
Introduction to dependent type theory

CIRM, May 30

Introduction to dependent type theory

Goals of this presentation

Some history and motivations

Notations used in type theory

Main goal: the statement of main properties of equality type and the univalence
axiom

First talk

Propositions = Types

Second talk

Propositions = Types = Spaces

1

Introduction to dependent type theory

History

Russell type theory 1903

Hilbert formulation of primitive recursion at higher types 1926

Brouwer intuitionistic logic, Kolmogorov’s calculus of problems 1932

Gentzen natural deduction 1934

Church simplification of type theory, λ-calculus 1940

Gödel system T and Dialectica interpretation (1941) 1958

Curry discovery of the propositions-as-types principle 1958

2

Introduction to dependent type theory

History

Prawitz natural deduction 1965

Tait normalization proof for system T 1967

de Bruijn Automath 1967

Howard general formulation of proposition-as-types 1968

Scott Constructive Validity 1968 (strongly inspired by Automath)

Lawvere equality in hyperdocrtrines 1970

Girard system F and normalization proof 1970

3

Introduction to dependent type theory

History

Martin-Löf first system with a type of all types 1971 (inspired by Howard and
Scott and Girard)

Girard’s paradox 1971

Martin-Löf predicative system 1972, 1973 (formulation of the rules for identity)

Martin-Löf “extensional” type theory 1979

Bibliopolis book, 1984 (available on-line) still “extensional” version

4

Introduction to dependent type theory

Some notation

Application of a function to an argument f a

f a1 a2 a3 for ((f a1) a2) a3

Notation used in combinatory logic and in functional programming (minimizes
the use of parentheses)

5

Introduction to dependent type theory

Some notation

A→ B → C for A→ (B → C)

λ-calculus notation for functions

λx.x2 + 1 denotes the function f such that f a = a2 + 1

In general (λx.t) a is equal to t(x = a).

The variable x is bound in λx.t

6

Introduction to dependent type theory

Implication and exponentiation

A→ B set of functions from A to B

λx.x is in A→ A

λx.λy.x is in A→ (B → A)

λf.λx.f x x is in (A→ A→ B)→ A→ B

λg.λf.λx.g (f x) is in (B → C)→ (A→ B)→ (A→ C)

We listed some of Hilbert’s axioms for the implication

7

Introduction to dependent type theory

Implication and exponentiation

λx.λf.f x is in A→ (A→ X)→ X

The false proposition ⊥ corresponds to the empty set ∅

⊥→ A corresponds to ∅ → A

(A→ ∅)→ ∅ is empty if A is empty and has one element if A is nonempty

8

Introduction to dependent type theory

Propositions as Sets?

A×B corresponds to A ∧B

A+B corresponds to A ∨B

λf.λz.f z.1 z.2 is in (A→ B → X)→ A×B → X

λf.λx.λy.f (x, y) is in (A×B → X)→ A→ B → X

9

Introduction to dependent type theory

Propositions as Sets?

(A ∧ (A→ B))→ B corresponds to

(A× (A→ B))→ B which is inhabited by λz.z.2 (z.1)

λf.λg.λx.g (f x) inhabits (A→ B)→ ¬B → ¬A

(¬B → ¬A)→ A→ B does not have any uniform inhabitant

10

Introduction to dependent type theory

Dependent products and sums

Family of sets Ai over a set I∏
i∈I

Ai set of sections (ai)i∈I or f such that f i ∈ Bi for all i

∑
i∈I

Ai set of pairs (i, a) with i ∈ I and a ∈ Ai

If Ai is a constant family Ai = A for all i this reduces to I → A and I × A
respectively

11

Introduction to dependent type theory

Dependent products and sums

λf.λi.(f.1 i, f.2 i) is in (
∏
i∈I

Bi ×
∏
i∈I

Ci)→
∏
i∈I

Bi × Ci

λg.(λi.(g i).1, λi.(g i).2) is in (
∏
i∈I

Bi × Ci)→ (
∏
i∈I

Bi ×
∏
i∈I

Ci)

This corresponds to the logical equivalence

(∀x.B(x) ∧ C(x))↔ (∀x.B(x) ∧ ∀x.C(x))

