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ABSTRACT. We prove, without assuming the Generalized Riemann
Hypothesis, but with at most one exception, that an irreducible
cyclic code ¢(p, m,v) with v prime and p of index 2 modulo v is
a two-weight code if and only if it is a semiprimitive code or it is
one of the six sporadic known codes. The result is proved without
any exception for index-two irreducible cyclic ¢(p, m,v) codes with
v prime not congruent to 3 modulo 8. Finally, we prove that these
two results hold true in fact for irreducible cyclic code ¢(p, m,v)
such that there is three p-cyclotomic cosets modulo v.

1. INTRODUCTION

Irreducible cyclic codes are extensively studied in the literature.
They can be defined by three parameters p, m and v and are de-
noted ¢(p,m,v) (see section 2 for a precise definition). Such codes
with only few different (Hamming) weights are highly appreciated, es-
pecially those with exactly two non-zero weights, called two-weight
codes. The classification of two-weight codes is a classical problem in
coding theory (see [3]); it is still an open problem but recent progress
has been made. An infinite family, namely the semiprimitive codes (i.e.
when —1 is a power of p modulo v), and eleven sporadic examples are
known. Schmidt and White in [9] provided evidence to conjecture that
this is the whole story:

Conjecture 1. An irreducible cyclic code c(p,m,v) is a two-weight
code if and only if it is a semiprimitive code or it is one of the eleven
sporadic known codes.

They proved their conjecture, conditional on the Generalized Rie-
mann Hypothesis (G.R.H.), for index-two codes, that is when p has
index 2 modulo v. Note that semiprimitive codes have two non-zero
weights and thus only the “only if” part had to be proved.

We considered in [1] the conjecture in the binary case and we proved
it in a particular case without assuming G.R.H.. Our main result here
is a proof of this conjecture without assuming G.R.H. but with at
most one exception in the case where p has index 2 and v is prime.
We prove before, using near-primitive root densities and conditionally
on G.R.H., that for any prime number p there are infinitely many such

codes namely index-two irreducible cyclic codes ¢(p, m, v) with v prime.
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We prove the conjecture without any exception (and without as-
suming G.R.H.) in the case where p has index 2 and v is a prime not
congruent to 3 modulo 8. Finally, we remark that the results hold true
in fact for irreducible cyclic codes ¢(p, m, v) with v an integer such that
there is three p-cyclotomic cosets modulo v.

2. IRREDUCIBLE CYCLIC CODES AND MCELIECE WEIGHT-FORMULA

Let us introduce irreducible cyclic codes over a prime finite field
(indeed, it is enough for our purpose, namely the classification of two-
weight irreducible cyclic codes, to consider such codes over prime fields,
as remarked in [9]).

Let p be a prime number and consider the finite field K with p
elements. Let L be the extension of degree m of K, consider a divisor
n of p™ — 1 and write v = (p™ — 1)/n (thus v and p are coprime). Let
¢ be a primitive n-th root of unity in L (i.e. ( is a generator of the
cyclic subgroup of order n of the multiplicative group L*). We define
the ¢(p,m,v) code to be the image of the following map ®,,:

®,: L — K"
to— (Try(ic) )

where Trz/x is the trace of the field L over K.

It is a code of length n and dimension ord,(p), the multiplicative
order of p modulo n. Every irreducible cyclic code over K can be
viewed as a c¢(p, m,v) code (see [9]), so we can take ¢(p,m,v) as the
definition of irreducible cyclic codes over K of length n. The ¢(p, m,v)
codes are known to be projective or saturated according to whether
ged(n,p—1) =1 or ged(n,p—1) = p— 1. As remarked in [9], we may
assume the saturated situation.

Now we are interested in the weight w(t) of a codeword ®,,,(t) of such
a code, for t € L*. Let x be a character of the multiplicative group L*
and let

1) L) = = D xla)es T
xelL*

be the Gauss sum associated with x.

