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Pourquoi les matrices 
orthogonales ?

• matrices unitaires et calcul quantique

• exemple de réécriture de diagrammes

• applications à la théorie des groupes de Lie ?

• applications à la robotique ?
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Angles d’Euler

• décomposition des matrices orthogonales : 
angles d’Euler en dimension 3 (Ox, Oz, Ox)




1 0 0

0 cosα − sinα
0 sinα cosα


 ,




cosα − sinα 0

sinα cosα 0

0 0 1


 .

Theorem 1 Any rotation of R3 can be decomposed into three rotations possibly pre-
ceded by an axial symmetry, where :

• the axes of the rotations are, in order, Ox, Oz, and Ox;

• the angles are in [0, π[;

• the axis of the symmetry is Ox, Oy, or Oz.

This decomposition is unique if the second angle is different from 0.

Remarks: Such decomposition is called a (left) canonical decomposition. It is stan-

dard if the angles of the 3 rotations are ! 0 and there is no axial symmetry. By ex-
changingOx and Oz, we get the notions of right canonical decomposition, and of right

standard decomposition.

Theorem 2 Let u and w be respectively the upper right and the lower left coefficient

of the rotation matrix A. The canonical decomposition of A is standard, if and only if,

u and w are strictly positive.

Corrolary 1 Let A be a rotation matrix. The left canonical decomposition of A is

standard, if and only if, the right canonical decomposition of A is standard.

3 Orthogonal diagrams

We introduce orthogonal diagrams. A diagram on n wires is interpreted as an isometric

of Rn = R⊕ · · ·⊕R, or equivalently, as an orthogonal n× nmatrix. The gates represent
elementary isometrics in low dimension.

Compositions of diagrams are interpreted as follows:

• Let A and B be diagrams respectively with n and m wires, interpreted by orthog-
onal matrices MA and MB. Their parallel composition is the following diagram

C:

· · ·

· · ·

A B

· · ·

· · ·

C

It is interpreted by the matrix MC = MA ⊕ MB =

(
MA 0

0 MB

)
.

• If n = m, the sequential composition of A and B is the following diagram C:
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Matrices génératrices

• symétrie (en dimension 1)

B

· · ·
A

· · ·

C

· · ·

It is interpreted by the matrix MC = MAMB.

Remark: The identity on R is represented by a wire. In particular, the matrix Id i ⊕
MA ⊕ Id j is represented by the following diagram:

· · ·
i · · ·

· · ·
· · ·
j

A

There are two kinds of gates:

opposite gate rotation gate

α

for each angle α ∈]0, π[

The opposite gate is interpreted by the scalar −1. The α rotation gate is interpreted by
the matrix R(α) =

(
cosα − sinα
sinα cosα

)
.

Definition 5 Canonical diagrams are defined by induction on the number of wires.

A canonical diagrams on 1 wire are:

or

The general form of a canonical diagrams on n wires is:
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• rotation (en dimension 2)



Diagrammes

• composition séquentielle :

B

· · ·
A

· · ·

C

· · ·
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i · · ·
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• composition parallèle :
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Règles de réécriture

The last rule transforms right standard form into a left standard form with the same

interpretation. The corollary give the existence and the uniqueness of this left standard

form.

Lemma 1 If D reduces to D′ by the above rules, then D and D’ have the same inter-

pretation.

Proof: This holds for the last rule by definition. The other are devious. For instance,

rules 2, 4 and 5 are given by the following identities:
(
1 0

0 −1

) (
cosα − sinα
sinα cosα

)
=

(
cos(π − α) − sin(π − α)
sin(π − α) cos(π − α)

) (
−1 0

0 1

)

(
cosα − sinα
sinα cosα

) (
cos(π − α) − sin(π − α)
sin(π − α) cos(π − α)

)
=

(
−1 0

0 −1

)

(
cosα − sinα
sinα cosα

) (
cos β − sin β
sin β cos β

)
=

(
cos(α + β) − sin(α + β)
sin(α + β) cos(α + β)

)

Lemma 2 The system defined by these rules is Notherian.