12

Introduction to dependent type theory

The axiom of choice

λg.(λi.(g i).1, λi.(g i).2) is in

(
∏
i∈I

∑
j∈J

Ai,j)→
∑

f∈I→J

∏
i∈I

Ai,f i

∑
i∈I

Bi corresponds to “strong existential”: if c is in
∑
i∈I

Bi then c.1 is in I

and c.2 is in Bc.1

reminiscent of (∃x)P (x)→ P (ε(P)) but the ε(P) depends now on the proof
of (∃x)P (x)

13

Introduction to dependent type theory

Primitive recursion

N is generated by 0 and x+ 1

If a is in X and g is in N → X → X we can define f in N → X by the
equations

f 0 = a f (n+ 1) = g n (f n)

Hilbert 1926

14

Introduction to dependent type theory

Primitive recursion

If Bn family of types over n ∈ N and a is in B0 and g is in
∏
n∈N

(Bn → Bn+1)

we can define f in
∏
n∈N

Bn by the equations

f 0 = a f (n+ 1) = g n (f n)

This corresponds to the principle of induction in Peano arithmetic

15

Introduction to dependent type theory

Intuitionistic theory of types

So far, we were looking at examples in set theory

From now on, we describe type theory as a formal system (not necessarily
based on type theory; indeed the univalence axiom is contradictory with set
theory)

We consider mathematical objects

Each object comes with its type a : A

A proposition is defined by prescribing how we are allowed to prove it

We represent each proposition as a type (the type of its proofs)

16

Introduction to dependent type theory

Intuitionistic theory of types

If A is a type and B(x) is a method which to an arbitrary object of type A

associates a type B(a) then we can form the type
∏
x:A

B(x)

If b is of type
∏
x:A

B(x) and a : A then b a is of type B(a)

If t(x) is of type B(x) for x : A then λx.t(x) is of type
∏
x:A

B(x)

If we have B(x) = B then
∏
x:A

B is written A→ B

17

Introduction to dependent type theory

Intuitionistic theory of types

If A is a type and B(x) is a method which to an arbitrary object of type A

associates a type B(a) then we can form the type
∑
x:A

B(x)

If a : A and b : B(a) then (a, b) is of type
∑
x:A

B(x)

If c :
∑
x:A

B(x) then c.1 : A and c.2 : B(c.1)

If we have B(x) = B then
∑
x:A

B is written A×B

18

Introduction to dependent type theory

Intuitionistic theory of types

If B(x) represents a proposition then
∑
x:A

B(x) can be thought of as

(∃x : A)B(x)

But it represents also {x : A | B(x)}

Type of real numbers∑
x:N→Q

∏
m:N

∏
n:N

|x (m+ n)− x m| 6 2−m

19

Introduction to dependent type theory

Disjoint union

If A and B are types we can form the type A+B

If a : A then inl a : A+B and if b : B then inr b : A+B

If we have a family of type C(z) over z : A+B

we have u : C(inl x) for x : A and v : C(inr y) for y : B

then we can define f :
∏

z:A+B

C(z) by the equations

f (inl x) = u f (inr y) = v

20

Introduction to dependent type theory

Disjoint union

The language of the theory is richer than the language of traditional systems in
permitting proofs to appear as parts of the propositions so that the propositions
can express properties of proofs (and not only individuals, like in first-order
logic). This makes it possible to strengthen the axioms for existence, disjunction,
absurdity and identity.

21

Introduction to dependent type theory

Disjoint union

Usual rule for disjunction

introduction rules
A

A ∨B
B

A ∨B

elimination rule
C [A] C [B] A ∨B

C

22

Introduction to dependent type theory

Natural numbers

N is a type of constructors 0 : N and S x : N if x : N

Let C(n) be a function which to an arbitrary natural number n : N assigns a
type

Given d : C(0) and e :
∏
n:N

(C(n)→ C(S n))

we may introduce a function f :
∏
n:N

C(n) by the equations

f 0 = d f (S n) = e n (f n)

