Corrigé de l'interrogation écrite du 7 février 2012

Questions de cours

- 1. Une base du plan est un couple (u, v) de vecteurs du plan tels que $u \not \mid v$.
- 2. La décomposition d'un vecteur w dans cette base est : $w = \lambda u + \mu v$ avec $\lambda, \mu \in \mathbb{R}$.
- 3. L'inégalité de Cauchy-Schwarz est : $|\langle u, v \rangle| \leq ||u|| ||v||$.
- 4. On a égalité si et seulement si $u \parallel v$.

Exemples

- 1. $||u|| = \sqrt{5}$.
- 2. Les vecteurs unitaires qui sont colinéaires à u sont $\frac{1}{\sqrt{5}}\vec{i} \frac{2}{\sqrt{5}}\vec{j}$ et $-\frac{1}{\sqrt{5}}\vec{i} + \frac{2}{\sqrt{5}}\vec{j}$.
- 3. Le vecteur $2\vec{\imath} + \vec{\jmath}$ est non nul et orthogonal à u.
- 4. Les vecteurs unitaires qui sont orthogonaux à u sont $\frac{2}{\sqrt{5}}\vec{i} + \frac{1}{\sqrt{5}}\vec{j}$ et $-\frac{2}{\sqrt{5}}\vec{i} \frac{1}{\sqrt{5}}\vec{j}$.

Démonstrations

1. Supposons que $u \not\mid v$, et montrons que $\mathbb{R}u \cap \mathbb{R}v = \{\vec{0}\}$.

On a
$$\vec{0} = 0u = 0v \in \mathbb{R}u \cap \mathbb{R}v$$
, donc $\{\vec{0}\} \subset \mathbb{R}u \cap \mathbb{R}v$.

Réciproquement, soit $w \in \mathbb{R}u \cap \mathbb{R}v$. Alors on a $w = \lambda u = \mu v$ avec $\lambda, \mu \in \mathbb{R}$.

Si
$$\lambda \neq 0$$
, alors $u = \frac{\mu}{\lambda} v \in \mathbb{R} v$, d'où $u \parallel v$: contradiction.

Donc
$$\lambda=0$$
 et $w=0u=\vec{0}$, d'où $\mathbb{R}u\cap\mathbb{R}v\subset\{\vec{0}\}$. C.q.f.d.

2. Supposons que $u \parallel v$ et $u \perp v$.

Comme $u \parallel v$, on a un vecteur w et des scalaires λ, μ tels que $u = \lambda w$ et $v = \mu w$.

Comme
$$u \perp v$$
, on a $0 = \langle u, v \rangle = \langle \lambda w, \mu w \rangle = \lambda \mu \|w\|^2$.

Si $u, v \neq \vec{0}$, alors $\lambda, \mu \neq 0$, d'où ||w|| = 0, c'est-à-dire $w = \vec{0}$, d'où $u = \lambda \vec{0} = \vec{0}$: contradiction.

Donc
$$u = \vec{0}$$
 ou $v = \vec{0}$. C.q.f.d.