2ème année de Master Recherche MDFI — 2nd examen Logique et Théorie du Calcul — Paul Ruet

1er décembre 2010, 9h - 10h30

Les documents sont autorisés. Les exercices sont indépendants. Le barème est indicatif.

Attention à la clarté de la rédaction.

Exercice 1 (8 points) Si $L \subseteq \Sigma^*$ est un langage, son étoile de Kleene est le langage $L^* = \{w_1 \cdots w_k \mid k \geq 0, w_1, \ldots, w_k \in L\} \subseteq \Sigma^*$ constitué des concaténés de mots de L. Une classe de complexité X est dite close par étoile de Kleene si $L \in X$ implique $L^* \in X$.

- 1. Montrer que **NP** est close par étoile de Kleene.
- 2. On veut montrer que \mathbf{P} est close par étoile de Kleene. Dans ce but, on se donne un langage $L \in \mathbf{P}$.
 - (a) Etant donné un mot $w = x_1 \cdots x_n$ où $x_i \in \Sigma$ pour $i \in \{1, \dots, n\}$, on définit une relation binaire $R \subseteq \{(i, j) \in \{1, \dots, n\} \times \{1, \dots, n\} \text{ tel que } i \leq j\}$ par $R(i, j) \Leftrightarrow x_i \cdots x_j \in L^*$. Pour tout $\ell \in \{0, \dots, n\}$, soit R_ℓ l'ensemble des couples (i, j) tels que R(i, j) et $j i \leq \ell$. Donner un algorithme polynômial qui calcule R_ℓ (écrit R_ℓ sous forme de liste) pour ℓ croissant de 0 à n.
 - (b) En déduire que $L^* \in \mathbf{P}$. Conclure.
- Exercice 2 (12 points) 1. Soit NaeSat (pour "not all equal") le problème suivant : étant donnée une formule propositionnelle ϕ sous forme normale conjonctive dont les clauses ϕ_1, \ldots, ϕ_k ont chacune exactement 3 littéraux, existe-t-il une valuation η satisfaisant ϕ et telle que pour toute clause $\phi_i = x_i^1 \vee x_i^2 \vee x_i^3$, au moins un des trois littéraux x_i^1, x_i^2, x_i^3 est faux pour η ? On dira dans ce cas que η nae-satisfait ϕ .
 - (a) Expliquer pourquoi NaeSat \in NP.
 - (b) On veut montrer qu'il est possible de modifier la réduction (vue en cours) de CircuitSat à 3Sat en une réduction de CircuitSat à NaeSat, en ajoutant dans la formule ψ_s associée au circuit C, une nouvelle même variable z à chaque clause d'au plus 2 littéraux (c'est-à-dire en remplaçant x_i^1 par $x_i^1 \vee z$, et $x_i^1 \vee x_i^2$ par $x_i^1 \vee x_i^2 \vee z$). Montrer que si η nae-satisfait la formule ψ_s' ainsi définie, alors $\overline{\eta}: x \mapsto \neg \eta(x)$ nae-satisfait aussi ψ_s' , et que l'une de ces deux valuations satisfait le circuit C. Réciproquement, montrer que si le circuit est satisfiable, alors il existe une valuation qui nae-satisfait ψ_s' . En conclure que NaeSat est NP-complet.

- 2. Soit 3Co1 le problème suivant : étant donné un graphe non-dirigé G, existe-t-il une 3-coloration de G, c'est-à-dire une fonction κ de l'ensemble |G| des sommets de G dans $\{0,1,2\}$ telle que si x,y sont deux sommets adjacents quelconques, $\kappa(x) \neq \kappa(y)$?
 - (a) Expliquer pourquoi $3Col \in NP$.
 - (b) On veut montrer que 3Co1 est NP-complet en réduisant NaeSat à 3Co1. Etant donnée une formule ϕ sous forme normale conjonctive dont les clauses ϕ_1, \ldots, ϕ_k ont chacune exactement 3 littéraux, on construit le graphe G suivant :
 - |G| contient 3m + 2n + 1 sommets, n étant le nombre de variables de ϕ : un sommet distingué a, 2 sommets notés x, $\neg x$ pour chaque variable x, 3 sommets notés $\phi_i^1, \phi_i^2, \phi_i^3$ pour chaque clause $\phi_i = \phi_i^1 \lor \phi_i^2 \lor \phi_i^3$;
 - un triangle (graphe complet à 3 sommets) $[a, x, \neg x]$ pour chaque variable x, un triangle $[\phi_i^1, \phi_i^2, \phi_i^3]$ pour chaque clause ϕ_i ;
 - une arête entre ϕ_i^j et le sommet $(x \text{ ou } \neg x)$ représentant le littéral ϕ_i^j . Montrer que G admet une 3-coloration si et seulement si ϕ est nae-satisfiable. Conclure.