23

Introduction to dependent type theory

Inductive definitions

We can introduce the type N1 with only one constructor 0 : N1

If C(x) type for x : N1 and we have a : C(0)

we can introduce f :
∏
x:N1

C(x) by the equation

f 0 = a

24

Introduction to dependent type theory

Inductive definitions

We can introduce the type N2 with two constructors 0 : N2 and 1 : N2

If C(x) type for x : N2 and we have a0 : C(0) and a1 : C(1)

we can introduce f :
∏
x:N2

C(x) by the equations

f 0 = a0 f 1 = a1

25

Introduction to dependent type theory

Inductive definitions

We introduce the type N0 with no constructor

If C(x) type for x : N0

we have f :
∏
x:N0

C(x)

A particular case is N0 → X for any type X

26

Introduction to dependent type theory

Inductive definitions

All these constructions follow the same pattern

constructors correspond to primitive operations and to introduction rules in
natural deduction

defined functions correspond to elimination rules that are justified by

computation rules which correspond to normalization in natural deduction

The process of following these rules correspond to computations of functions
and to the process of understanding a proof by eliminating lemmas

27

Introduction to dependent type theory

Inductive definitions

N,N2, N1, N0 and A+B are examples of type introduced by ordinary inductive
definition

Hilbert 1926 considers the type Ord of ordinal numbers

0 : Ord

if x : Ord then S x : Ord

if u : N → Ord then its limit L u : Ord

28

Introduction to dependent type theory

Inductive definitions

If c : C(0) and g :
∏
x:Ord

(C(x)→ C(S x)) and

h :
∏

u:N→Ord

(
∏
n:N

C (u n))→ C (L u)

we may introduce f :
∏
x:Ord

C(x) by the recursion schema

f 0 = c f (S x) = g x(f x) f (L u) = h u (f ◦ u)

where (f ◦ u) x = f (u x)

29

Introduction to dependent type theory

Inductive definitions

Thinking of C(x) as a proposition, f is a proof of the universal proposition
(Πx ∈ Ord)C(x) which we get by applying the principle of transfinite induction
over the second number class ordinals.

30

Introduction to dependent type theory

Type theory

In the formal theory the abstract entities (natural numbers, ordinals, functions,
types, and so on) become represented by certain symbol configurations, called
terms, and the definitional schema, read from the left to the right, become
mechanical reduction rules for these symbol configurations.

Type theory effectuates the computerization of abstract intuitionistic
mathematics that above all Bishop has asked for

It provides a framework in which we can express conceptual mathematics in a
computational way.

31

Introduction to dependent type theory

Type theory

A term is normal if it cannot be further reduced

The closed normal term of type N2 are exactly 0 and 1

The closed normal term of type N have the form 0, S 0, S (S 0), . . .

There is no normal closed term of type N0

Hence if we have normalization (and preservation of types by reduction) there
is no closed term of type N0

Since ⊥= N0 this expresses the logical consistency of type theory

32

Introduction to dependent type theory

Context

Notion of context (introduced by Automath, N. de Bruijn)

x1 : A1, x2 : A2(x1), x3 : A3(x1, x2), . . .

“let x be a natural number, assume that ϕ(x) holds for x, and let y be a
rational number, . . . ”

x : N, h : ϕ(x), y : Q, . . .

Compared to the usual mathematical notation, notice that we have an explicit
name for the hypothesis that ϕ(x) holds.

a1, . . . , an fits x1 : A1, . . . , xn : An iff

a1 : A1, a2 : A2(a1), . . . , an : An(a1, . . . , an−1)

33

Introduction to dependent type theory

Context

Γ,∆, . . . for context

Hypothetical judgements ∆ ` a : A

Interpretation ∆→ Γ if Γ = x1 : A1, . . . , xn : An

sequence a1, . . . , an such that

∆ ` a1 : A1, ∆ ` a2 : A2(a1), . . . , ∆ ` an : An(a1, . . . , an−1)

34

Introduction to dependent type theory

The type of types

The idea of the type of types is forced upon us by accepting simultaneously
each of the following three principles.

First, quantification over propositions as in second order logic.

Second, Russell’s doctrine of types according to which the ranges of
significance of propositional functions form types so that, in particular, it is
only meaningful to quantify over all objects of a certain type.

