groups isomorphic
to the Klein group. Moreover the equation x* + ax = Z—; has a solution in Fy» since

TrE,. /F, (%) = Trp,, /5, (@) = 0. Finally we conclude by Theorem [4.6|that if n is

sufficiently large and n = 0 (mod 4) then Jg,, (f) = 8.
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