Theorem 4 Every orthogonal diagram reduces to a unique canonical diagram.

Proof: The uniqueness follows from Theorem (Ref) and lemma (Ref).

We prove existence by double induction on the number of wires and the number of

gates:

Consider a diagram Dn,m with n wires and m gates. It consists of some diagram Dn,m−1
followed by some gate A. By induction hypothesis, Dn,m−1 reduces to a canonical
diagram D′

n,m′−1. Hence, Dn,m reduces to D
′
n,m′ which consists of D

′
n,m′−1 followed by

A. It remains to reduce D′n,m. There are several case, depending on the type and the
position of A.

• If A is a rotation, there are four cases:

case one case two

A

αi−1

αk

α2

α1

C1 Cn−1

αi

A

α1

C1 Cn−1

αk

α2

· · ·

· · · · · ·

· · · · · ·

· · ·

· · · · · ·
· · ·· · ·

· · · · · ·

· · ·

5

α + β − π
β′

γ′

α′α

→
β

γ

π − α π − α
α α

α

π − α

→ → → →

α

β

α + β

α

β

if α + β < π if α + β > π

→ →

3



Formes canoniques

Cn−1C1

α1

α2

α3

αk−1

αk · · ·

· · ·

· · ·

· · · · · ·

where C1, Cn−1, are canonical diagrams respectively on 1 wire and n − 1 wires, and
0 ≤ k ≤ n − 1.

Theorem 3 Any isometric of Rn can be represented by a unique canonical orthogonal
diagram.

Remark: A diagram is canonical if and only if it contains no sub-diagram of the

following form:

α

β

α α

α

β

γ

or or oror

We introduce the following rewriting rules:

β′

γ′

α′α

→β

γ

α
π − α

α
π − α

α

π − α
→ → → →

α

β

α + β

α

β α + β − π

if α + β < π if α + β > π

→ →

4

Théorème : toute matrice orthogonale admet
une unique décomposition de la forme suivante :



Convergence

Théorème : Ce système de réécriture est convergent. 
(convergence = terminaison + confluence)

Corollaire : les paires critiques sont confluentes.

α + β − π
β′

γ′

α′α

→
β

γ

π − α π − α
α α

α

π − α

→ → → →

α

β

α + β

α

β

if α + β < π if α + β > π

→ →

3



Exemple de paire critique

=

1

=

1



Diagrammes 
paramétriques

Les diagrammes paramétriques décrivent les changements 
d’angles induits par les règles de réécriture.

=

1

=

1



Une autre paire critique

=

2

=

2



Diagrammes 
paramétriques

=

2

=

2



Corollaires de la confluence

=

1

=

2

Equation de Zamolodchikov :

HIGHER CATEGORIES, STRINGS, CUBES AND SIMPLEX EQUATIONS 57 

actual equation he derives for the condition that the S-matrix be factorizable can 

be obtained using a plane projection of the two tetrahedra 

5 4 

Y 

and then interpreting the result as Penrose diagrams for the four tensors. This gives 

the tetrahedron (or 3-simplex) equation of Zamolodchikov in the form: 

A i4i2il (01,02, isi3tl i6t3t2 t6tst4 0 04)Bils3ss(O1 03, 05)Ci2i3s6(02, 03, 06)Di4i5i6 ( 4, 05, 06) ~ ~SIS2S 4 

r,d6i5i4 /t3 ,0 t6i3i2 tst3il t4t2tl 
= 03, 06)Bsli3i5 (01,03, 05)Aili2i4 (01 02, 04) IdS,~S5S 6 t,c'4, t75, 06)Cs2s3i6  ( 0 2 ,  

where the spectral parameters are related by the condition 

1 Cl C2 C4 ] 

det Cl 1 c3 c5 = 0  
C 2 C 3 1 C 6 

c 4 C 5 C 6 I 

with ci = cos(iv - 0i). 

As with the Yang-Baxter (or 2-simplex) equation, the tetrahedron equation has 

its translation into statistical mechanics. It becomes the condition that the transfer 

matrices of three-dimensional models commute. In the interactions-round-a-cube 