Third, the identification of propositions and types.

Suppose namely that quantification over propositions is meaningful. Then by
the doctrine of types, the propositions must form a type. But, if propositions and
types are identified, then this type is at the same time the type of types.

35

Introduction to dependent type theory

The type of types

It is natural to introduce a type U of all types

In particular U : U

The type of types introduces a strong kind of selfreference which, as pointed
out by Gödel 1964, transcends the cumulative hierarchy notion of set and may
seem to verge on the paradoxes, but which is actually being used in category
theory, notably, in the construction of the category of all categories

36

Introduction to dependent type theory

The type of types

We can define types by recursion, for instance T : N → U

T 0 = N T (n+ 1) = (T n)→ N

but also Eq : N → N → U

Eq 0 0 = N1 Eq (n+ 1) (m+ 1) = Eq n m

Eq 0 (m+ 1) = Eq (n+ 1) 0 = N0

37

Introduction to dependent type theory

Girard’s paradox

It does not seem possible to translate directly Russell’s paradox

We can form
∑
X:U

B(X) but B(X) cannot express that X is not of type X

The “judgement” a : A is not a proposition that can be negated

38

Introduction to dependent type theory

Girard’s paradox

We can however translate Burali-Forti’s paradox

We define we a relation R : A→ A→ U is transitive

P A R =
∏

x y z:A

R x y → R y z → R x z

and well-founded

Q A R =
∏

f :N→A

¬ (
∏
n:N

R (f (n+ 1)) (f n))

where ¬ X = X →⊥= X → N0

39

Introduction to dependent type theory

Girard’s paradox

We can form the type of all well-founded relations

V =
∑
A:U

∑
R:A→A→U

(P A R)× (Q A R)

An element in V is a tuple A,R, p, q where p : P A R and q : Q A R

We define then RV : V → V → U with pV : P V RV and qV : Q V RV so
that we have an element

v0 : V = (V,RV , pV , qV)

40

Introduction to dependent type theory

Girard’s paradox

We show∏
x:V

RV x v0

and in particular

RV v0 v0

using qV (proof that RV is well-founded), we get a closed term of type N0

This term is not normalizable

(intuitively, we “loop” when we try to understand this proof)

41

Introduction to dependent type theory

Universe

The incoherence of the idea of a type of all types whatsoever made it necessary
to distinguish, like in category theory, between small and large types. Thus the
universe U appears, not as the type of all types, but as the type of small types,
whereas U itself and all types which are built up from it are large. This makes
the types wellfounded and the theory predicative.

The situation is reminiscent of the situation in set theory after Russell’s
paradox

New information: formally one can prove normalization of the inconsistent
system in the same way as one proves normalization of consistent system (this
casts some doubt on normalization proofs...)

42

Introduction to dependent type theory

Universe

This is reminiscent of Grothendieck’s notion of universe

If A : U and B : U for x : A then we have
∏
x:A

B : U

If A : U and B : U for x : A then we have
∑
x:A

B : U

N0, N1, N2, N are all of types U

We can define small types by recursion

43

Introduction to dependent type theory

Universes

We can prove normalization (in ZFC or second-order arithmetic)

The system we obtain is predicative. The “proof-theoretic strength” is weaker
than second-order arithmetic (weaker than Π1

2 comprehension)∏
X:U

X + ¬X is not provable

∏
X:U

(¬¬X)→ X is not provable

∏
X:U

¬¬(X + ¬X) is provable

44

Introduction to dependent type theory

Universes

Define T : N2 → U by T 0 = N0 T 1 = N1

then we can prove∏
X:U

((X + ¬X) ↔
∑
b:N2

(X ↔ T b))

45

Introduction to dependent type theory

Church’s formulation of type theory

Simplification of Russell’s theory of types

Tarski, Gödel presentation of type theory: if α1, . . . , αn are types (n > 1)
then (α1, . . . , αn) is the type of relations

Church introduces a type of proposition o, a type of individuals and function
types A→ B

For instance o→ o is the type of the operation of negation

But we have also the type of functions ι→ ι

46

Introduction to dependent type theory

Church’s formulation of type theory

We have the usual connectives on propositions

p→ q : o for the implication if p q : o

quantifiers at any type ∀x : A.ϕ : o if ϕ : o [x : A]