Let V' be the subgroup of L* of index v and let I' be the subgroup
of characters of L* which are trivial both on V and K*. Note that the
order of I" is equal to vged(n,p —1)/(p — 1) which is just equal to v in
the saturated situation. We have the following McEliece formula:

Proposition 2. For anyt € L*, the weight w(t) of the codeword ®,,(t)
s given by:

p—1. . _
(2) w(t) == "+ > X))
x€r\{1}
And, conversely by Fourier inversion
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(3) () = —— 3 w(t)x(t).

p—1 teL* )V

One says that p is semiprimitive modulo v when —1 is in the group
generated by p in (Z/vZ)*, i.e. when ord,(p) is even. Note that in
this case all the Gauss sums are rational and a c¢(p,m,v) code is a
two-weight code. In the paper we investigate the reciprocal: besides
some sporadic known examples, is any two-weight irreducible cyclic
code semiprimitive 7

3. THE CASE v SMALL

Before going further let us treat the case where v is small, i.e. v =2
or 3. We know that a ¢(p,m,2) code is a two-weight code, and that
the weights can be expressed in term of quadratic Gauss sum (see [7]).
In the same way, the weights of a c¢(p, m,3) code can be expressed by
means of cubic Gauss sums. However, it is hard to give the exact values
of the cubic Gauss sums (see [6]), and thus also the weights of such a
code. Nevertheless, we have the following characterization:

Proposition 3. A ¢(p,m,3) code has two weights if and only if it is
semiprimitive (that is here, if and only if p =2 mod 3).

Proof. Let x be a multiplicative character of L of order 3. The number
of weights of a ¢(p, m, 3) code is equal to the number of distincts values
taken by the mapping:

L* >t f(t) = ()X () + () x(t)-

Let 1 # j be a cubic root of unity. Let ¢ be such that x(¢) = j. It is
easy to see that f(1) = f(t) implies 77(Y) = j7.(x), that f(t) = f(t?)
implies 77,() = 72.(x) and that f(1) = f(¢*) implies 77(%) = 7°7(X)-
Therefore, the code has two weights if and only if there exists a cubic
root of unity w such that

(4) 7.(X) = wTL(X)-

In particular, since 71 (x)? is an algebraic integer of degree 2 and
norm p*", we deduce that 77(x)® = 71(¥)® = p°. Hence the Gauss
sums 77(x) are pure Gauss sums (see [7] for a definition of a pure
Gauss sum). It follows by a theorem of Baumert, Mills and Ward

(see Theorem 11.6.4 of [7] for example) that p is semiprimitive modulo
3. U

4. INFINITELY MANY INDEX-TWO ¢(p, m,v) CODES WITH v PRIME

For the study of ¢(p, m,v) codes with v prime and p of index two
modulo v, we are interested in primitive and near-primitive root den-
sities.



4 YVES AUBRY AND PHILIPPE LANGEVIN

In 1927, Emil Artin made the following conjecture (called now the
Artin’s primitive root conjecture): for any integer o # +1 not a square,
the natural density

#{v prime | v < x and « generates F!}

IEIJPOO #{v prime | v < x}
exists and is positive. In 1967, Hooley proved this conjecture under the
assumption of G.R.H.. In particular, he proved that if « is neither +1
nor a perfect square, then there are infinitely many primes v for which
« is a primitive root modulo v.

If we ask a to generate only the squares of F; and not the whole
group F7, i.e. to have index 2 and not index 1 modulo v, we come to
the notion of near-primitive roots. Precisely, fix a # +1 not a perfect
power and let v be a prime and ¢ be an integer such that v =1 (mod t).

Consider
Nyi(x) = #{v prime | v <z and v fa and ind,(a) = t}.

Notice that for t = 1 this quantity is just the previous one studied by
Artin and Hooley. In 2000, Moree introduced in [8] a weighting function
depending on « and t and gave an estimation of N,.(z) assuming
G.R.H.. In particular, for & = p a prime number and ¢ = 2, he proved
that

o(%57) xloglog =
Npalz) = Y +O(F—525).
v odd prime v—1 log x
v<zx
This implies that there exist infinitely many primes v such that p has
index 2 modulo v.

In particular, we have:

Proposition 4. Conditionally on G.R.H., for any prime number p
there are infinitely many index-two irreducible cyclic codes c¢(p, m,v)
with v prime.

5. NECESSARY CONDITIONS ON TWO-WEIGHT CODES

The irreducible cyclic codes ¢(p, m,v), with v a prime number and
with p of index 2 modulo v, range in two families: the first one with
v = 1 (mod 4) and the second one with v = 3 (mod 4). If v =1
(mod 4), then —1 is a square modulo v and since p generates the squares
modulo v, we are reduced to the semiprimitive case. This lead us to
consider the second case, where —1 is not a square modulo v. Moreover,
in view of Proposition 3, we can suppose that v is greater than 3.

