2ème année de Master Recherche MDFI — 1er examen Logique et Théorie du Calcul — Paul Ruet

17 novembre 2010, 9h - 11h

Les documents sont autorisés. Les exercices sont indépendants. Le barème est indicatif.

Attention à la clarté de la rédaction.

Exercice 1 (13 points) Un ensemble de fonctions ayant un nombre fini de variables dans \mathbb{N} et à valeurs dans \mathbb{N} est dit clos par opérations élémentaires s'il satisfait les conditions suivantes :

- il contient les fonctions de base : projections, addition, multiplication, et δ la fonction caractéristique de l'égalité : $\delta(x, y) = 1$ si x = y, 0 sinon ;
- il est clos par composition;
- il est clos par somme et produit bornés.

L'ensemble \mathcal{E} des fonctions élémentaires est le plus petit ensemble clos par opérations élémentaires. Une relation $R \subseteq \mathbb{N}^n$ est une relation élémentaire si sa fonction caractéristique χ_R l'est.

- 1. Expliquer brièvement pourquoi toute fonction élémentaire est primitive récursive.
- 2. Montrer que les fonctions suivantes sont élémentaires : $x \mapsto 1$, la fonction successeur, $x \mapsto 0$, les polynômes à coefficients dans \mathbb{N} . Montrer que les fonctions

$$\overline{zero}(x) = \begin{cases} 1 & \text{si } x = 0 \\ 0 & \text{sinon} \end{cases} \text{ et } zero(x) = \begin{cases} 0 & \text{si } x = 0 \\ 1 & \text{sinon} \end{cases}$$

sont élémentaires. Montrer que $(a, x) \mapsto a^x$ est élémentaire. Montrer que \mathcal{E} est clos par définition par cas. Montrer que le prédécesseur $0 \mapsto 0, x+1 \mapsto x$ est élémentaire.

- 3. Montrer que les relations ≤ et < sont élémentaires. Montrer que l'ensemble des relations élémentaires est clos par les opérations booléennes et par les quantifications (existentielle et universelle) bornées.
- 4. Montrer que \mathcal{E} est clos par minimalisation bornée : si R est élémentaire, alors la fonction suivante est élémentaire :

$$(\vec{a}, x) \mapsto \mu t \leqslant x.R(\vec{a}, t) = \begin{cases} \text{le plus petit } t \leqslant x \text{ tel que } R(\vec{a}, t) & \text{s'il existe,} \\ 0 & \text{sinon.} \end{cases}$$

Montrer que - et le quotient et le reste de la division euclidienne sont élémentaires.

5. Montrer que les relations suivantes sont élémentaires : x divise y, x est premier. Soit p_n le n-ième nombre premier. En remarquant que $p_{n+1} \leq 1 + \prod_{i=0}^n p_i$, montrer que $p_n \leq 2^{2^n}$ et que la fonction

 $\pi: n \mapsto \text{ le nombre de nombres premiers } \leqslant n$

est élémentaire, puis que $n \mapsto p_n$ est élémentaire.

On peut montrer (mais ce n'est pas demandé ici) que \mathcal{E} est clos par récurrence bornée : si $g,h,b\in\mathcal{E}$, alors la fonction f (unique si elle existe) vérifiant $f(\vec{a},0)=g(\vec{a}), f(\vec{a},x+1)=h(\vec{a},x,f(\vec{a},x))$ et $f(\vec{a},x)\leqslant b(\vec{a},x)$ est élémentaire. Mais il existe des fonctions primitives récursives non élémentaires, comme nous allons le voir.

6. Soit $exp^0(x) = x$ et pour tout $k \ge 1$,

$$exp^k = \underbrace{exp \circ \cdots \circ exp}_{k}$$
, et soit $E(x) = \underbrace{(exp \circ \cdots \circ exp)}_{x}(x)$.

Expliquer brièvement pourquoi ces fonctions sont primitives récursives. Montrer que les fonctions exp^k sont croissantes, et que pour tout x, la fonction $k \mapsto exp^k(x)$ est croissante.

- 7. On dit qu'une fonction $f: \mathbb{N} \to \mathbb{N}$ domine une fonction $g: \mathbb{N}^p \to \mathbb{N}$ s'il existe un entier K tel que pour tout $\vec{a} \in \mathbb{N}^p$, $g(\vec{a}) \leq f(max(\vec{a}, K))$. Soit \mathcal{E}' l'ensemble des fonctions dominées par l'une des fonctions exp^k .
 - (a) Montrer que \mathcal{E}' contient les fonctions de base et est clos par composition.
 - (b) Montrer que \mathcal{E}' est clos par somme bornée. On pourra admettre sans démonstration que pour tout entier $x \ge 5$, $(x+1) \cdot exp^k(x) \le exp^{k+1}(x)$.
 - (c) Montrer que \mathcal{E}' est clos par produit borné. On pourra admettre sans démonstration que pour tous entiers $x \geqslant 5$ et $k \geqslant 1$, $(exp^k(x))^{x+1} \leqslant exp^{k+1}(x)$.
 - (d) En déduire que $\mathcal{E} \subseteq \mathcal{E}'$.
 - (e) Montrer que E domine toutes les fonctions élémentaires, et donc que $E \notin \mathcal{E}$.

Exercice 2 (7 points) On souhaite définir une machine de Turing qui décide, étant donné un graphe simple fini dirigé G = (V, E) et deux sommets $v, w \in V$, s'il existe un chemin de v vers w.

1. Soient A_p , B_p deux suites d'ensembles de sommets et i_p une suite de sommets telles que

$$i_p \in A_p$$

$$A_0 = B_0 = \{v\}$$

$$A_{p+1} = A_p \setminus \{i_p\} \cup C_p$$

$$B_{p+1} = B_p \cup C_p$$

où C_p est l'ensemble des sommets $j \notin B_p$ tels que G ait un arc de i_p vers j. Montrer que $A_p \subseteq B_p$ pour tout p, et que ces suites sont finies. Montrer qu'il existe un chemin de v vers w si et seulement si $w \in B_k$ pour un certain k.

2. On convient que l'ensemble des sommets V est l'ensemble d'entiers $\{1,\ldots,n\}$, de sorte que la donnée du problème est un quadruplet (n,v,w,ℓ) , où $v,w\leqslant n$ et ℓ est la suite des arcs (couples de sommets) dans E. Tous ces entiers sont représentés en binaire. Définir précisément une machine de Turing qui formalise l'algorithme ci-dessus.