47

Introduction to dependent type theory

Church’s formulation

Uses λ-calculus to represent terms (implicit in Principia Mathematica)

If f : A→ B and a : A then f a : B the application of the function f to the
argument a

If t : B [x : A] then λx.t : A→ B

The terms of type o are the propositions

Usual connectives and (classical) logical rules

48

Introduction to dependent type theory

Type theory

We can try to interpret higher-order logic in type theory

o is interpreted as U

A→ B used both for function types and logical implication∏
x:A

B for ∀x : A.B

However ∀x : o.B is of type o while
∏
x:U

B is not of type U if B : U for x : U

49

Introduction to dependent type theory

Impredicative Type theory

We can interpret higher-order logic if we have U : U

What we need is weaker (impredicative type theory)∏
x:A

B : U if B : U for x : A without any restriction on A

This system has the normalization property

We cannot think of types as sets in ZFC

One can prove ¬ (
∏
X:U

X + ¬X) in this system

50

Introduction to dependent type theory

Impredicative Type theory

In impredicative type theory we can define the equality following
Leibnitz/Principia Mathematica∏

X:A→U

X a0 → X a1

expresses that the elements a0 a1 : A satisfy the same properties

λa0.λa1.
∏

X:A→U

X a0 → X a1

is of type A→ A→ U

51

Introduction to dependent type theory

The W type

∏
x:A

B and
∑
x:A

B

(Πx : A)B and (Σx : A)B universal and existential quantifiers

New quantifier (W x : A)B

Constructor sup a f : (W x : A)B

if a : A and f : B(a)→ (W x : A)B

52

Introduction to dependent type theory

The W type

If d :
∏
x:A

∏
f :B(x)→(W x:A)B

(
∏

y:B(x)

C (f y))→ C (sup x f)

we may introduce g :
∏

t:(W x:A)B

C(t) by the defining equation

g (sup a f) = d a f (λy.g (f y))

53

Introduction to dependent type theory

The W type

This can be seen as a new quantifier

(Πx : N2)B is equivalent to B(0) ∧B(1)

(Σx : N2)B is equivalent to B(0) +B(1)

(Wx : N2)B is equivalent to ¬(B(0) ∧B(1))

(W x : A)B → ¬(Πx : A)B

g : (W x : A)B → ((Πx : A)B)→ N0 defined by

g (sup a f) h = g (f (h a)) h

54

Introduction to dependent type theory

Type theory and set theory

Consider V = (W X : U)X

An element of α : V can be thought of as a small type α0 : U with a function
α1 : α0 → V

We define inductively the equality on V (bissimulation)

sup α0 α1 =V sup β0 β1 is

(
∏
x:α0

∑
y:β0

α1 x =V β1 y)× (
∏
y:β0

∑
x:α0

α1 x =V β1 y)

55

Introduction to dependent type theory

Type theory and set theory

We can then define a membership relation

α ε β is defined as
∑
y:β0

α =V β1 y

Most of the axioms of set theory are validated by this interpretation

For instance ∃!x.∀y.¬(y εx)

or ∀x y.∃z.∀t. t ε z ↔ (t = x ∨ t = y)

This interpretation justifies CZF (constructive version of ZF)

If we have U : U this interpretation justifies naive set theory (and we can
reproduce Russell’s paradox)

56

Introduction to dependent type theory

Axiom of choice

(
∏
x:A

∑
y:B

R x y)→
∑

f :A→B

∏
x:A

R x (f x)

is inhabited by λg.(λx.(g x).1, λx.(g x).2)

Type-checking uses that (λx.(g x).1) a and (g a).1 are identical

This expresses well the fact that in constructive mathematics, the axiom of
choice holds by the very meaning of existence (Bishop)

This is quite different from the axiom of choice in topos theory

57

Introduction to dependent type theory

A table of different systems

ZFC, ZF, topos theory, CZF, type theory, impredicative type theory w.r.t.

extensional axiom of choice

countable choice

impredicativity

extensionality

classical logic

58