Hence, let us consider a prime number p and an integer v satisfying
the following (#) conditions:

(a) v is a prime greater than 3,
(b) ord,(p) = (v —1)/2 i.e. p has index 2 modulo v,
(¢) v=3 (mod 4).
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Let f be the multiplicative order of p modulo v. Note that f divides
m, and we set s = m/f. It is shown in [4] that if a ¢(p, m, v) code with
v satisfying the (£) conditions has two weights then:

v+1 h
5 =
(5) =P

We give, now, a more precise result:

S

Theorem 5. If a ¢(p, m,v) code with v satisfying the (£) conditions is
a two-weight code then we have:

m = ord,(p).

Proof. Since p has index 2 modulo v, then p is a square modulo v, and
(p) = PP’
splits in the extension Q(v/—v)/Q. We have that the norm
No=/(P) =p

and that P" = («) is a principal ideal (since h is the ideal class number
of Q(v/—v)), with a = (a + by/—v)/2 (with a,b € Z) an algebraic
integer of Q(v/—v). Taking norms, we obtain p"* = (a? + vb?)/4 and
since a and b cannot be zero in this situation, we conclude that

v+1

4

But by (5) a ¢(p,m,v) code with v satisfying the (f) conditions has
two weights if and only if
v+1 _

6
(6 :
Thus, p™* < p" and s = 1. O

<p".

S

Then, the previously defined parameter s appearing in [4] and [9] is
equal to 1 under the (f) conditions. In particular, we have:

Corollary 6. If a ¢(p,m,v) code with v satisfying the (£) conditions is
a two-weight code then
v+1

(7 .

where h is the class number of the imaginary quadratic number field
Q(v/—v). In particular, such a code is completely defined by the pa-
rameter v.

Furthermore, we have the following necessary condition on p for two-
weight ¢(p, m,v) code with v satisfying the (£) conditions:

Corollary 7. If a c(p,m,v) code with v satisfying the () conditions
has two weights, then p is the least prime which totally splits in the
extension Q(v/—v)/Q, i.e. p is the least prime which is a square modulo
v.
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Proof. Indeed, if ¢ is a prime which totaly splits in Q(y/—v)/Q, then
the previous proof implies that ¢* > ”T“ = p" which gives £ >p. O
6. MAIN RESULTS

Using the previous section, we can state the following result which
can also be derived from the proof of lemma 4.1. of [4].

Theorem 8. There is no two-weight c(p, m,v) code with v satisfying
the () conditions and with v =7 (mod 8). Hence, Conjecture 1 holds
true for indez-two irreducible cyclic ¢(p, m,v) codes with v a prime not
congruent to 3 modulo 8.

Proof. Since v = 7 (mod 8), it follows that 2 is a square modulo v,
and the ideal (2) splits in the extension Q(v/—v)/Q. By Corollary 7,
we conclude that p = 2. But we proved in [1] that there exists no
two-weight binary c(p, m,v) code with v satisfying the (f) conditions,
so we get the non-existence of such codes. Hence, this proves the
conjecture since the case v = 1 (mod 4) is trivial, as quoted in the
previous section, and the last case v = 3 (mod 4) is divided in two
subcases : when v =7 (mod 8), which is now solved, and when v = 3
(mod 8) which is the remainder case. O

Actually, we will consider now a more general approach using the
identity of Corollary 6 but with at most one exception.

If a ¢(p,m,v) code with v satisfying the (f) conditions has two
weights then we have the following relation

v+1 h
4 - p )
where h is the class number of the imaginary quadratic number field
Q(+/—v) (see Corollary 6).
In 1935, Siegel gave a non-effective lower bound on the residue at s =
1 of the L-function L(s, x,) associated to the primitive odd Dirichlet
character y, of Q(yv/—v). Tatuzawa, in 1951, proved an effective lower
bound of L(1, x,) but with at most one exception (see [10] and see also
[5] for a simple proof): if 0 < & < 1/2 and v > max(e'/¢, e''2), then
L(1,x,) > 0.655ev"°.
Since the class number h of Q(y/—v) with —v =1 (mod 4) is linked
to L(1, x,) by the following Dirichlet class number formula:
mh
L(L X’U) = T
Vv

(%

we can use Tatuzawa theorem to get an upper bound on v.

Proposition 9. There exists at most one two-weight c(p,m,v) code
with v > 10% satisfying the () conditions.
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TABLE 1. Sporadic ¢(p, m,v) codes with v satisfying the
(#) conditions and v < 108,

v |11 19 67 107 163 499
p|3 5 17 3 41 5
hi1 1 1 3 1 3

Proof. Let ¢ = 1/1log(10%) € (0,1/2). For v > max(e'/%, e!?) = 10,
we have, with at most one exception:

L(1, x,) > 0.655ev™° = 0.0350~ %%,
Now, %1 = p" > 2" implies that log %1 > hlog2. By the Dirichlet
class number formula, we get:
4 = m
But, for v > 10®, we have on one hand log”T+1 > 17.03 and on the

other hand w log2 > 28.55 by Tatuzawa theorem. Thus, there
exists no v > 10% such that *I* = p", with at most one exception. [

log log 2.

Now, we make an exhaustive research of the primes v < 10® such
that (v + 1)/4 is a power of a prime p. Then, for such primes v, we
check whether (v + 1)/4 = p"®) holds true or not, with h(v) the class
number of Q(y/—v). Actually, we recover the following sporadic known
examples of Table 1.

Thus, we have proved the following theorem:

Theorem 10. Any two-weight irreducible cyclic c(p, m,v) code where
p has index two modulo a prime v and which is not one of the siz
sporadic examples of Table 1 is semiprimitive, with at most one excep-
tion. Hence, Conjecture 1 is true, with at most one exception, for all
indez-two c¢(p,m,v) codes with v prime.

7. CYCLOTOMIC COSETS

Let p be a prime. For any integer v prime to p, consider on the ring
Z /vZ the equivalence relation given by: for a,b € Z/vZ, we set a ~ b
if and only if there exists ¢t € Z such that a = bp'. The equivalence
classes for this equivalence relation are the so-called p-cyclotomic cosets
modulo v.

Recall that the order ord,(g) of an element g of the multiplicative
group (Z/vZ)* divides the order ¢(v) of this group, where ¢ is the
Euler function. We denote by ind,(g) the index of ¢ modulo v i.e.

ind(g) = ﬁ(&/)

Then ind,(g) = [(Z/vZ)* : (g)] where (g) denotes the subgroup of
(Z/vZ)* generated by g. But the number 7(p, v) of p-cyclotomic cosets
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modulo v is also equal to the number of irreducibles polynomials in the
decomposition of the polynomial X" — 1 over F,, thus it is equal to

B pld) Ny
(8) Y(p,v) = ; ordalp) > " indg(p)

dlv
with the convention that ind;(p) = 1. For example, the condition
v(p,v) = 2 is equivalent to ind,(p) = 1, that is p is a primitive root
modulo v.

Proposition 11. Let v be an integer. The ring Z/vZ contains exactly
3 p-cyclotomic cosets if and only if one of the following holds:

(i) v is a prime and p has index 2 mod v;
(ii) v is the square of a prime and p has index 1 mod v.

Proof. By (8) we have v(p,v) = 3 if and only if ind,(p) = 2 and v has
no proper divisor, or ind,(p) = 1 and v has a unique proper divisor.
The proposition is then proved. O

Proposition 12. Let v be an integer. If the ring Z/vZ contains exactly
three p-cyclotomic cosets then any c(p, m,v) code has at most three non-
zero weights.

Proof. The result is in fact much general: the number of weights is
less or equal than the number of cyclotomic cosets. It follows from
the fact that the weight of a codeword of a ¢(p, m,v) code is invariant
under ¢ — t¢ and under t — t?; see Theorem 2.5 of [2] for a detailed
proof. Il

The case (ii) of Proposition 11 falls into the semiprimitive case since
p generates the whole group (Z/vZ)* and thus contains —1.
Finally, we have proved the following result:

Theorem 13. If v is an integer such that there is three p-cyclotomic
cosets modulo v then any two-weight irreducible cyclic code c(p,m,v)
which is not one of the siz sporadic examples of Table 1 is semiprimi-
tive, with at most one exception. Hence, Conjecture 1 holds true, with
at most one exception, for all c(p,m,v) codes with v an integer such
that there is three p-cyclotomic cosets modulo v.

Proof. 1f a binary irreducible cyclic code with three-cyclotomic cosets
has two weights then it is semiprimitive. Indeed, by Proposition 11, an
irreducible cyclic code with three-cyclotomic cosets leads to two cases.
The first one leads ¢(p, m, v) codes with v a square of a prime and p of
index 1 modulo v which gives a semiprimitive code.

The other case leads to ¢(p, m,v) codes with v a prime and p of index
2 modulo v (the so-called index-two codes). When v =1 (mod 4), we
saw that we obtain a semiprimitive code. When v = 3 (mod 4), we
obtain ¢(p, m,v) codes with v satisfying the (#) conditions. In the case



ON THE SEMIPRIMITIVITY OF CYCLIC CODES 9

where p = 2, i.e. the binary case, we found in [1] that there is no

two-weight codes. When p # 2, theorem 10 gives the result. U
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